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Abstract

In this work we analyze the role of angular momentum dependence of spectroscopic factors on

the fine structure of alpha-decay of actinides. To calculate the width of 𝛼-decay the two-potential

approach to the tunneling problem has been used. The potential energy for the alpha-cluster

system and the wave function of the metastable state has been calculated using dinuclear system

model for different values of the octupole deformation of the daughter nuclei. Calculated has been

performed for 226Ra, 230Th, and 240Pu.

2



I. INTRODUCTION

One of the most important decay modes of the actinides is the 𝛼-decay. The standard

approach to the problem of 𝛼-decay consist in the assumption that with certain probability,

𝛼-particle can be formed on the surface of parent nucleus. Due to the interplay between

Coulomb repulsive and nuclear attractive potentials 𝛼-particle is locked in the potential

pocket corresponding to a touching configuration with the heavy residual nucleus. Since the

potential barrier has finite height, the system can eventually decay, i.e. the 𝛼-particle will

be emitted.

The probability of decay is governed by the two factors: the preformation factor and the

penetrability of the outer barrier. The preformation factor or spectroscopic factor deter-

mines the probability with which 𝛼-particle can be formed on the surface of heavy nucleus.

This quantity completely determined by the structure of the nucleus. The penetrability of

the barrier depends strongly on deformation of the daughter nucleus. With deformation

increase, Coulomb repulsion becomes weaker and the barrier separating inner and outer re-

gions becomes smaller. Therefore, deformation effects strongly influences the penetrability

of the barrier and as such the lifetime of the metastable state corresponding to the molecular

system with an 𝛼-particle moving on the surface of the heavy nucleus.

The deformation is also important in order to describe the fine structure in alpha-decay.

The decay from the ground state of parent nucleus can happens not only to the ground

state of daughter nucleus but also to its excited states. The first guess why it can happens

is because the potential barrier which alpha-particle has to overcome is not spherically-

symmetric and therefore angular momentum of alpha-particle and of the daughter nucleus

can change during the tunneling process. Thus, one can try to describe the fine structure

of alpha-decay by completely neglecting the dependence of the spectrofactor on angular

momentum and taking into account only the deformation effects. However, this approach

proved to be unsuccessful. In [1] it was shown that the dependence of spectroscopic factor

on angular momentum has to be taken into account as well. The observed correlation

between the hindrance factors for the alpha-decay to the 1− state [2] and the energy of

this states also leads to the same conclusion. In this work, we will calculate the angular

momentum dependence of spectroscopic factors and analyze to what extend this dependence

is responsible for the description of the fine structure of alpha-decay.
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II. MODEL

A. Two-potential approach

In order to obtain the expression for the alpha-decay width we use the two-potential

approach (TPA) proposed in [3, 4]. In this approach the problem of escape of the system

from the metastable state was essentially simplified by reducing it to two separate problems:

a bound state plus a non-resonance scattering state. The potential 𝑉 (𝑥) with a barrier,

which contains a quasistationary state with energy 𝐸0 can be divided into two regions, the

innner region, 0 < 𝑟 < 𝑅, and the outer region, 𝑟 > 𝑅, where R is taken inside the barrier

region. A one dimensional example is presented on Fig. 1.

One can introduce two potentials: the inner-potential

𝑈(r) =

⎧⎪⎨⎪⎩𝑉 (r), |r| ≤ 𝑅,

𝑉 (𝑅) = 𝑉0, |r| > 𝑅
(1)

and the outer potential

�̃� (r) =

⎧⎪⎨⎪⎩𝑉0 |r| ≤ 𝑅,

𝑉 (r), |r| > 𝑅.
(2)

The inner potential contains a bound state Φ0 representing the bound state of the inner

Hamiltonian 𝐻0. It was demonstrated that the energy and the width of the quasistationary

state can be obtained from the equation:

�̃� = 𝐸0 + ⟨Φ0|𝑊 |Φ0⟩+ ⟨Φ0|𝑊�̃�(𝐸)𝑊 |Φ0⟩, (3)

where 𝑊 = �̃� − 𝑉0, and the Green’s function �̃�(𝐸) is given by

�̃�(𝐸) = 𝐺0(𝐸)(1 + �̃� �̃�(𝐸)) (4)

with

𝐺0(𝐸) =
1− |Φ0⟩⟨Φ0|
𝐸 + 𝑉0 −𝐻0

. (5)

The width of the quasistationary state is then Γ = −2𝐼𝑚(𝐸).

