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Abstract

The study of the matter that forms after the collision of relativistic heavy-ion collisions
is an active research field. One of its main branches is femtoscopy, the characterization
of the spatiotemporal source that emits the particles that can be detected. To achieve
this goal, one of the most common techniques is the study of the two-pion correlation
function, which is an observable quantity that easily allows the determination of the
source size. In this work, the two-pion correlation function was obtained for the BM@N
argon run at 3.2 GeV data, as well as for the request 31 of MPD Monte Carlo data,
which consists of bismuth + bismuth collisions at 9.2 GeV.
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Chapter 1

Introduction

The Standard Model of Particle Physics is the collection of quantum field theories that
best describe the experimental and some of the phenomenological results that humanity
has obtained about the fundamental interactions and particles that compose our known
universe. One of such theories is the theory of the strong interaction called Quantum
Chromodynamics (QCD), a Yang–Mills SU(3) theory that describes, at the most funda-
mental level, the interactions of fermions (quarks) and bosons (gluons). Due to the fact
that the strong coupling constant of QCD has a large value, perturbative calculations
are not always valid, and therefore, the predictions of this theory are still unknown under
certain regimes.

As it was previously stated, QCD describes the interactions of quarks (grouped into
three generations, with two flavours per generation), and gluons (which come in eight
colours). As a consequence of this, the QCD beta function, which describes the rate of
change of the coupling constant, is negative. This implies that, at higher energies, the
coupling constant decreases, and allows the deconfinement of quarks and gluons in at
least one kind of state called the quark gluon plasma (QGP). This is usually referred to
as the asymptotic freedom property of QCD.

The exploration of the phases of matter at different energetic regimes, such as tem-
perature, baryonic chemical potential, isospin chemical potential, magnetic field, among
others is called the QCD phase diagram. Different physical scenarios allow us to study
these different regimes, for example, the high temperature and small baryonic chemical
potential regime corresponds to the early universe; the low temperature, large baryonic
chemical potential and non-zero isospin chemical potential regime, corresponds to the
matter state at the core of neutron stars; while the not-so-high temperature and bary-
onic chemical potential corresponds to the relativistic heavy–ion collision experiments
that are made on laboratories.

This makes this last regime of great interest, since it is the only of the said regimes
that is experimentally accessible on Earth, and hence, allows the scientific community
to compare experimental results with theoretical predictions. To make this comparison,
one needs to characterise the collision in terms of temperature and chemical potential,
as well as the geometry and size of the interaction region where the particles that could
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1.1 The two-particle correlation function in position space 5

be detected in an experiment, are being produced. This last aspect has been addressed
with several techniques over the last years, one of particular relevance is based on the
interferometric technique developed by Hanbury-Brown and Twiss in the context of the
determination of the source size of stellar objects by taking into account the interference
of two bosonic particles (such as photons) that are being chaotically emitted. The spatio-
temporal study of the emitting source after the collision of relativistic heavy ions receives
the name of femtoscopy.

In this work, the techniques of femtoscopy were applied to data sets of BM@N
and MPD experiments, which are located at the Nucleotron-based Ion Collider fAcility
(NICA) complex of the Joint Institute for Nuclear Research (JINR) in Dubna, Russia.
This work is organized as follows: In Chapter 1, the basic ideas of identical particle
femtoscopy are presented. In Chapter 2, the work done with BM@N data is presented.
In Chapter 3, the work done with MPD data is presented. Finally, in Chapter 4, the
conclusions of this work are presented.

1.1 The two-particle correlation function in position space

In the second half of the 1950’s, Hanbury-Brown and Twiss performed an experiment
in which they measured the probability amplitude of detecting two photons, coming
from the same coherent source, in different space points at neighbouring time. The
experiment reveal, both the bosonic nature of photons (which is contained within the
superposition principle for classical electromagnetism) and a typical quantum effect that
occurs in bosonic gases [1]. Their main results are, first of all, the tendency of photons
to group together, as a consequence of the superposition principle and secondly, that the
measured correlated intensity has a part that is independent of the size of the source
plus a part that depends on the size of the source, thus allowing to determine the size of
the source by measuring the correlation intensity of photons1. This technique has been
used in the context of astrophysics, for the analysis of the spacial size of stars, galaxies,
among others, as well as in the context of relativistic heavy-ion collisions to determine
the spatial extent of the source, which is the main objective of this work.

