
JOINT INSTITUTE FOR NUCLEAR RESEARCH
Veksler and Baldin Laboratory of High Energy Physics

FINAL REPORT ON THE START PROGRAM

Optimisation of Decoding process in the
BmnRoot software package

Supervisor: Ilnur Gabdrakhmanov

Student: Andrei Islentev

Participation period: 2 July 2023 - 11 August 2023

Contents

1 Introduction 1
1.1 Experiment setup . 1
1.2 Strip detectors . 1

2 Conversion step 2
2.1 Multithreading in the Conversion step . 2

2.1.1 Multithreading model . 2
2.1.2 Execution time comparison . 3

3 Necessity of the Decoding step 3
3.1 Pedestal events . 4
3.2 Noisy channels . 4

4 Decoding step optimisation 4
4.1 Raw data format . 4
4.2 Different methods of data decoding . 5

4.2.1 Original BmnRoot approach . 5
4.2.2 Decoding events in order . 5
4.2.3 Decoding events by spills . 5

4.3 Comparing pedestal events calculations . 5
4.4 Optimising noisy channels calculation . 6

5 Conclusion 7

Abstract

This report discusses different optimisations which can be applied to the Conversion and
the Decoding algorithms in BmnRoot. A new multithreading algorithm for the Conversion
step for converting a small number of raw files is proposed. The significance of taking
different pedestal events on the Decoding step is analysed. A new algorithm for finding
noisy channels is developed and compared with the current algorithm in BmnRoot.

1 Introduction

The goal of the BM@N experiment is to investi-
gate the behavior of matter at nuclear densities
comparable to those at neutron stars. Such nu-
clear densities are achieved by accelerating par-
ticles to energies of 6GeV and smashing them
into a stationary target. As a result of these col-
lisions, new particles, including various strange
particles, are created. Hopefully, observing these
particles would improve our understanding of
strange matter.

1.1 Experiment setup

The process of particle acceleration in the
BM@N experiment is involved. At first, newly
created particles are accelerated by consecutive
linear accelerators to energies of a couple of
MeV. Then, they are passed to a booster where
they are accumulated and accelerated to energies
of hundreds of MeV. These patches, on average
consisting of a few thousand particles, are called
spills. The booster then passes the accelerated
spill into a nuclotron. The nuclotron accelerates
multiple spills at the same time to energies of
6GeV per particle and directs spills that have
reached the required energy into a tube which
leads towards the target and detectors. Spills
are discharged over a period of 5 − 10 s, giving
the detectors about a millisecond to process one
particle.

Figure 1: BM@N experiment detectors
setup.

After entering the tube, at first, a particle en-
counters a group of detectors which notify the
rest of the detectors that there is a particle in-
coming and check whether it is going to collide
with the target. After hitting the target, the par-
ticle splits into many new particles which travel
through a magnetic field. On their way, they
pass through various strip detectors. Some strip
detectors specialise in measuring particles’ exact
position and approximate time when passing the
detector. Others operate vice versa: they mea-
sure the approximate position and exact time of
passing the detector. All of the detectors up to
this point were as thin as possible to not affect
the energies of the particles. Finally, these parti-
cles collide with a thick lead calorimeter, which
measures their energies.

The velocities and the mass-to-charge ratios of
the particles can be measured after reconstruct-
ing their paths through the strip detectors. To-
gether with the data from the calorimeter, this
is enough to identify the mass and the charge of
each of the particles.

1.2 Strip detectors

Strip detectors play a central role in reconstruct-
ing the trajectories of particles. There are vari-

1

ous types of strip detectors used in the BM@N
experiment, though they all have a lot of simi-
larities. In the BmnRoot software package, this
is represented by inheriting all strip detector
classes from the same parent class BmnAdcPro-
cessor. An oversimplified scheme of a strip de-
tector is shown in figure 2.

Figure 2: A simple model of a strip detec-
tor.

All strip detectors consist of layers of parallel
strips. Ideally, the strip detector should output a
0 signal on all of the strips when no particles are
passing through it and, once a particle passes, it
should give out 1 on the strips through which it
passed and the time when a particle passed.