In the following we will apply the expression (3,4,5) to derive the probability for alpha-

decay to different states of daughter nuclei (fine structure).
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FIG. 1: The inner (𝑈 , top) and the outer (�̃� , bottom) parts of the potential 𝑉 defined as in Eqs.

(1) and (2), respectively. The separation radius 𝑅 is chosen well inside the barrier. The energy of

the metastable state is 𝐸0. The classical turning points are denoted as 𝑟1,2.

B. Potential energy

The system of interest consist of heavy fragment and 𝛼-cluster close to its surface. There

exist several methods to calculate the potential energy of such a system. All different meth-

ods though exhibit a general features. Due to the interplay between short-ranger nuclear

attraction and long-rage Coulomb repulsion, interaction energy reaches its local minimum

at the distances close to the touching configuration of fragments at any value of the angle

𝜖 (see Fig. 2). As a function of 𝜖, potential energy is symmetric function and has a form

of two minima at 𝜖 = 0 and 𝜖 = 𝜋 separated by the barrier at 𝜖 = 𝜋/2. The height of the

barrier is increasing with deformation of the fragment.

In this work we adopt a method proposed in dinuclear system model [5]. The potential is

calculated as a sum of Coulomb and nuclear potential. The Coulomb interaction potential

is calculated as:

𝑈𝑐 =

∫︁
𝜌1(

−→𝑟1 )𝜌2(−→𝑟2 )
|−→𝑟1 −−→𝑟2 |

𝑑−→𝑟1𝑑−→𝑟2 , (6)

where 𝜌𝑖(
−→𝑟 ) (𝑖 = 1, 2) are the densities of the heavy nucleus and alpha-particle, respectively.
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FIG. 2: (Schematic representation of the interaction potential between the fragments of molecule

as a function of a relative distance 𝑅.

Using the angular momentum algebra [6] one can simplify the expression (6):

𝑈𝑐 =
∑︁
𝑙1,𝑙2

(−1)𝑙1
√︂

4𝜋

2𝑙 + 1

√︃
4𝜋(2𝑙)!

(2𝑙1 + 1)!(2𝑙2 + 1)!

𝛼1𝛼2

𝑅𝑙+1

𝑚𝑖𝑛(𝑙1𝑙2)∑︁
𝑚=𝑚𝑖𝑛(𝑙1𝑙2)

𝐶 𝑙0
𝑙1𝑚𝑙2−𝑚𝑌𝑙1𝑚(Ω1)𝑌

*
𝑙2𝑚

(Ω2) (7)

Here,

𝛼1 =

√︂
4𝜋

2𝑙1 + 1
𝑄

(1)
𝑙1
𝜌1

𝛼2 =

√︂
4𝜋

2𝑙2 + 1
𝑄

(2)
𝑙2
𝜌2 (8)

are the multipole moments of the fragments.

The nucleon-nucleon interaction can be represented as:

𝐹 (−→𝑟1 −−→𝑟2 ) = 𝐶0

(︂
𝐹𝑖𝑛

𝜌0(
−→𝑟1 )
𝜌00

+ 𝐹𝑒𝑥

(︂
1− 𝜌0(

−→𝑟1 )
𝜌00

)︂)︂
𝛿(−→𝑟1 −−→𝑟2 )

Here 𝜌0(
−→𝑟1 ) is the density of nucleons, 𝜌00 is the density of nucleons in the center of the

nucleus. In the used model, the mother cell core is represented as a composite system of a

child core and 𝛼 particles. Accordingly, the density of the nucleus can be written in terms

of the sum of the densities of the components:

𝜌0(
−→𝑟 ) = 𝜌1(

−→𝑟 ) + 𝜌2(
−→𝑟 )
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Nuclear potential:

𝑈𝑁 =

∫︁
𝜌1(

−→𝑟1 )𝜌2(
−→
𝑅 −−→𝑟2 )𝐹 (−→𝑟1 −−→𝑟2 )𝑑−→𝑟1−→𝑟2

𝑈𝑁(𝑅) = 𝐶0
𝐹𝑖𝑛 − 𝐹𝑒𝑥

𝜌00

(︂∫︁
𝜌21(

−→𝑟 )𝜌2(
−→
𝑅 −−→𝑟 )𝑑−→𝑟 +

∫︁
𝜌1(

−→𝑟 )𝜌22(
−→
𝑅 −−→𝑟 )𝑑−→𝑟

)︂
+

+𝐶0𝐹𝑒𝑥

∫︁
𝜌1(

−→𝑟 )𝜌22(
−→
𝑅 −−→𝑟 )𝑑−→𝑟

Now we can approximate this function with Legendre polynomials. Let’s do it up to the

third order. The final type of potential:

𝑈𝑁 = 𝐶0

√︂
1

2
𝑃0(cos 𝜖) + 𝐶2

√︂
5

2
𝑃2(cos 𝜖) + 𝐶3

√︂
7

2
𝑃3(cos 𝜖). (9)

As a result, combining the Coulomb and nuclear potentials and taking into account the

terms up to the third order of smallness, we get an approximation of the nuclear potential,

which can be used for further calculations. The results of the calculations of the potential

energy for the system 222Rn+4He →226Ra are shown on Fig. 8.
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FIG. 3: Potential barrier for the 𝛼-cluster dinuclear system 226Ra →222Rn+4He obtained by nu-

merical calculation (blue line) and by fitting with use of Eq. 9 (yellow).
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C. Wave function of the bound state

The wave functions of the yrast states of actinides is taken as a superposition of the shell

model configuration and alpha-cluster system [7]

Ψ(𝐿) = cos 𝛾𝐿|𝑆𝑀⟩𝐿 + sin 𝛾𝐿|𝛼− 𝑐𝑙𝑢𝑠𝑡𝑒𝑟⟩𝐿. (10)

The |𝑆𝑀⟩𝐿 and |𝛼 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟⟩𝐿 are assumed to be orthogonal. The weight of the cluster

component in the total wave function is determined as

𝜔𝐿 = sin 𝛾2𝐿. (11)

To calculate the weight of 𝛼-cluster system, we must solve the Schrodinger equation in

mass-asymmetry coordinate. If the cluster system consists of the heavy fragment of mass

𝐴1 and the light fragment of mass 𝐴2 = 𝐴−𝐴1, the mass asymmetry coordinate is defined

as

𝜉 =
2𝐴2

𝐴
, (12)

where 𝐴 is the nuclear mass. The Hamiltonian describing the motion in 𝜉 has the form

�̂�(𝐼) = − ℏ2

2𝐵

1

𝜉

𝜕

𝜕𝜉
𝜉
𝜕

𝜕𝜉
+ 𝑈(𝜉, 𝐼), (13)

where 𝐵 is the effective mass parameter and 𝑈(𝜉, 𝐼) is the potential energy in mass asym-

metry for a given angular momentum 𝐼 = 0, 2, 4.... The members of the ground state band

are described as the lowest eigenfunctions of �̂�(𝐼).

The mass asymmetry 𝜉 is treated as continuous variable. The potential energy is taken

in the form

𝑈(𝜉, 𝐼) = 𝑎𝑚(𝐼) + 𝑎2(𝐼)𝜉
2 + 𝑎6(𝐼)𝜉

6. (14)

The coefficients 𝑎2 and 𝑎6 are fitted to describe the calculated energies of the DNS with an

alpha-particle and Li as a light clusters

𝑈(𝜉𝑖, 𝐼) = 𝐵1(𝜉𝑖) +𝐵2(𝜉𝑖)−𝐵 + 𝑉 (𝑅 = 𝑅𝑚, 𝜉𝑖, 𝐼) +
ℏ𝜔𝑅(𝜉𝑖)