Following Ref. [1], assuming a dilute system of indistinguishable and non-interacting
bosons, consider an N -particle state on the form

|ψ〉 =
1

N
∏
pi

[
â†(pi)

]N(pi)
|0〉 , (1.1)

where N represents a normalization factor and N is the occupation number of the state,
â† and â are a creation and annihilation operators that act as

â†(p) |ψ〉 =
√
N(p) + 1

∣∣∣ψ[N(p+1]
〉

(1.2)

â(p) |ψ〉 =
√
N(p)

∣∣∣ψ[N(p−1]
〉
. (1.3)

1Details of this will be provided later throughout this chapter.
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If we define the field operator

ϕ̂(r) =

∫
d3p

(2π)3
eip·râ(p), (1.4)

then, the particle number density is given by

〈ψ| ϕ̂†(r)ϕ̂(r) |ψ〉 =

∫
d3p

(2π)3
N(p) = N. (1.5)

Now, the probability amplitude of finding a particle at r′ and another one at the same
time but at the different position r is given by the expectation value of

〈ψ| ϕ̂†(r)ϕ̂†(r′)ϕ̂(r′)ϕ̂(r) |ψ〉 , (1.6)

which leads to the matrix element

〈ψ| â†(p)â†(q)â(q′)â(p′) |ψ〉 . (1.7)

This matrix element is only non-vanishing if p = q . It can be shown (see Ref. [1]) that

〈ψ| â†(p)â†(q)â(q′)â(p′) |ψ〉 = (2π)6
[
δ(p− p′)δ(q− q′) + δ(p− q′)δ(q− p′)

]
N(p)N(q)

− (2π)9δ(p− q)δ(p− p′)δ(q− q′)N(p) (N(p) + 1) , (1.8)

and hence

〈ψ| ϕ̂†(r)ϕ̂†(r′)ϕ̂(r′)ϕ̂(r) |ψ〉 = N2+

∣∣∣∣∫ d3p

(2π)3
eip·(r−r

′)N(p)

∣∣∣∣2−∣∣∣∣∫ d3p

(2π)3
N(p) (N(p + 1)

∣∣∣∣2 .
(1.9)

Notice that the third term in Eq. (1.9) is independent of the position and by dimensional
analysis, is inversely proportional to the volume where the particles are contained. Thus,
for sufficiently large volumes, the contribution of this term is smaller than that of the
other terms. The two-particle correlation function is defined as

C2(r− r′)N2 = 〈ψ| ϕ̂†(r)ϕ̂†(r′)ϕ̂(r′)ϕ̂(r) |ψ〉 , (1.10)

viz., the correlation function, for sufficiently large volumes takes the approximate form

C2(r− r′) = 1 +
1

N2

∣∣∣∣∫ d3p

(2π)3
eip·(r−r

′)N(p)

∣∣∣∣2 . (1.11)

From this equation, it can be seen that the correlation function has a minimum value of
1 and a maximum value of 2 for r = r′. Additionally, if one assumes that the average
particle number density is characterized by a Gaussian momentum distribution, such as

N(p) = αeβ(p−p0)2/2, (1.12)

then, the two-particle correlation function takes the form

C2(r− r′) = 1 + exp
(
−|r− r′|2/

√
β
)
. (1.13)
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1.2 The two-particle correlation function in momentum
space

Following Ref. [2], assuming a dilute system of indistinguishable and non-interacting
bosons, the occupation number of a state with a set of quantum numbers λ, is given by

Nλ =
1

exp(Eλ − µ)/T − 1
, (1.14)

where Eλ is the energy of the state, µ is the chemical potential associated with the
particle number density2 and T is the system temperature. Given that the wave-function
of the particles in momentum space, ψλ, is properly normalized, then it is possible to
define the single-particle momentum distribution as

P1(p) ≡ d3N

dp3
=

1

(2π)3

∑
λ

2EλNλψ
∗
λ(p)ψλ(p). (1.15)