In reality, strip detectors output an analog sig-
nal instead of a digital one. There is a potential
difference being held across the strips, and the
strips have no conduction electrons. Once a par-
ticle passes through a strip, it knocks out some
electrons which generate an electric current. The
current’s magnitude is recorded and saved in raw
files.

2 Conversion step

The first step of the BM@N experiment’s data
analysis is conversion. The binary raw files,
which consist of blocks of analog information
from various detectors, are separated into Bm-
nRoot classes, which are then written into root

files. For blocks coming from strip detectors, this
information about the position is stored in Bm-
nADCDigit and about time in BmnTDCDigit
classes.

2.1 Multithreading in the
Conversion step

2.1.1 Multithreading model

The information for each event (a particle from
the spill hitting a target and the resultant par-
ticles triggering the detectors) can be converted
independently from each other. Therefore, we
can utilise C++ standard library’s thread, mu-
tex, and condition variable headers to greatly in-
crease the performance of the conversion step on
devices with multiple cores.

Figure 3: Multithreading approach to con-
version.

Figure 3 shows one possible approach to mul-
tithreading. The main thread reads a portion of
information from a raw file corresponding to one
event. Then, it waits for any converter thread
to become free, copies this information to this
thread, signals the thread to start converting the
information, and this process repeats. Converter
threads wait for the main thread to copy infor-
mation into them, then they convert the infor-
mation and write it into a root file, after which
they notify the main thread that they are free.

2

2.1.2 Execution time comparison

An important thing to understand is that this
model does not decrease the execution time pro-
portionate to the number of converter threads.
The reading from the input raw files is still
made in one thread. Moreover, writing into
one file from multiple threads cannot be per-
formed faster than the disk writing limit speed.
So, a great fit for the execution time would be
a hyperbola curve of a form TTotal = TI/O +
TConversion/NThreads. TTotal stands for the total
time of execution, TI/O for the time spent on
reading from and writing to files, TConversion for
the time used for converting events, and NThreads

for the number of converter threads.

Figure 4: Best-fit curve for the multi-
thread conversion implementation. The ex-
ecution times were obtained by converting 50 002
events for each number of threads and averaging
them over 10 runs. TI/O = 59.4 s, TConversion =
393.0 s.

As evident from figure 4, this approach can sig-
nificantly decrease the execution time of the con-
version step. However, this approach is only ef-
fective for quickly converting a small number of
raw files.

Figure 5: Number of converted events per
processor per second n vs NThreads.

The total amount of raw files produced during
the BM@N experiment is in the thousands. In
this case, if we want to convert all of them,
we need to maximise the number of converted
events per processor per second n. Figure 5
shows that the maximum n is achieved when
NThreads = 1. Therefore, it is substantially faster
to launch multiple main threads on all available
processors with only one converter thread for
each main thread. This conversion implemen-
tation with just one converter thread is slower
than the original BmnRoot conversion algorithm
by 0.6%.

3 Necessity of the Decoding

step

The next step of data analysis in the BM@N ex-
periment is decoding. Unlike most other steps,
the events are processed as a group and not in-
dividually. The main purpose of the decoding
step is to correct the output from the detec-
tors. There are two problems with trying to
proceed with data analysis without the decod-
ing step. Firstly, strip detectors give out some
current even when no particles are flying through
them. And, secondly, some of the strips always
output a very high signal due to some errors in
electronic components.

3

3.1 Pedestal events

At the start of each spill, strip detectors record
their electrical current on each of the strips and
write it to a raw file 100 times, just as if there was
an actual event. These events are called pedestal
events. The events where there is a particle hit-
ting a target will be called signal events from
now on. By looking at multiple pedestal events,
we can calculate the average current on each of
the strips. Then we can treat the signal from a
strip on signal events as 1 if it is higher than the
average calculated in pedestal events by some
constant, and 0 otherwise.

3.2 Noisy channels

The second problem becomes apparent once we
construct a histogram of how often strips on
some of the detectors output 1.

Figure 6: Number of times strips in layer
2 were activated on a GEM strip detector
station 6, module 3.

From figure 6, it is evident that one of the strips
in this strip detector outputs 1 way more often
than it should. This strip is called a noisy chan-
nel and its output value must be set to 0 during
the decoding step.