2
, (𝜉𝑖 = 𝜉𝛼, 𝜉𝐿𝑖). (15)

Here, 𝐵1, 𝐵2, and 𝐵 are the binding energies of the fragments and the compound nucleus,

respectively. The experimental ground–state masses are used in the calculations. Shell
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effects and pairing correlations are included in the binding energies. The nucleus–nucleus

potential in (15)

𝑉 (𝑅, 𝜉, 𝐼) = 𝑉𝐶𝑜𝑢𝑙(𝑅, 𝜉) + 𝑉𝑛𝑢𝑐𝑙(𝑅, 𝜉) + 𝑉𝑟𝑜𝑡(𝑅, 𝜉, 𝐼) (16)

is the sum of the Coulomb potential, nuclear interaction potential, and the centrifugal energy.

The details of calculations are presented in [5]. The nucleus–nucleus potential 𝑉 (𝑅, 𝜉, 𝐼) is

calculated in touching configuration of the fragments that corresponds to the minimum of

the potential pocket in relative distance coordinate 𝑅 = 𝑅𝑚. The last term in (15) represents

the energy of zero point vibration in this pocket.

The weight of the cluster component in the total wave function can be determined from

the wave functions in mass asymmetry obtained above as

𝜔𝐿 = sin 𝛾2𝐿 =

∫︁ ∞

𝜉𝛼/2

|Ψ𝐼(𝜉)|2𝜉𝑑𝜉. (17)

For further calculations we need a wave function of 𝛼-cluster dinuclear system |𝛼 −

𝑐𝑙𝑢𝑠𝑡𝑒𝑟⟩𝐿 ≡ 𝜑𝛼. Lets assume that molecular system corresponding to the compound nucleus

(𝐴,𝑍) consists of an axially-symmetric quadrupole-deformed fragment (𝐴1, 𝑍1) and spherical

fragment (𝐴2, 𝑍2). The deformation of the fragment (𝐴1, 𝑍1) is defined by the parameter

𝛽20 ≡ 𝛽. The distance between the centers of the fragments will be denoted as 𝑅. The

orientation of the molecule with respect to the laboratory system can be described by the

angles Ω𝑅 = (𝜑𝑅, 𝜃𝑅, 0), which define the orientation of the vector R. The orientation of the

first fragment can be described by the angles Ω𝐻 = (𝜑𝐻 , 𝜃𝐻 , 0) which define the orientation

of its symmetry axis. Both sets of Euler angles Ω𝑅 and Ω𝐻 are defined with respect to the

laboratory system (see Fig. 4). The relative orientation of fragments can also be described

by angle 𝜖, which is the plain angle between the vector R and the symmetry axis of the

deformed fragment.

The classical expression for the kinetic energy is

𝑇 =
1

2

∫︁
𝜌(r)ṙ2𝑑r, (18)

where 𝜌(r) is the density of the molecule. Assuming weak overlap of the fragments:

𝜌(r) = 𝜌1(r) + 𝜌2(r), (19)
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where 𝜌𝑖(r), (𝑖 = 1, 2) are the densities of the fragments. Therefore, the kinetic energy can

be rewritten as

𝑇 =
1

2

∫︁
𝜌1(r)ṙ

2𝑑r+
1

2

∫︁
𝜌2(r)ṙ

2𝑑r. (20)

Let us, in addition to the laboratory system, introduce the coordinate systems related to

the centers of mass of each fragments. The vectors R1 and R2 describe the position of

these coordinate systems with respect to the laboratory system. Assuming that the center

of laboratory system coincide with the center of mass of the molecule, we have:

R1 =
𝐴2

𝐴
R,

R2 = −𝐴1

𝐴
R. (21)

Then we can write kinetic energy as

𝑇 =
1

2

∫︁
𝜌1(r)(ṙ1 + Ṙ1)

2𝑑r1 +
1

2

∫︁
𝜌1(r)(ṙ2 + Ṙ2)

2𝑑r2. (22)

FIG. 4: (Colour online) Schematic representation of the molecular system with indication of the

degrees of freedom used. Orientation of the vector R, connecting the centers of the nuclei, with

respect to the laboratory system 𝑂𝑥 is defined by the angles Ω𝑅 = (𝜃𝑅, 𝜃𝑅). Orientation of

the intrinsic coordinate system of the quadrupole-deformed fragment 𝑂ℎ𝑥ℎ with respect to the

laboratory system is described by the angles Ωℎ = (𝜃ℎ, 𝜑ℎ). Angle 𝜖 is the plane angle between R

and the symmetry axis of the deformed fragment.

