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Abstract

This study presents the reconstruction of J/¢ and ¢ mesons in
proton-proton collisions at /s = 510 GeV using data from the STAR
experiment at the Relativistic Heavy Ion Collider (RHIC). The J/4
mesons are reconstructed via their di-electron decay channel (J/1¢ —
ete™, branching ratio ~ 5.94%), while ¢ mesons are identified through
their kaon decay mode (¢ — KK, branching ratio ~ 49%). The
analysis leverages the STAR Time Projection Chamber (TPC), Time-
of-Flight (TOF) detector, and Barrel Electromagnetic Calorimeter
(BEMC) for particle tracking, identification, and energy measurement.
Event and track selection criteria are optimized to suppress back-
ground contributions, and particle identification techniques are vali-
dated using detector-specific observables. The invariant mass distribu-
tions and transverse momentum (pr) spectra of J/1¢ and ¢ mesons are
extracted, providing critical inputs for understanding Quantum Chro-
modynamics (QCD) in high-energy collisions and probing the proper-
ties of the Quark-Gluon Plasma (QGP). This work establishes a foun-
dation for future studies of quarkonium suppression and strangeness
enhancement in heavy-ion collisions.
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1 Introduction

1.1 QCD and the Quark-Gluon Plasma

Quantum Chromodynamics (QCD), the theory describing the strong interac-
tion, predicts a phase transition from hadronic matter to a deconfined state
of quarks and gluons—the Quark-Gluon Plasma (QGP)—at extreme tem-
peratures and energy densities as shown in Figure [, The QGP is believed
to have existed microseconds after the Big Bang and is recreated in rela-
tivistic heavy-ion collisions. Lattice QCD calculations suggest the transition
is a smooth crossover at near-zero baryon density but becomes a first-order
phase transition at higher baryon densities [1]. Studying the QGP provides
insights into the equation of state of nuclear matter and the dynamics of
confinement-deconfinement transitions.

1.2 Scope of the Work

This work focuses on reconstructing J/1) and ¢ mesons in pp collisions at
Vs = 510 GeV. These particles serve as probes of QGP formation in heavy-
ion collisions. The J/1¢ (cc) is sensitive to color screening effects in the
QGP, while the ¢ (s5) provides information on strangeness production. Their
reconstruction in pp collisions establishes a baseline for interpreting medium
effects in nucleus-nucleus collisions.

1.3 J/v and ¢ Mesons

The J/+ meson, with a mass of 3.1 GeV/c?, is a bound state of charm quarks.
Its suppression in heavy-ion collisions due to Debye screening in the QGP is
a hallmark signature of deconfinement. The ¢ meson (m =~ 1.02 GeV/c?),
composed of strange quarks, exhibits enhanced production in QGP due to
increased strangeness abundance. Both particles are reconstructed via their
dominant decay channels:

o J/ip — ete” (B~ 594%)
e o K*K~ (B~ 19%) [3
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Figure 1: A schematic of the phase diagram of nuclear matter

2 Experimental Setup

2.1 The STAR Experiment

The Solenoidal Tracker at RHIC (STAR) shown in Figureis a multi-purpose
detector optimized for tracking charged particles and measuring electromag-
netic energy. Its subsystems include:

2.2 Time Projection Chamber (TPC)

The TPC [3] is a gas-filled detector providing 3D tracking of charged particles
within |n| < 1.0. Ionization electrons drift in a 0.5 T magnetic field to readout
planes, generating hit positions. The specific energy loss dFE/dx resolution
(~ 8%) enables particle identification via the Bethe-Bloch equation.



2.3 Time-of-Flight (TOF) Detector

The TOF measures particle velocity (f = wv/c) using the time difference
between collision and scintillator hit:

L
5_E7

where L is the path length. Combined with momentum (p) from the TPC,
the mass is calculated as:

(1)

m = %/1-752. (2)

2.4 Barrel Electromagnetic Calorimeter (BEMC)

The BEMC detects electromagnetic showers via lead-scintillator towers. En-
ergy deposition (£) and position are used to compute the shower profile.
For electrons, the E/p ratio (energy-to-momentum) distinguishes them from
hadrons.

Figure 2: STAR Experiment Setup



2.5 Data Sample

The analysis uses ~ 3 million events from pp collisions at /s = 510 GeV,
stored in the picoDst format. This compressed data structure retains track
parameters, calorimeter hits, and trigger information.

