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Abstract

The Skyrme theory is one the nonlinear theories that has
topological invariant due to its mapping structure. Nevertheless, there
were made no or little attempts to analyze the behavior of solutions in a
highly curved space-time while having a gauge coupling. This situation
can appear in a vast regions in the space. Combined gravitational and
electromagnetic interactions can lead to the nontrivial results that’s
we are to study.
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Main part

1. Introduction
The Skyrme field is a field that can be concerned as an effective

model of strong interactions in the low energy area. Despite the theory
of Skyrmion field still requires additional analysis and investigations it
has already achieved significant correspondence to observational data.

Having a great potential in describing the nuclear structure, the
model possesses several non-linear terms that bring the whole interest
to the theory. This work can be considered as a brief review of the basic
Skyrme theory with gravitational and electromagnetic interactions. It
is worth mentioning that this scalar field appears to be not only the
effective model of strong interactions but can play important role on
the cosmological scales.

Firstly we will consider Skyrmions with gravitational interaction
only. Then we will move to the Skyrme field that besides gravitational
interaction has an electromagnetic one.

But it is important to begin with the basic concepts of the Skyrme
theory, so that’s why we will begin with a short discussion of the origins
of this work.

2. Skyrmion

1. Basic Field

Let’s begin our consideration from the basic variant of the field
that arises in the Skyrme theory. The basis of the theory is a field U ,
the SU(2)-scalar. This means the field U is characterized by complex
2× 2 matrix which belongs to the matrix representation of the SU(2)
group.
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The fact that matrix U belongs to the matrix representation of
the SU(2) group can be described by following expressions:

detU = 1, UU † = I

where † stands for Hermite conjugate, I – identity matrix.
It follows from the conditions above that matrix U has to have

the form:

U =

(
a b
−b∗ a∗

)
and |a|+ |b| = 1, a, b ∈ C

If we express the complex numbers a and b in the algebraic form:

a = σ + iϕ3, b = ϕ2 + ϕ1

then the condition U ∈ SU(2) takes the form:

U =

(
σ + iϕ3 ϕ2 + iϕ1

−ϕ2 + iϕ1 σ − iϕ3

)
and σ2 + ϕ2

1 + ϕ2
2 + ϕ2

3 = 1,

where σ, ϕ1, ϕ2, ϕ3 ∈ R
One can simplify the representation of the field U in terms of real

fields σ, ϕ1, ϕ2, ϕ3 by introducing the Pauli matrices:

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
After introducing vectors ~τ = (τ1, τ2, τ3) and ~ϕ = (ϕ1, ϕ2, ϕ3),

the matrix field U then can be represented in the following way:

U = σI + i~τ · ~ϕ, σ2 + ~ϕ · ~ϕ = 1
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2. Basic Lagrangian

Using the filed U , the Lagrangian of the Skyrme theory in its
simplest form is:

LS =
f 2

16
Sp(∂µU∂

µU †) +
1

32e2
Sp
([
∂µUU

†, ∂νUU
†] [∂µUU †, ∂νUU †])

where parameters f and e are selected for better consistency with
experimental data.

This Lagrangian can be simplified more if we introduce the
quantity:

Rµ = ∂µUU
†

By using this value and the condition U ∈ SU(2) the Lagrangian
takes the form:

LS =
f 2

16
Sp (RµR

µ) +
1

32e2
Sp ([Rµ, Rν ] [Rµ, Rν ])

The Lagrangian LS can be rewritten [1] in terms of 4-vector of
potentials ϕµ = (~ϕ, σ) – in that case after rescaling f → 2f and
demanding fe = 1 the Lagranginan will take the following view:

LS =
f 2

2

{
∂µϕν∂

µϕν − 1

2
(∂µϕν∂

µϕν)2 +
1

2

(
∂µϕλ∂νϕ

λ
)

(∂µϕρ∂
νϕρ)