Taking into account that the mass dipole moments of the fragment are equal to zero,

that is ∫︁
𝜌𝑖(r)ri𝑑ri = 0, (23)
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and neglecting the excitations of the spherical fragment (𝐴2, 𝑍2), we can write:

𝑇 =
1

2

∫︁
𝜌1(r1)ṙ

2
1dr1 +

1

2
𝜇Ṙ2

=
1

2

∫︁
𝜌1(r1)ṙ

2
1𝑑r1 +

1

2
𝜇�̇�2 +

1

2
𝜇𝑅2

𝑚(𝜃
2
𝑅 + sin2 𝜃𝑅�̇�

2
𝑅), (24)

where 𝜇 = 𝑚0
𝐴1𝐴2

𝐴
is the reduced mass of the molecule and 𝑚0 is the nucleon mass.

Evaluating integral in (24), we obtain

𝑇 =
1

2
ℑ𝐻(𝜃

2
𝐻 + sin2 𝜃𝐻 �̇�

2
𝐻) +

1

2
𝜇�̇�2 +

1

2
𝜇𝑅2

𝑚(𝜃
2
𝑅 + sin2 𝜃𝑅�̇�

2
𝑅), (25)

where ℑ𝐻 is the moment of inertia of the fragment (𝐴1, 𝑍1).

After the quantization, the kinetic energy takes the following form:

𝑇 = − ℏ2

2𝜇𝑅2

𝜕

𝜕𝑅
𝑅2 𝜕

𝜕𝑅
+

ℏ2

2𝜇𝑅2
𝑚(𝜖)

𝐿2
𝑅 +

ℏ2

2ℑℎ(𝜉)
𝐿2
ℎ, (26)

where angular momentum operators are defined as:

𝐿2
𝑖 = − 1

sin 𝜃𝑖

𝜕

𝜕𝜃𝑖
sin 𝜃𝑖

𝜕

𝜕𝜃𝑖
− 1

sin2 𝜃𝑖

𝜕2

𝜕𝜑2
𝑖

,

(𝑖 = 𝑅, ℎ). (27)

Neglecting the tunneling of the system from the pocket in the potential energy, we can

compare the characteristic frequency for the vibration in relative distance coordinate 𝑅 and

moments of inertia which describe rotation of the heavy fragment ℑ𝐻 and relative rotation

ℑ𝑅 ≈ 𝑚0𝐴1𝐴2/𝐴𝑅
2
𝑚:

ℏ𝜔𝑅 ≫ ℑ𝐻 ,ℑ𝑅. (28)

That is, we can assume that lowest excitations in the molecular system are related to the

motion in the angular degrees of freedom. Zero-point vibrations in coordinate 𝑅 plays a role

of an additional potential energy in the Hamiltonian describing angular vibrations [8].

The 𝛼-cluster wave function 𝜑𝛼 can be obtained by diganalizing the Hamiltonian with

kinetic energy determined in (26) and potential energy taken in the form (9). This Hamil-

tonian can be diagonalized on the basis set:

[𝑌𝑙1(Ω𝑅)× 𝑌𝑙2(Ω𝐻)]𝐿𝑀 . (29)

For ground state wave function the wave function can be written as:

𝜑𝛼(𝑅,Ω𝐻 ,Ω𝑅) = 𝜑(𝑅)
∑︁
𝑙

𝑎𝑙 [𝑌𝑙(Ω𝑅)× 𝑌𝑙(Ω𝐻)]00 = 𝜑(𝑅)
∑︁
𝑙

�̃�𝑙𝑃𝑙(cos 𝜖). (30)
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Taking into account that the cluster component presents only a part of total wave function

of the bound state, the preformation factor of the alpha-decay with daughter nucleus in the

state with angular momentum 𝑙 can be written as:

𝑆2
𝑙 = 𝜔0|�̃�𝑙|2. (31)

D. Width of 𝛼-decay

In order to calculate the width of 𝛼-decay it is necessary to caculate the imaginary part

of the Eq. 3. The first two terms are real, that is, it is necessary to find the third. Let’s first

consider the case of spherically symmetric potential (daughter nucleus is spherical). To do

this, we should evaluate the Green’s function:

𝐺 = − 2𝜇

2𝜋ℏ2

∫︁
𝑑𝑘

Ψ𝑘𝑙(𝑟,Ω)Ψ
*
𝑘𝑙(𝑟

′,Ω′)

𝑘20 − 𝑘2 − 𝑖𝛾

, where

Ψ𝑘𝑙 =
𝜒𝑘𝑙(𝑟)

𝑟
(𝑌𝑙 · 𝑌𝑙) =

√︂
2𝑙 + 1

4𝜋

𝜒𝑘𝑙(𝑟)

𝑟
𝑃𝑙(𝑐𝑜𝑠𝜖)

The function Ψ𝑘𝑙 is a wave function for an undeformed (Coulomb only) potential 𝑊 (𝑟).

< Φ0|𝑊𝐺𝑊𝑊 |Φ0 >= −2𝜇

ℏ2
1

2𝜋

∑︁
𝑙

∫︁
𝑑𝑘

𝑘20 − 𝑘2 − 𝑖𝛾

⃒⃒⃒⃒∫︁
𝑑3𝑟Ψ0(𝑟, 𝜖)𝑊Ψ𝑘𝑙(𝑟, 𝜓)

⃒⃒⃒⃒2
In order to calculate the integral

𝑀 =

∫︁
𝑑3𝑟Ψ0(𝑟, 𝜖)𝑊 (𝑟, 𝜖)Ψ𝑘𝑙(𝑟, 𝜖)

we use Gauss-Ostrogradsky’s theorem which yields:

𝑀 =
ℏ2

2𝜇

∫︁
𝑑(𝑐𝑜𝑠𝜖) (𝜑0(𝑟, 𝜖)∇𝜒𝑘𝑙(𝑟, 𝜖)− 𝜒𝑘𝑙(𝜖)∇𝜑0(𝑟, 𝜖))

𝜑0(𝑟, 𝜖) =
∑︁
𝑙′

𝑆𝑙′𝜑𝑙′(𝑟)𝑃𝑙′(𝑐𝑜𝑠𝜖)

Then:

𝑀 =
ℏ2

2𝜇

2𝑙 + 1

4𝜋

∑︁
𝑙′

𝑆𝑙′

∫︁
𝑑(cos 𝜖)

(︂
𝜑𝑙′(𝑟)𝑃𝑙′(cos 𝜖)

𝜕

𝜕𝑟
𝜒𝑘𝑙(𝑟)𝑃𝑙(cos 𝜖)− 𝜒𝑘𝑙(𝑟)𝑃𝑙(cos 𝜖)

𝜕

𝜕𝑟
𝜑𝑙′(𝑟)𝑃𝑙′(cos 𝜖)

)︂
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Using the orthogonality relations of Legendre polynomials, we obtain:

𝑀 =
ℏ2

2𝜇

2𝑙 + 1

4𝜋

∑︁
𝑙

𝑆𝑙

(︂
𝜑𝑙(𝑟)

𝜕

𝜕𝑟
𝜒𝑘𝑙(𝑟)− 𝜒𝑘𝑙(𝑟)

𝜕

𝜕𝑟
𝜑𝑙(𝑟)

)︂
And the width of the decay:

Γ =
∑︁
𝑙

(︂
2𝑙 + 1

4𝜋

)︂2 ℏ2

4𝜇𝑘0
𝑆2
𝑙

(︂
𝜑0(𝑟)

𝜕

𝜕𝑟
𝜒𝑘𝑙(𝑟)− 𝜒𝑘𝑙(𝑟)