The total number of particles can be shown to be obtained from

N =
∑
λ

1

exp(Eλ − µ)/T − 1
. (1.16)

For a totally chaotic particle source, the two-particle momentum distribution is given by

P2(p1,p2) ≡
d6N

dp31 dp32
= P1(p1)P1(p2) +

∣∣∣∣∣ 1

(2π)3

∑
λ

2EλNλψ
∗
λ(p1)ψλ(p2)

∣∣∣∣∣
2

, (1.17)

from where the two-particle correlation function C2 is expressed in terms of the single-
and two-particle momentum distributions as

C2(p1,p2) =
P2(p1,p2)

P1(p1)P1(p2)
= 1 +

∣∣∣∣∣∑
λ

EλNλψ
∗
λ(p1)ψλ(p2)

∣∣∣∣∣
2

∑
λ

EλNλ |ψ(p1)|2
∑
λ

EλNλ |ψ(p2)|2
. (1.18)

When the particle source is not totally chaotic, which happens when the fraction of
particles in the ground state is not negligible, its contribution to the correlation function
must be separated as

C2(p1,p2) = 1 +
|
∑

λEλNλψ
∗
λ(p1)ψλ(p2)|2∑

λEλNλ |ψ(p1)|2
∑

λEλNλ |ψ(p2)|2

+

∣∣Eλ0Nλ0ψ
∗
λ0(p1)ψλ0(p2)

∣∣2∑
λEλNλ |ψ(p1)|2

∑
λEλNλ |ψ(p2)|2

, (1.19)

2This chemical potential corresponds to an effective description of the (in average) approximately
conserved number of particles
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where λ0 represents the set of quantum numbers corresponding to the ground state.
Notice that when particles coming from the ground state are treated separately from
the ones coming from excited states, the correlation function fails to reach its maximum
possible value C2(q = 0)max = 2 as the ground state occupation number increases. This
happens since for q = p1 − p2 = 0, the numerator and the denominator of the second
and third terms on the right-hand side of Eq. (1.19) are no longer equal, as they were
in Eq. (1.18) for the case of a totally chaotic source.

Notice that the two-particle correlation function C2 depends on the six kinematical
variables corresponding to the two-particle momenta as well as parametrically on µ,
T and other factors that affect the system, such as its finite volume, magnetic field,
expansion velocity, among others. The properties of the correlation function can be more
easily studied by setting particular configurations of these kinematical variables. Usually,
the correlation function is reported as a function of the magnitude of the momentum
difference q = |p1 − p2|, and for fixed values of the average momentum K = 1

2(p1 + p2).

1.3 The two-particle correlation function in experiments

When one tries to compute the two-particle correlation function from Monte Carlo or
real experimental data, the previous definitions are rarely used. Instead, it is usually
more easy to compute it from

C2(q,K) =
S(q,K)

B(q,K)
, (1.20)

where S is the signal distribution and B is the background distribution [3]. The idea
behind this form of the correlation function is that S and B are (ideally) similar, except
for the presence of the correlations in S that should not exist in B, hence, by taking
the ratio, only the correlations should remain. Now, the question that arises is how to
construct the S and B distributions? The S distribution can be constructed by obtaining
the relative and average momentum distribution of pairs of particles that are produced
in the same event, while the B distribution can be constructed by obtaining the relative
and average momentum distributions of pairs of particles that are produced in different
events. This technique is referred as event mixing. One important thing to note is
that the events used for the construction of B must have similar properties: they must
have similar primary vertex, centrality, orientation of transverse plane and come from
events close in time, since detector acceptance can vary with time. Other techniques to
compute B can be found in Ref. [3].

To make sure that, at high relative momentum, the two-particle correlation function
has a value of unity, a normalization factor can be included in Eq. (1.20) as [4]

C2(q,K) =
S(q,K)

B(q,K)
·
∫ q2
q1
B(q,K)dq∫ q2

q1
S(q,K)dq

, (1.21)

where [q1, q2] is a large-q range where quantum statistical effects no longer affect the
correlation function.