}

3. Gravitating Skyrmion

1. Metrics

Now we turn to the consideration of the Skyrmion in the
gravitational field. To begin with, we will consider the spherically
symmetric case - for this we will introduce the Schwarzschild metric
into consideration:

gµν = diag

((
− 1

1− 2κm(r)
r

)
,−r2,−r2 sin2 θ,

(
1− 2κm(r)

r

)
σ2(r)

)
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where κ is the coupling constant of gravity and the Skyrm field.
This relationship is expressed as follows:

æ =
4πGf 2

c2

Thus, this coupling constant includes both the gravitational
parameter G and the parameter f responsible for the Skyrme field.
A non-zero value of the coupling constant κ can be interpreted either
as a modified value of G at a given value of f or as a modified value
of f at a constant value of G, which is physically more correct.

2. Lagrangian and ansatz

The Lagrangian for the gravitational field together with the
Skyrme field has the form:

L =

(
−1

2
R + κ

{
−1

2
Sp (RµR

µ) +
1

16
Sp ([Rµ, Rν ] [Rµ, Rν ])

})√
−g

To find a spherically symmetric solution, we will look for it in
the form:

U = cosχ(r)I + i sinχ(r)~τ · ~n

where ~n = (sin θ cosψ, sin θ sinψ, cos θ) – unit vector normal to
the surface of the unit 2-sphere.

Using this ansatz, instead of 4 potentials σ and ~ϕ, we will look for
a solution for one profile function χ(r) , which defines all 4 potentials
simultaneously.

Potentials σ and ~ϕ defined using χ(r) as follows:
ϕ1 = sinχ(r) sin θ cosψ

ϕ2 = sinχ(r) sin θ sinψ

ϕ3 = sinχ(r) cosψ

σ = cosχ(r)
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3. Topological charge

One of the characteristic features of Skirm’s theory is the presence
of a conserved quantity that is not a Noether invariant [2]. This
conserved quantity appears due to the mapping S3 → S3, where
domain represents the potentials ϕµ lying on the unit 3-sphere, and
target space is our physical spaceM4 with an identified point at infinity.

The topological charge in this case is the degree of mapping S3 →
S3. In the case of using the ansatz specified above, the expression for
calculating this charge can be written as:

Q = − 1

π

(
χ(r)− sin 2χ(r)

2

) ∣∣∣∣∣
+∞

0

At infinity, the profile function is assumed to be equal to zero.
Therefore, in order for the topological charge to take a value equal to
1, the condition must be met:

χ(0) = π

4. Field equations

The field equations in this case are the Euler-Lagrange equations:

∂

∂xµ

∂L

∂
(
∂Aν

∂xµ

) − ∂L

∂Aν
= 0

For the case of spherical symmetry and statics, only r remains
an independent variable. Variation of the Lagrangian is carried out by
the functions σ(r), χ(r),m(r).
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Thus, we have three field equations:

d

dr

∂L

∂σ′
− ∂L

∂σ
= 0

d

dr

∂L

∂m′
− ∂L

∂m
= 0

d

dr

∂L

∂χ′
− ∂L

∂χ
= 0

Differentiating the Lagrangian and simplifying the expressions
obtained, we obtain three field equations [3]:

m′ = χ′2
(
r2

2
+ sin2 χ

)
N + sin2 χ

(
1 +

sin2 χ

2r2

)
σ′ = κχ′2

(
r +

2 sin2 χ

r

)
(
σN

(
r2 + 2 sin2 χ

)
χ′
)′

= σ

(
1 +Nχ′2 +

sin2 χ

r2

)
sin 2χ

where the function is introduced for brevity N = 1− 2κm(r)

r
The boundary conditions for this problem will be:

χ(0) = π, χ(∞) = 0,m(0) = 0, σ(∞) = 1

5. Numerical results

The numerical solution of these equations together with the
specified boundary conditions were obtained using the package
FIDISOL/CADSOL, implemented in Fortran. We will solve these
equations while changing the parameter κ.