Figure 7: Number of times strips in layer
0 were activated on a silicon strip detector
station 3, module 16. Most likely, the strips
at the end were not working; hence, no signal
from them.

Figure 7 shows that on silicon detectors the
problem of noisy channels is way more severe
than on GEM detectors. Currently, in BmnRoot
noisy channels are marked if their output value
is 3 times higher than the average value on a seg-
ment of 32 adjacent strips. This is not the best
algorithm, as different types of strip detectors
require different constants.

4 Decoding step optimisa-

tion

4.1 Raw data format

BM@N experiment consists of multiple runs.
Some runs can be as short as 10 spills while other
runs can last for a couple hundreds of spills. To
make sure that the raw files are not too large,
they were separated into parts. Each part, other
than the last part, contains 25 001 events, which
on average weights 14.1GB. Moreover, the rate
at which data was produced was too high to
write it into one file, so the events were writ-
ten into two files: even into one file and odd into
another. Therefore, the raw files are named in
the following way:

. . . (RunID) ev (Even/Odd) p (Part) .data

For example, a file 7444 ev0 p0.data contains
25 001 events from event number 2 to event num-
ber 50 002, and file 8001 ev1 p2.data contains

4

25 001 events from event number 100 005 to event
number 150 005.

4.2 Different methods of data
decoding

The general approach to the decoding step is
clear. At first, we should look at the pedestal
events and calculate the mean output currents
on them. Then we go over the signal events and
decide whether a strip outputs 0 or 1. Finally,
we calculate the amount of times strips were acti-
vated on signal events and mark the noisy chan-
nels accordingly. The question is what pedestal
events and what signal events should we take.

4.2.1 Original BmnRoot approach

BmnRoot decodes raw files without reordering
events. What it means is that there are half of
the pedestal events from 5-7 spills. The average
value of current on strips during pedestal events
varies with time. So, taking pedestal events from
different spills and applying them to all spills
at once may worsen the quality of the decoding
step.

4.2.2 Decoding events in order

This method is similar to that used in Bmn-
Root. We merge ev0 and ev1 files correspond-
ing to the same run and part together and send
it to decoding. In this case, there are twice as
many pedestal events and signal events. There-
fore, measuring means for pedestal events and
noisy channels should give a more accurate re-
sult. However, there is still that problem where
we use pedestal events from all the spills on all of
the spills. Moreover, some noisy channels may be
only noisy during some spills, so marking them
as noisy for the rest of the spills worsens the
quality of further data analysis. And the op-
posite can happen: a noisy channel which was
only noisy during one spill won’t be marked as a
noisy channel, which also worsens the quality of
the decoded data.

4.2.3 Decoding events by spills

For this method, we need to separate ev0 and
ev1 merged file from the previous method. In
this method, there won’t be an issue with in-
cluding the pedestal events from different spills,
but the amount of signal events is significantly
lower, so it might not be enough to accurately
find noisy channels.

4.3 Comparing pedestal events
calculations

For this part, we will mostly focus on comparing
the effect that taking different pedestal events
has on the first 6 spill in files 7444 ev0 p0.data
and 7444 ev1 p0.data.

The total number of events in these 6 spills is
45 704. The remaining events are a part of a
spill, half of which is located in p1 files, so they
are ignored in this comparison. The noisy chan-
nel detection is turned off, as we only want to
compare the effect of taking different pedestal
events for the same signal events.

All three methods were able to reconstruct the
same 27 461 events and could not reconstruct the
same 18 169 events, including all of the pedestal
events (which is expected since there was no
particle). This only leaves 74 signal events,
about 0.16% of the total number of events, where
the methods performed differently. Moreover,
among these events, most are not even real
events. The location of the primary vertex (a
point where the particle hit the target) is located
far away from the target, meaning that the re-
construction, probably, used the noises on the
detectors.

We can still check whether the currents on detec-
tors during pedestal events change significantly
during one run. To do that, we can take a spill
from the end of the run, reconstruct it, and then
replace its pedestal events with pedestal events
from the first spill in the run and reconstruct it
again. In run 7444, the last spill was discharged
25 minutes later than the first spill.