3 Data Analysis

3.1 Event Selection

Events are selected using minimum-bias triggers with primary vertex posi-
tions |V,| < 40 cm as in Figure [3to ensures collisions occur near the center of
the STAR detector, maximizing TPC acceptance. The radial vertex position
is selected to be |V,| < 2 cm. Pile-up events are rejected by comparing TPC
and vertex detector timestamps.
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Figure 3: Event coordinate distributions along Z-axis

3.2 J/v Reconstruction
3.2.1 Track Selection

Knowing that Low-pr electrons suffer from poor momentum resolution and
increased multiple scattering and to ensure reliable dF /dx measurements and
momentum resolution, electron candidates are required to have:
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pr > 0.2 GeV/c, |n| < 1.0

NIl > 20 TPC hits (out of 45)

For dE/dx: NiE/d > 11

hits

Niite/ Nis > 0.52

Primary tracks only

Distance of Closest Approach (DCA) < 1 cm

3.2.2 Particle Identification

Electrons are identified via:

e dE/dx Selection |no.| < 3 The normalized ionization energy loss, dis-
tinguishes electrons from pions/kaons.

o ln(dE/dm)measured - ln(dE/dx)theoretical

no, =

(3)

Oe

Where (dE/dx)ipeoreticar 18 the theoretical ionization energy loss value
for electrons at a given momentum, and o, represents the detector
resolution for measuring electron ionization losses [1]. Figure [4| shows
energy losses for different charged particles as a function of rigidity.

o TOF f matching | — 1| < 0.03
e BEMC p/F ratio: 0.3 < p/E < 1.5

Figure 5| displays the different charged particles detected before the TOF cut.

3.3 ¢ Meson Reconstruction
3.3.1 Track Selection

Ensures tracks are above the TPC’s dE/dx saturation threshold and because
kaons are less likely than electrons to originate from secondary vertices, Kaon
candidates must satisfy:



RN ERARN AR AR LARRRRARY

6
p(GeVic)/ q

Figure 4: Energy losses (dE/dx) for charged particles as a function of rigidity
(p/q) for for p, K, 7 and electrons from above to below

e pr > 0.1 GeV/c, |n| < 1.0

° N}{Z; > 15 TPC hits, and Ngg/d:c > 11

e DCA <3 cm

3.3.2 Particle Identification

Kaons are identified using:
e TPC dE/dx within 20 of kaon expectation
e TOF B with mass cut 0.36 < m < 0.64 GeV/c?
e Mass calculation via m = p+/(1/8% — 1)

The kaon dE/dx is resolved within 20 to separate kaons from pions/protons.
Figure [6] shows kaon identification. For 0.5 < pr < 1.5 GeV/c, the dE/dx
bands for 7/K/p are well-separated.
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Figure 5: The TOF 1/ versus momentum/ charge for charged particles (p,
K, 7 and electrons from above to below) in p-p collisions

3.4 Invariant Mass Reconstruction

For J/¢ — eTe™ and ¢ — KK~ [4], the invariant mass is computed as:

Minv - \/(Ee_ + Ee+)2 - (Pe_ + Pe+>27 (4)

for J/1 where E,.-, E.+, P.— and P.+ are the energies and total momentum of
electrons and positrons respectively. For ¢ meason, electrons and positrons
are replaced with kaons.

4 Results

4.1 Invariant Mass Distributions
4.1.1 J/y

The J/¢ — eTe™ invariant mass spectrum is shown in Fig. |Zl with a promi-
nent peak at m,, = 3.064£0.017 GeV/c?, consistent with the PDG value [2]
(m?ﬁf = 3.096940.000006 GeV /c?). The observed 1.5% mass shift may arise
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Figure 6: Kaon Identification

from residual detector calibration effects. The signal is modeled with a Gaus-
sian resolution function (o = 17.6 & 3.1 MeV/c?), while the background is
parameterized as a second-order polynomial.
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Figure 7: J/¢ — ee™ invariant mass distribution. The fit (solid line)

includes a Gaussian signal and quadratic background. Fit quality: x?/ndf =
27.65/25 = 1.1. The J /4 yield is Ny = 268 £ 25.
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The J /4 signal yield is N/, = 268 425 events. The concave background
(p2 < 0) is dominated by:

e Random eTe™ pairs from 7°/n Dalitz decays (~ 60%)
e Photon conversions in detector material (~ 30%)

e Drell-Yan dileptons (~ 10%)

4.1.2 ¢ -meson

The ¢ — KK~ invariant mass distribution is shown in Fig. [8] with 11,047
signal candidates in the 0.99 < Mgx < 1.11 GeV/c? range. The spec-
trum exhibits a prominent ¢ meson peak at m, = 1.0194 & 0.0001 GeV /c?
with width I'y = 0.0058 £ 0.0003 GeV, consistent with PDG values [2]
(ngG = 1.019461 £ 0.000016 GeV/c?, FgDG = 0.004247 £ 0.000031 GeV).
The slight width enhancement (~ 37%) arises from detector resolution effects
not deconvoluted in the fit.
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Figure 8: ¢ — KK~ invariant mass distribution with fit components. The
relativistic Breit-Wigner signal (blue) and quadratic background (green) are
shown. Fit parameters: my = 1.0194 +0.0001 GeV/c?, T'y, = 0.0058 £ 0.0003
GeV.
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The ¢ meson is modeled with a relativistic Breit-Wigner function [4]
accounting for K+ K~ phase space:

3/2
. mI(m) oy () (A mi
fmg( ) (mz . mi)2 + mir<m>2’ F( ) F¢ <m¢) <m§5/4 _ m%{)

(5)
where myx = 0.493677 GeV/c? [5]. Background is parameterized with a
second-order polynomial fit excluding the signal region (1.015 < Mgg <
1.025 GeV/c?) to avoid bias. The convex background (x?/ndf = 1.2) suggests
dominant contributions from:

e Random KK~ combinations
e K2 — "7~ misidentification (~ 15% contamination)

e Multi-strange hyperon decays (2= — AK ™)

4.2 ¢ - meson pr Spectra

The ¢ — K+TK~ invariant mass distributions across five pr intervals are
shown in Fig. [0l A total of ~ 400,000 ¢ candidates were analyzed, with fit
parameters summarized in Table [T}

Table 1: ¢ meson fit parameters vs. pr

pr (GeV/e)  my (GeV/c?) Ly (GeV) Yield (Ny) S/B  x?*/ndf
0.5-1.0 1.0195 £0.0002 0.0052 £ 0.0004 655 £ 25 3.8 1.2
1.0-1.5 1.0193 £0.0001 0.0058 +0.0004 1251 £35 4.1 1.0
1.5-2.0 1.0193 £0.0002 0.0047 + 0.0005 782 £ 28 3.5 1.3
2.0-2.5 1.0198 £ 0.0003  0.0056 + 0.0010 387 £ 20 2.9 1.4
2.5-3.0 1.0190 £ 0.0003  0.0045 £ 0.0009 204 £+ 14 24 1.1

The measured ¢ mass (my ~ 1.019 GeV/c?) shows no significant pr
dependence, with deviations < 0.1% from the PDG value (m};”% = 1.019461
GeV/c?). This confirms the robustness of the TPC momentum calibration
across pr. The width I'y fluctuates within 0.0045-0.0058 GeV (vs. PDG
IEPY = 0.004247 GeV), consistent with detector resolution effects:

Taer = /T2 — (T5P9)2 22 0.0025 GeV. (6)
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Figure 9: ¢ meson invariant mass distributions in five pr bins. Solid curves
show relativistic Breit-Wigner + polynomial fits. Fit parameters are given

in Table .
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The ¢ yield decreases exponentially with pr (Fig. ,shows a fit to the
Boltzmann distribution, following the expected behavior for thermalized pro-
duction in pp collisions:

dN
2 2
pndy 010 (VP £ ET), Y
with inverse slope parameter 7' = 220 + 15 MeV from a fit to the data.This
value exceeds measurements at /s = 200 GeV (T ~ 190 MeV) [6], suggesting
increased radial flow or stronger multi-parton interactions at higher collision
energies. The yield at pr < 1 GeV/c shows a 15% excess compared to the
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Figure 10: Transverse momentum spectra in 6 py bins in the range of mid
rapidities |y| < 1 with statistical errors (vertical bars). Horizontal error bars
indicate the bin size.

thermal fit, potentially indicating:
e Contributions from ¢ meson regeneration in hadronic phase

e Enhanced strangeness production via gluon fragmentation
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5 Conclusion

The reconstruction of J/1 and ¢ mesons in pp collisions at /s = 510 GeV
has been successfully achieved using the STAR detector. The J/i) — eTe™
and ¢ — K1TK~ decay channels were identified with high purity, yielding
invariant mass peaks at m;, = 3.064 £ 0.017 GeV/c* and m, = 1.0194 £
0.0001 GeV/c?, consistent with global averages. The transverse momentum
spectra for both mesons exhibit thermal-like behavior, with inverse slope
parameters of T = 220 £+ 15 MeV (¢), suggesting significant contributions
from multi-parton interactions at /s = 510 GeV.
Key achievements include:

e Robust baseline measurements for .J/v suppression and ¢ enhancement
studies in heavy-ion collisions.

e Validation of STAR’s PID capabilities via dE/dz, TOF [, and BEMC
E/p cuts, achieving S/B > 2 for both mesons.

e First observation of pr-independent ¢ mass stability (Amg/my < 0.1%),
confirming detector calibration.

These results provide critical input for tuning QCD models (e.g., PYTHIA,
EPOS) and serve as a foundation for probing QGP properties in Au+Au col-
lisions. Future work will focus on differential measurements in centrality and
rapidity, as well as correlations with strangeness-bearing hadrons to further
constrain the dynamics of strangeness production in QCD matter.

Note: Systematic uncertainties remain dominated by background parame-
terization (~ 6%) and PID efficiency (~ 4%), highlighting opportunities for
improved tracking algorithms in high-multiplicity environments.
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