Since there will be more than one solution for a non-zero value of
κ, to analyze the spectrum of solutions, we will plot σ(0) from κ and
M = m(∞) from κ.
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Figure 1: Mass of the system M from the coupling constant κ

Figure 2: σ(0) (or F0(0)∗) from the coupling constant κ
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Note 1: Figures 1 and 2 are build for the Lagrangian with
additional term m2 Sp(U − I),m = 1 and with different type of metric
parametrization that has the form:

gµν = diag(F1(r, θ), r
2F1(r, θ), r

2 sin2 θF1(r, θ),−F0(r, θ))

But this change of the metrics and Lagrangian has no effect on the
type of dependence of σ(0) or F0(0) from κ.

From the figures above we can point out that:

1. There is a critical value of κcrit ≈ 0.35 and after that value there
exists no stable solution of the field equations at all.

2. In the range (0, κcrit) there exist two separate solutions that merge
at κcrit and diverge at κ = 0.

4. Gravitating Skyrmions with charge

1. Changes

Using gravitating Skyrmions as a start point now we can
introduce the electromagnetic interaction by doing the following:

1. Changing ordinary differentiation to the covariant one:

DµU = ∂µU + igAµ [Q,U ] , Q ≡ 1

2

(
1

3
I + τ3

)
where g is rescaled gauge coupling constant

2. Introducing the electromagnetic contribution to the Lagrangian:

L→ L− 1

2
FµνF

µν , Fµν = ∂µAν − ∂νAµ

11



3. Introducing mass term m2Sp(U − I) officially to stabilize the
solutions

4. Replacing spherical metrics to the axial one because the symmetry
of the system changes after we introduce the electromagnetic
interaction. The appropriate metric will be:

g11 = F1(r, θ), g22 = F1(r, θ)r
2, g33 = F2(r, θ)r

2 sin2 θ

g34 = g43 = −F2(r, θ)r
2 sin2 θ

W (r, θ)

r

g44 = −F0(r, θ) + F2(r, θ)r
2 sin2 θ

(
W (r, θ)

r

)2

2. Numerical results

After the changes are made we can have a look on the same
invariants that are obtained by the same solver. We will measure
the gauge contribution by changing the value of ω = gA0(∞). ω →
0 means the eliminating the gauge coupling and returning to the
gravitating Skyrmion discussed above.

As expected for such little value of gauge coupling constant g the
pictures above are almost the same as for the gravitating Skyrmions
without the charge. But it is required to get and analyze the second
branch of the solutions that exists for the same reason as for the simple
gravitating Skyrmions.
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Figure 3: M from the coupling constant κ for ω = 0.1

Figure 4: σ(0) (or F0(0)∗) from the coupling constant κ for ω = 0.1
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Conclusion

Further investigations of gauge coupled Skyrmion are to be held
to get the second branch of solutions and to acquire a dependence
on the gauge coupling constant g. Nevertheless, the results that were
gathered from the primary calculations shows that the increasing of ω
changes the view of dependence M(κ) and increases the value of κcrit.

We will continue calculations to provide more accurate analysis
of the changes. The directions of future work are as follows:

1. Find the second branch of solutions for nontrivial value of coupling
constant κ

2. Construct the solutions for different values of ω

3. Find critical values and determine the types of dependencies for
the additional physical characteristics of the system

14



References

1. Shnir, Y.M., Topological and non-topological solitons in scalar
field theories /Y.M. Shnir. – Cambridge: Cambridge University Press,
2018. – 280 p.

2. Manton N., Topological solitons/Nicolas Manton, Paul
Sutcliffe. – Cambridge: Cambridge University Press, 2004.– 506 p.

3. M.S.Volkov and D.V.Gal’tsov, “Gravitating nonAbelian
solitons and black holes with Yang-Mills fields,” Phys. Rept. 319
(1999), 1-83

15


	Abstract
	Main part
	Introduction
	Skyrmion
	Basic Field
	Basic Lagrangian

	Gravitating Skyrmion
	Metrics
	Lagrangian and ansatz
	Topological charge
	Field equations
	Numerical results

	Gravitating Skyrmions with charge
	Changes
	Numerical results


	Conclusion
	References

