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Abstract

In this study we investigate the phase and magnetization dynamics of a superconductor-

ferromagnet-superconductor (SFS) anomalous Josephson junction with a Rashba type spin-

orbit coupling (SOC). We demonstrate some interesting features including the appearance

of a negative differential resistance region in the current-voltage characteristics (CVC)

curves, corresponding to it a ferromagnetic resonance (FMR) is observed. The application

of the electric component of an electromagnetic radiation (EMR) demonstrated a locking

phenomena with constant magnetization and the ability to control the magnetization

precession. The application of the magnetic component also demonstrated locking but

with varying magnetization amplitude. In this study we investigate the effect of both

EMR components together. We show the ability to control the width of the locking region

for some parameters. Our results are through numerical simulations solving the coupled

system of Landau-Lifshitz-Gilbert (LLG) and Josephson equations using a fourth order

Runge-Kutta method.
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1 Introduction

The dynamics of a superconductor-insulator-superconductor (SIS) Josephson junction are

described through the two Josephson relations, the current-phase relation (CPR) and the voltage

phase relation given respectively by

Is = Ic sinϕ

∂ϕ

∂t
=

2π

Φo

V
(1)

where Ic is the critical current of the junction, ϕ is the phase difference between the two

superconducting electrodes, V is the voltage drop across the junction and Φo is the flux quantum

given by Φo = h/2e. The CPR demonstrates that the phase difference between the two

superconducting electrodes with an insulating barrier induces a superconducting current which

disappears when the phase difference between the two superconducting electrodes disappears.

In 2008 Buzdin [1] showed that for some barrier materials (for e.g. ferromagnets) with surface

broken inversion symmetry (BIS), (i.e. with a Rashba type (SOC)), and a magnetic field ~h

which maybe intrinsic or externally applied, a phase shift ϕo is introduced in the CPR thus it

takes the form

Is = Ic sin(ϕ+ ϕo), (2)

where the phase shift now induces a supercurrent even at zero phase difference between the two

superconducting electrodes. This is the so called anomalous ϕo Josephson junction [2].

In this study a ferromagnetic barrier with a Rashba type SOC is used. The dynamics of a

magnetic system are known to be described through the Landau-Lifshitz-Gilbert equation while

that of a Josephson junction is through the Josephson equations Eq.(1). In a Josephson junction

with a ferromagnetic barrier, both systems of equations are coupled together and in this study

are solved numerically.

For our junction we use the resistively and capacitively shunted junction (RCSJ) model which

we shall briefly outline below. We then review some basics starting with the the Buzdin model

then the LLG equation and finally we introduce the system of coupled equations to be solved.

1.1 The RCSJ model

An equivalent circuit [3] of a DC current biased Josephson junction in the framework of the

RCSJ model is given in Fig.(1)
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Figure 1: The equivalent circuit for a Josephson junction in the RCSJ approximation model [3].

When the biasing current I does not exceed Ic, this state is referred to as the superconducting

state or the zero voltage state where all the current flows as supercurrent and no voltage drop

is developed across the junction. If the current exceeds such critical current, the excess flows

through a resistive channel, the so called normal current channel creating a potential difference

V and a time evolving phase difference. If the potential difference evolves in time as well, the

excess current can also flow as a displacement current through a capacitive channel. This state

is the so called voltage state. In this case the total current is of course fixed by the fixed biasing

current,

I = Is + IN + ID + IF (3)

where IF is a fluctuating noise current that we shall ignore in our treatment of a single

junction. ID is the displacement current given by ID = C dV
dt

, IN is the quasiparticle current given

by GN (V )V , where GN (V ) is the normal conductance which we will take as a constant taking the

resistively and capacitively shunted junction (RCSJ) Model approximation, GN(V ) = GN = 1
R

,

and Is is the Josephson supercurrent Is = Ic sinφ.

This combined with the Josephson voltage-phase relation Eq.(1) gives(
~
2e

)
C
d2φ

dt2
+

(
~
2e

)
1

R

dφ

dt
+ Ic[sinφ−

I

Ic
] = 0 (4)

Normalizing time with respect to the inverse of the characteristic frequency τ = tωc, where

ωc = 2eRIc/~ and currents with respect to Ic we get the dimensionless form of the latter equation

dv

dτ
=

1

βc
[i− v − sinϕ] (5)
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where the dimensionless voltage-phase relation takes the form

dϕ

dτ
= v, (6)

v = V/IcR, i = I/Ic and the Stewart-McCumber parameter given by βc = 2eIcCR
2/~.

We call junctions with (βc � 1), or equivalently small capacitance and/or resistance, overdamped

junctions. While for junctions with (βc � 1) or equivalently large capacitance and/or resistance,

underdamped junctions.

Below the CVC curves for the underdamped and overdamped junctions are shown where β is

the dissipation parameter given by β = 1/
√
βc.

(a) (b)

Figure 2: (b): CVC for an overdamped junction with dissipation parameters β = 2 and β = 4.,
(c): CVC for an underdamped junction with dissipation parameters β = 0.1 and β = 0.4.