Chapter 2

Two-particle correlation function
from BM@N data

2.1 Description of BM@N

The Barionic Matter at Nucleotron (BM@N) is one of the main research facilities at
the NICA complex is a fixed target experiment that collides different kind of heavy-ion
beams with different targets.

The BM@N experiment main purpose is to study baryonic matter, particularly the
production of strange matter in heavy-ion collisions at beam energies between 2 and 6
GeV. The first physics results of the experiment were presented in 2019.

The detector setup is shown in Figure 2.1 and comprises various components, in-
cluding several triggers, silicon tracking systems, silicon beam profilers, time-of-flight
detectors (ToF), electromagnetic and hadron calorimeters, which allow to measure the
trajectories, momenta and energy loss of the particles produced in the collisions. Of
particular interest to this work are the ToF detectors, that measure the time taken by a
charged particle to travel a known distance (usually determined by scintillator plastics),
hence allowing the identification of the particle. Since the main particle identification
system of the BM@N experiment is based on this detectors [5, 6], their data will be of
the upmost importance for this study. However, the only available data was from the
left part of the ToF400 system (see Figure 2.1).

The purpose of the study made is to obtain the two-pion correlation function from
the Ar-nucleus collision data that was obtained during the commissioning phase.

2.2 Description of BM@N data

To obtain the two-pion correlation function it is important to properly identify the
particles and to have good measurements of its total momentum, in each direction.
Therefore, the data of ToF400 is necessary to compute the two-pion correlation function,
since it is from this detector that the identification of the particles is done. However,
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2.2 Description of BM@N data 10

Figure 2.1: Schematic view of the BM@N setup. Figure taken from [6].

only charged particles with hard momenta can reach the ToF detectors, and thus, the
statistics is limited.

The set of data that was used for this purpose was a subset of selected reconstructed
data, with cuts on the number of hits at the Gas Electron Multiplier (GEM); on the
primary vertex position; extrapolation to the Cathode Strip Chamber (CSC); number of
Silicon tracker (ST) hits and number of trigger signals [5]. All of these cuts are optimized
for the identification of protons, kaons and pions and are stored in the form of a ROOT
data tree file, which contained data from the argon beam run, which consisted of an
argon beam of energy 3.2 GeV and it only contained data from the left part of the ToF.
Additionally, the particles contained a cut in their rapidity (assuming that the detected
particle is a pion) of 1.5 < yπ < 3.2. The complete list of the variables found on the data
can be found on Table 2.1. Within all of those variables, the ones that were used for the
computation of the correlation function were the squared mass; the total momentum;
the rapidity, assuming that the particle is a pion; the energy, assuming that the particle
is a pion; the run id; the event id; the target id; the X, Y and Z coordinates of the
primary vertex.

Finally, according to Ref. [5], additional cuts must be imposed to ensure the quality
of the data:

• The events must have a primary vertex Z distance to the origin within −3.4 <
|ZPV − Z0| < 1.7 cm and a X − Y distance dca < 1 cm

• The pions must have a total momentum P < 0.5 GeV

• Pions are identified by their square mass interval of −0.09 ≤ m2 ≤ 0.13 GeV2

It is important to notice that this cuts are satisfied by approximately 98 % of the pions
present in the sample, so there are no significant difference after imposing them.

On the other hand, the multiplicity of all the charged particles is shown in Figure 2.2,
where we can see that the average multiplicity is slightly above one, which means, that
in almost 80 % of the events, only one particle was detected by the ToF400 and at most,
on 0.00001 % of the events, seven particles were recorded. The multiplicity of pions is
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Table 2.1:
List of variables found on the worked BM@N data.