5

Figure 8: Number of times strips in layer
3 were activated on a CSC strip detector
station 1, module 0. Blue histogram counts
the activation for the first 25 001 odd events and
the red one counts for the first 25 001 even events
in run 7444.

Figure 9: Number of times strips in layer
3 were activated on the same strip detec-
tor. Blue histogram counts the activation for
the last spill in run 7444 with replaced pedestal
events, and the red one counts for the same spill
but with correct pedestal events.

Figure 8 shows that the histograms are affected
by taking different signal events. Figure 9 re-
veals that picking different pedestal events does
not affect the strip activation count nearly as
much. The blue histogram is almost entirely
blocked by the red one. Further reconstruct-
ing the last spill shows that there are 4670 re-
constructed events with correct pedestal events
and 4671 reconstructed events with substituted
pedestal events. The two methods only per-
formed differently on 17 events, which is about
0.2% of the total number of events. And once
again, most of these events result from the noises

in the detectors, since their primary vertex is lo-
cated far away from the target.

4.4 Optimising noisy channels
calculation

The last part of this report focuses on improv-
ing the algorithm for calculating noisy channels.
Current implementation in the BmnRoot soft-
ware separates the strips into blocks of 32, cal-
culates the average on each of these blocks and
then compares the value of each strip activation
count with the average on this block. If the value
of this strip is higher by a somewhat arbitrary
threshold constant of 3, this channel is marked
as noisy.

Figure 10: Bug in the BmnRoot algorithm
My implementation is shown in red, original Bm-
nRoot implementation is shown in blue.

A better implementation would be to move the
window on which the average is calculated. This
makes more sense, as the original implementa-
tion compared the strips on the edges of the
blocks with the strips either to their left or right.
I also added an extra constant that does not
mark noisy channels if there is an insufficient
statistic on the histogram. Moreover, as fig-
ure 10 shows, the original implementation has
a small bug where the end of the histograms is
not examined for noisy channels. I also changed
the values of the constants for the window size
and threshold constant, until most of the noisy
channels were marked. Figure 11 shows how
decreasing the sizes of blocks improves the algo-
rithm.

6

Figure 11: Comparison of the two algo-
rithms My implementation is shown in red,
original BmnRoot implementation is shown in
blue. Previously, these noisy channels increased
the average on the block of 32 and were not
marked. After decreasing the window size, they
became marked.

Although the algorithm for detecting noisy chan-
nels undeniably improved, reconstructing the
events does not show an improvement. The stan-
dard deviation of the components of the pri-
mary vertex (which should be around the size
of the target) was 8.763 for the new algorithm,
8.653 for the old algorithm, and 8.648 without
marking noisy channels on a sample of 7851
events, all of which is significantly higher than
the size of the target. The new algorithm recon-
structed 4693 events, the old algorithm recon-
structed 4699 events, and the algorithm without
marking noisy channels reconstructed 4700.

The amount of reconstructed events does not
identify which algorithm is better. There are
events which are reconstructed from the noises

and events that are not reconstructed because
of the noises. So, turning off more noisy chan-
nels should decrease the number of the former
and the latter, meaning there should not be
a clear trend in the number of reconstructed
events based on how strictly the noisy channels
are filtered. However, the standard deviation of
the reconstructed events should have decreased.
It may be that the number of events was not
enough to properly analyse the new algorithm
for clearing noisy channels.

5 Conclusion

The newly-developed algorithm for the Conver-
sion step performs significantly faster than it
comes to converting one raw file, though it is
not efficient when it comes to converting multi-
ple files at once.

Tests taking different pedestal events reveal that
the currents on the pedestal events remain rel-
atively constant. Therefore, the results of the
reconstruction do not depend on what pedestal
events were used during the decoding step. How-
ever, the results were obtained only on the run
7444 of the BM@N experiment, so further test-
ing is required to verify it for other runs.

A new method for clearing noisy channels was
implemented. The histograms show that it
manages to clear more noisy channels, though
analysing the data after the reconstruction does
not show improvement, possibly, due to a lack of
statistics. Further testing is necessary to identify
whether this algorithm is better.

7