1.2 The Buzdin model for an anomalous Josephson junction

The phase shift ϕo in Eq.(2) was derived starting from the Ginzburg-Landau phenomenological

model. The free energy density was modified to include the contributions of a Rashba type

SOC, which occurs for certain types of materials with surface broken inversion symmetry (BIS)

[1], and a magnetic field ~h which may be intrinsic to the system (i.e. an exchange interaction

field) or externally applied. Minimizing the Ginzburg-Landau free energy density the CPR for

such materials with BIS was derived to include a phase shift ϕo

ϕo ∝ ~n.( ~M × ~∇ψ) (7)
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where ~n is the direction of the Rashba SOC and ~∇ψ is the gradient of the order parameter

whose direction is that of the supercurrent flow.

The geometry of the junction in our study is shown in figure(3)

Figure 3: Geometry of the SFS Josephson junction studied in our system [4].

~n is directed along the z-axis, so is the easy axis of the ferromagnet and ~∇ψ is along the

x-axis. Thus the only non-vanishing component of ~M contributing to ϕo according to Eq.(7) is

My and ϕo takes the form ϕo = rmy where r is the SOC parameter and my is the y-component

magnetization normalized to the Mo, thus finally according to our geometry the CPR takes the

form

I = Ic sin(ϕ− rmy). (8)

Below we introduce some basics concerning the Landau-Lifshitz-Gilbert equation for describing

the dynamics of the magnetization.

1.3 The Landau-Lifshitz-Gilbert equation

Larmor precession

Let us first discuss the effect of an external magnetic field ~B on a particle with associated

magnetic moment ~µ. The potential energy for such an interaction is given by the Zeeman energy

W = −~µ. ~B, ~B = µo
~H (9)

where µo is the permeability of free space and ~H is the magnetic field strength. The force

exerted on a particle with magnetic moment ~µ can thus be written as

~F = ~∇(~µ. ~B) (10)
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Consequently the torque exerted is given by

~Γ = ~µ× ~B. (11)

From the momentum theorem we know that

d~L

dt
= ~Γ, (12)

where ~L is the angular momentum. Since the angular momentum and the magnetic moment

are proportional through the gyromagnetic ratio γ given by γ = |g|µB/~ where g is the Lande

g-factor and µB is the Bohr magneton,

~µ = −γ~L, (13)

equation(12) takes the form
d~µ

dt
= −γo ~µ× ~H (14)

where γo = µo γ. Thus the vector ~µ undergoes a precession around the axis of the applied field

as shown in figure (4(a))

It is constructive to use the magnetization ~M of a material, which is defined as the magnetic

moment per unit volume, instead of just dealing with magnetic moments associated with single

particles. It can easily be seen that ~M follows Eq.(14) so that we have

d ~M

dt
= −γo ~M × ~H (15)

Landau-Lifshitz-Gilbert equation

The landau-Lifshitz equation takes the same form as Eq.(15) but with an ~Heff term contain-

ing various contributions including magnetic anisotropy, exchange interaction, external field

components etc..instead of only just an external applied field.

d ~M

dt
= −γo ~M × ~Heff (16)

This was the form derived by Landau and Lifshitz in 1935. The Gilbert damping term was added

phenomenologically in 2004 in order to account for the experimental results for ferromagnetic

materials where beyond critical values the magnetization aligns parallel to the applied field.
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(a) (b)

Figure 4: (a): Magnetization precession without damping, (b): Magnetization precession with
the Gilbert damping included [5].

The Landau-Lifshitz-Gilbert equation with the Gilbert damping term takes the form

d ~M

dt
= −γo ~M × ~Heff +

α

Mo

~M × d ~M

dt
(17)

where α is the damping parameter and ~M = Mo ~m, Mo being the modulus of the magnetization

vector and ~m a unit magnetization vector. The precession including the damping term is now

dissipative and can be illustrated by figure (4(b)).

Eliminating the time derivative from the right hand side of the equation

It is convenient to reformulate Eq.(17) so that the time derivative can be separated in one side.

Taking the cross product of ~M with Eq.(17) we get

~M × d ~M

dt
= −γo ~M × ( ~M × ~Heff ) +

α

Mo

~M × ( ~M × d ~M

dt
) (18)

using basic vector identities the cross product for the second term on the right hand side can be

written as

~M × ( ~M × d ~M

dt
) = ( ~M.

d ~M

dt
) ~m− ( ~M. ~M)

d ~M

dt
(19)

since ~M. ~M = M2
o and ~M.d

~M
dt

= 0 (this can be easily seen by taking the dot product of ~M with

Eq.(17) since the right hand side vanishes), thus Eq.(18) takes the form

~M × d ~M

dt
= −γo ~M × ( ~M × ~Heff )− αMo

d ~M

dt
(20)
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substituting with this in the last term of Eq.(17) we finally get

d ~M

dt
= − γo

1 + α2
~M × ~Heff −

γoα

Mo(1 + α2)
~M × ( ~M × ~Heff ) (21)

This is the form that we are going to be using in our simulations.