Variable name Description

m2 squared mass of the track

px X-projection of the track momentum

py Y-projection of the track momentum

pz Z-projection of the track momentum

p full track momentum

ypi track rapidity, assuming the track is a pion

yk track rapidity, assuming the track is a kaon

pt transverse momentum of the track

beta the speed of the track in units of the speed of light (c)

epi full energy of the track, assuming the track is a pion

ek full energy of the track, assuming the track is a kaon

nutrpv number of tracks in the primary vertex (PV)

nurun run id

nuev event id in the run

nutrig trigger id

nutarg target id (1 - C; 2 - Al; 3 - Cu; 4 - Sn; 5 - Pb)

nubd number of Barrel Detector (BD) trigger signals in the event

nufd number of Forward Detector (FD) trigger signals in the event

nuvc number of Veto Counter (VC) trigger signals in the event

xcsc X-coordinate of the Cathode Strip Chamber (CSC) hit for the track

ycsc Y-coordinate of the Cathode Strip Chamber (CSC) hit for the track

zcsc Z-coordinate of the Cathode Strip Chamber (CSC) hit for the track

dxcsc X residual for the track in the CSC

dycsc Y residual for the track in the CSC

xtof400 X-coordinate of the ToF-400 hit for the track

ytof400 Y-coordinate of the ToF-400 hit for the track

ztof400 Z-coordinate of the ToF-400 hit for the track

dxtof400 X residual for the track in the TOF400

dytof400 Y residual for the track in the TOF400

xpv X-coordinate of the PV in the event

ypv Y-coordinate of the PV in the event

zpv Z-coordinate of the PV in the event

dcax X DCA (Distance of Closest Approach) relating to the PV

dcay Y DCA (Distance of Closest Approach) relating to the PV

nsi number of Si (Silicon tracker, ST) hits in the track

ngem number of GEM hits in the track
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Figure 2.2: Charged particles multiplicity of the analysed BM@N data for each target.

shown in Figure 2.3, where it is evident that in over 90 % of the events, there was no
pion recorded.

The transverse momentum distribution of the pions that passed the above mentioned
cuts is shown in Figure 2.4, from where it can be seen that the number of pions with
transverse momentum smaller than 0.3 GeV) is significantly higher than for those with
transverse momentum greater than 0.4 GeV. This is due to the fact that the presented
distribution is integrated over the rapidity interval.

2.3 Relative momentum distributions and two-particle cor-
relation function

As was mentioned in Chapter 1, to compute the two-pion correlation function it is
needed to obtain the relative momentum distribution for particles of the same event
and for particles of different events. The construction of the former distribution is very
straightforward, while, as it was also mentioned, the construction of the latter needs
some additional cuts: the maximum primary vertex distance that was considered for the
event mixing is of 10 cm and the events must be within the 100 closest events (this last
amount is due to the values that the number of events take).

The same event relative distribution was obtained from the number of pairs that is
shown in Table 2.2. As it can be seen in the said table, the amount of pairs per event
is very low, even for high luminosity targets (such as aluminium), where the flux of
particles is grater than for the rest of the particles. Nonetheless, for heavier targets,
the multiplicity tends to be higher, so there appears to be an equilibrium between the
flux of particles produced in the collision and the multiplicity, but still, the number of
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Figure 2.3: Pion multiplicity of the analysed BM@N data for each target.
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Table 2.2: Multiplicity of pions and number of pairs than can be created with the
available data, for each target.

ArC
(L = 2.1µb−1)

ArAl
(L = 2.4µb−1)

ArCu
(L = 1.8µb−1)

ArSn
(L = 1.1µb−1)

ArPb
(L = 0.5µb−1)

Total
Events

86,047 331,771 390,691 429,425 299,021

Events
with 1
pion

8,139 35,183 44,632 50,180 34,472

Events
with 2
pion

177 1,052 1,378 1,626 1,089

Events
with 3

or more
pions

4 14 38 32 18

Pairs of
pions

from the
same
event

192 1,094 1,492 1,722 1,146

pairs is small. Briefly speaking, the amount of pairs available to construct the relative
momentum distribution is small, and not that different, for all the targets.

In Figures 2.5, 2.6, 2.7, 2.8 and 2.9 it is shown the obtained relative momentum
distributions for the same events, in blue, and for mixed events, in red, as well as the
two-pion correlation function, for each target. As it can be seen, for all the targets
the two-pion correlation function is flat, which would imply that there is no correlation
among the detected pions. However, this could be due to the extremely low statistics
available in the data sample, as it is evidenced in Table 2.2.

2.4 How to improve the obtained results

Notice that for the highest luminosity target (ArAl), only 0.33 % of the events have
multiple pions, hence it is possible to construct only approximately 1100 pairs of pions,
while for the highest multiplicity target (ArPb), only 0.37 % of the events have multiple
pions, hence it is possible to construct also approximately 1100 pairs of pions.