𝜕

𝜕𝑟
𝜑0(𝑟)

)︂2

(32)

This solution is obtained under the assumption that the potential is spherically symmet-

ric. We depedence of the potential on deformation can be taken into account as perturbation:

𝑊 (𝑟, 𝜖) =
𝑊0

𝑟
+
𝑊2

𝑟3
𝑃2(𝑐𝑜𝑠𝜖) +

𝑊3

𝑟4
𝑃3(𝑐𝑜𝑠𝜖) =

𝑊0

𝑟
+ �̄� (𝑟, 𝜖)

The function 𝜒(𝑟, 𝜓) we will find in the first approximation of the perturbation theory:

𝜒(𝑟, 𝜖) = 𝜒(0)(𝑟, 𝜖) +
∑︁
𝑙′

∫︁
𝑑𝑘′

< 𝜒𝑘𝑙|�̄� |𝜒𝑘′𝑙′ >

𝐸𝑘𝑙 − 𝐸𝑘′𝑙′
𝜒
(0)
𝑘′𝑙′

Taking into account the corrections to the wave function, we obtain for the width of

alpha-decay:

Γ =
∑︁
𝑙

Γ𝑙

Γ𝑙 =

(︂
2𝑙 + 1

4𝜋

)︂2

𝑆2
𝑙 𝑗

2
𝑘𝑙 + 2

∑︁
𝑘′𝑙′

(2𝑙 + 1)(2𝑙′ + 1)

(4𝜋)2

∫︁
𝑑𝑘

𝑔2 + 𝑔3
𝐸𝑘𝑙 − 𝐸𝑘′𝑙′

𝑆𝑙𝑆𝑙′𝑗𝑘𝑙𝑗𝑘′𝑙′ , (33)

where

𝑗𝑘𝑙 = 𝜑0
𝜕

𝜕𝑟
𝜒
(0)
𝑘𝑙 − 𝜒

(0)
𝑘𝑙

𝜕

𝜕𝑟
𝜓0

As already indicated, the first term is the width obtained neglecting deformation depen-

dence of the spherical potential, and the second term is the correction.

III. RESULTS

Calculations were performed for three cores - 226𝑅𝑎, 230𝑇ℎ, 240𝑃𝑢. The nuclei have both

quadrupole and octupole deformations. While the quadrupole deformation can be obtained

from the calclations [9], the octupole deformation appears mainly because of the softness

13



of the nucleus and polarizing effect of the alpha-cluster. In order to estimate the effect of

octupole deformation, the calculations have been performed for different values of 𝛽3. In the

present version of the calculations, we neglect the second term in the expression (33) and

only study the fine structure due to the angular momentum dependence of the preformation

factor.

On the Figs. ??, the results presented as a black dots indicate the values obtained in the

absence of octupole deformation. The red lines are experimental values.

FIG. 5: Dependence of the intensity ratios on the orbital moment for 230Th with 𝑆𝑙=1.

1 2 3 4 5 6
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10-5

0.001

0.100

FIG. 6: Dependence of the intensity ratios on the orbital moment for 230Th.

Let’s compare the results without taking into account the spectrfactors (they are assumed

to be equal to 1) with the case, when we take them into account. As can be seen on the

example of 230Th, dots lie on a line closer to a straight line without spectrfactors and that

14
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FIG. 7: Dependence of the intensity ratios on the orbital moment for 226Ra.
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FIG. 8: Dependence of the intensity ratios on the orbital moment for 240Pu.

it is their presence that affects the shape of the curves. Due to this, the probability of

transition to the states with odd angular momentum 𝐼 is reduced.

We also note that the of octopole deformation weakly affects the intensity of transitions

to the states with even 𝐼. An increase in the deformationleads to an increase of the intensity

ratio.

The discrepancy with the experimental results is due, firstly, to the lack of experimental

data for the octopole deformation parameter 𝛽3 for most nuclei. The second reason may

be that the second term in the Eq. (33) was not taken into account. This term should

act to equalize the transition rates to the states of daughter nucleus with different angular

momenta.
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