As was stated before, the data only contains the left part of the ToF400 detector,
therefore if the data of the other part of the Tof400 was available, it could be possible
to increase the multiplicity (and even double it) and construct more pairs, which would
augment the statistics, hence making possible to possibly seeing the expected correlation
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Figure 2.5: (a) Relative momentum distributions and (b) two-pion correlation function
for the carbon target.
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Figure 2.6: (a) Relative momentum distributions and (b) two-pion correlation function
for the aluminium target.
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Figure 2.7: (a) Relative momentum distributions and (b) two-pion correlation function
for the copper target.
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Figure 2.8: (a) Relative momentum distributions and (b) two-pion correlation function
for the tin target.
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Figure 2.9: (a) Relative momentum distributions and (b) two-pion correlation function
for the lead target.

among the charged pions. Hence, to see the effect it might be needed about ten times
more pairs, which means three million events that passes the quality cuts, for each target
or even less if the other Tof400 could provide data.



Chapter 3

Two-particle correlation function
from MPD data

3.1 Description of MPD

The Multi Purpose Detector (MPD) is one of the major scientific project conducted at
the NICA complex. It is a detector of the product of relativistic heavy-ion collisions,
mostly bismuth, lead and gold, between 4 and 11 GeV.

The MPD experiment aims to investigate the behaviour of the quark gluon plasma in
the region of large baryonic chemical potential, and not so high temperature. Currently,
under construction at the JINR, it is expected to have its first experimental run in 2025.

The MPD detector is shown on Figure 3.1 and it consists of various subsystems,
including tracking detectors, electromagnetic and hadronic calorimeters, ToF detectors,
Time Projection Chamber (TPC) and the Fast Forward detector [7]. Since at the time
of writing it is still a project under construction and development, only Monte Carlo
and simulated data are available to work with.

The current object oriented set of tools for the physical analysis, simulation and
reconstruction of the MPD experiment is the software framework called mpdroot. At
this moment, the pure and reconstructed Monte Carlo data are produced under request
and stored at the NICA cluster facility.

The purpose of the study made is to obtain the two-pion correlation function from
the pure Monte Carlo data of Request 31.

3.2 MPD request 31 data

The Monte Carlo of the request 31 consists of one million minimum bias events, of bis-
muth + bismuth collisions at center of mass energy

√
sNN = 9.2 GeV, simulated by the

Ultrarelativistic Quantum Molecular Dynamics (UrQMD) generator and reconstructed
using GEometry ANd Tracking-3 (GEANT-3) with the detector configuration for fem-
toscopy only. Since it is a femtoscopy purpose simulation, it contains the freeze-out

18
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Figure 3.1: Schematic view of the MPD experiment. Figure taken from Ref. [7]
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Figure 3.2: Charged pion multiplicity of the analysed MPD data.

coordinates. These coordinates are important for the adding of the correlation to non-
correlated data, such as the output of UrQMD, and are not present in most of the other
requests.

The files contain several kinds of data: EventHeader, with the event information;
MpdTpc, with the information of the TPC detector; TpcKalmanTrack, with the track
information; Vertex, with the vertex information; FdfHit, with the number of Fast
Forward Detector hits;TOFHit, with the number of ToF detector hits; TOFMatching, with
information about the reconstruction; ZdcDigi, with the information of the Forward
Hadron Calorimeter; MCEventHeader, with the information of the pure Monte Carlo
event; MCTrack, with the information of the Monte Carlo track; GenTracks, with the
track information; and MPDEvent, with the reconstructed track information. However,
since the goal of the computation is to obtain the correlation from pure Monte Carlo, only
the global event information, such as the impact parameter and event number, as well as
the MCTrack data were used. The relevant information of the Monte Carlo tracks, were
the PdgCode, MotherId, total momentum projections, transverse momentum, energy,
position and rapidity.

Following the cuts mentioned in Ref. [7], a cut on the transverse momentum of PT < 3
GeV and a provisional cut on the rapidity |η| < 2 of the tracks were imposed. This cut is
not very realistic, but it is imposed to achieve a better statistics, but will be improved to
a more realistic value for future work. For the charged pions that passed the said cuts,
their multiplicity is shown in Figure 3.2, while their transverse momentum distribution
is shown in Figure 3.3.
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Figure 3.3: Charged pion transverse momentum of the analysed MPD data.

3.3 Relative momentum distributions and two-particle cor-
relation function

As it has been previously stated in multiple occasions, to construct the two-pion correla-
tion it is needed to impose some additional cuts for the event mixing technique: in this
case it was considered that the events where within the next 5 events, had a maximum
distance in the X − Y plane of the primary vertex of 2 cm and 10 cm in the Z direc-
tion, the events must have similar impact parameter and average transverse momentum
between 0.2 and 2. GeV.

In Figure 3.4, the relative momentum distributions and the two-pion correlation
function for events with impact parameter b = 0 − 2 fm, are shown. The fit to a
Gaussian function

C2(qinv) = 1 + λ exp

(
−
(
qinvR

~c

)2
)
, (3.1)

where ~ is Planck’s constant and c is the speed of light, and ~c = 0.197327 GeV fm. For
this case the fit result was R = 0.2358± 0.0003 fm and λ = 0.9582± 0.0011.

In Figure 3.5, the relative momentum distributions and the two-pion correlation
function for events with impact parameter b = 0 − 4 fm, are shown. The fit to a
Gaussian function result was R = 0.226± 0.000 fm and λ = 0.6302± 0.0004.

In Figure 3.6, the relative momentum distributions and the two-pion correlation
function for events with impact parameter b = 7 − 14 fm, are shown. The fit to a
Gaussian function result was R = 0.2256± 0.0002 fm and λ = 0.466± 0.000.

As it is easily seen from Figures 3.4, 3.5 and 3.6, the obtained correlation function
has some strange properties: to start with, for the most central collisions, the value of
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Figure 3.4: (a) Relative momentum distributions and (b) two-pion correlation function
for events with impact parameter b = 0 − 2 fm, computed from the MPD request 31
data.
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Figure 3.5: (a) Relative momentum distributions and (b) two-pion correlation function
for events with impact parameter b = 0 − 4 fm, computed from the MPD request 31
data.
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Figure 3.6: (a) Relative momentum distributions and (b) two-pion correlation function
for events with impact parameter b = 7 − 14 fm, computed from the MPD request 31
data.

the correlation for relative momentum smaller than 250 MeV is above 2, which should
not happen, since the maximum value that the correlation can take is 2. Also, for all
the different impact parameter intervals, the width of the correlation function is about
1 GeV, which by Heisenberg uncertainty’s principle is related to a source size of about
0.2 fm. This is in agreement with the radii obtained by the fit to a Gaussian function.
However, the expected source size must be of about 5 fm, and hence, the source is about
25 times smaller than it should be.



Chapter 4

Conclusions

In this work, the two-pion correlation function was computed from real data of the
3.2 GeV argon run of the BM@N experiment and from pure Monte Carlo data of the
request 31, which consists of bismuth - bismuth nuclei collisions at center of mass energy
of
√
sNN = 9.2 GeV.

The obtained results for the BM@N data showed no sign of correlation, possibly due
to the extremely low statistics that is available in the data set. This problem could be
solved by adding the data of the other part of the ToF400 detector that was not available
for its analysis, as well as the inclusion of more data from other experimental runs.

On the other hand, the results for the MPD data did showed a correlation, however,
the width of the correlation (and hence the inverse of the source radius) is extremely
large, about 25 times larger than expected. During this internship, no explanation could
be found on this issue. Since this is a work in progress, it is expected to be solved in the
near future, as well as the developing of the analysis train of mpdroot, to include the
simulated and reconstructed data on this analysis.

Nonetheless, the method for computing the two-pion correlation function was shown
to work and to be an efficient one. There is a need for more statistics for an improvement
of the results in the case of the BM@N data and a need to clarify what is the reason for
the source size to be that small in the MPD data. Both needs imply that there should
be more work done in both data sets. This work will be done in the near future.
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