2 Model

For an RCSJ model the dimensionless Josephson equations for an SFS junction with currents

normalized to Ic, time normalized to the inverse of the characteristic frequency ωc = 2eRIc/~
and My normalized to Mo take the form

dv

dτ
=

1

βc
[i− v − sin(ϕ− rmy) + r

dmy

dτ
],

dϕ

dτ
= v.

(22)

where βc is the Stewart-McCumber parameter given by βc = 2eIcCR
2/~.

In order to solve this numerically we need to find ṁy and since the dynamics of the magnetization

are solved through the LLG, the two systems, magnetic and Josephson, are coupled through my.

2.1 System of equations without electromagnetic radiation

In order to solve the coupled system of equations we need to know what the effective field ~Heff

of our system looks like. Generally the effective field can be calculated through taking the first

order variation of the free energy of the system [6]

~Heff = − 1

µo

δF

δ ~M
(23)

In our system it takes the form [1]

~Heff =
K

µoMo

[Gr sin(ϕ− rmy)êy +mz êz] (24)

where K is the anisotropic constant and G is the ratio EJ/KV , V being the volume of the

ferromagnetic layer.

The first term in Eq.(24) stems from the energy contribution of the Josephson system and the

second stemming from the energy contribution of the magnetic anisotropy of the ferromagnet.

Substituting with the effective field Eq.(24) in the LLG Eq.(21) and again normalizing time
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with respect to ω−1
c and Mi, (i = x, y, z) with respect to Mo we get the following system of

equations

ṁx =
ωF

1 + α2
{−mymz +Grmz sin(ϕ− rmy)− α[mxm

2
z +Grmxmy sin(ϕ− rmy)]}

ṁy =
ωF

1 + α2
{mxmz − α[mym

2
z −Gr(m2

z +m2
x) sin(ϕ− rmy)]}

ṁz =
ωF

1 + α2
{−Grmx sin(ϕ− rmy)− α[Grmymz sin(ϕ− rmy)−mz(m

2
x +m2

y)]}

(25)

where ωF is the ratio between the ferromagnetic resonance (FMR) frequency ΩF = γK/Mo and

the characteristic frequency ωc, i.e. ωF = ΩF/ωc.

2.2 System of equations with the magnetic component of EMR

If we include a magnetic component HR sin(ωRτ) of an EMR with amplitude HR and frequency

ωR to be directed along the easy-axis, z-axis, of our system the effective field is modified to be

~Heff =
K

µoMo

[Gr sin(ϕ− rmy)êy +mz êz] +HR sin(ωRτ)êz (26)

The former set of equations is thus modified to be

ṁx =
ωF

1 + α2
{−mymz +Grmz sin(ϕ− rmy)− α[mxm

2
z +Grmxmy sin(ϕ− rmy)]}

−hR sin(ωRτ)

1 + α2
[αmxmz +my]

ṁy =
ωF

1 + α2
{mxmz − α[mym

2
z −Gr(m2

z +m2
x) sin(ϕ− rmy)]}

−hR sin(ωRτ)

1 + α2
[αmymz −mx]

ṁz =
ωF

1 + α2
{−Grmx sin(ϕ− rmy)− α[Grmymz sin(ϕ− rmy)−mz(m

2
x +m2

y)]}

−hR sin(ωRτ)

1 + α2
[α(m2

x +m2
y)]

(27)

where hR = γoHR/ωc.

3 Results

We now demonstrate simulation results focusing separately on the effect of the electric component

of the EMR, the magnetic component and then both components. We study in the latter case

the effect of the SOC parameter r, the amplitude of the electric component and the amplitude
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of the magnetic component on the maximum y-component magnetization. In our simulations

we use ωF = 0.5, ωR = 0.485 and an underdamped junction with βc = 25.

3.1 CVC and magnetization for a ϕo junction without external radi-

ation

We demonstrate the effect of the SOC parameter on the CVC and the magnetization without

any external radiation [7]. The effect of increasing the SOC on the CVC can be seen in Fig.(5).

A nonlinear region appears around normalized voltage value equal to ωF . The (SOC) parameter

r is increased from 0.1 to 1 in steps of 0.1. An interesting feature appears for r > 0.4 where

a negative differential resistance (NDR) starts developing, it should also be noted that the

nonlinearity starts shifting downwards on increasing r. Corresponding to such nonlinearities

in the magnetization curves is a FMR phenomena, where the resonance peak is increased on

increasing r and shifted towards the right as illustrated in the figure below.

(a) (b)

Figure 5: (a): CVC curves showing NDR on increasing the SOC parameter r, (b): corresponding
y-component magnetization showing a FMR.

3.2 The effect of the electric component only

The effect of adding an electric component on our system of equations modifies only Eq.(22) to

include the term A sin(ωRτ), where A is the amplitude of the electric component normalized to
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the critical current Ic so that Eq.(22) takes the form

dv

dτ
=

1

βc
[i+ A sin(ωRτ)− v − sin(ϕ− rmy) + r

dmy

dτ
], (28)

The system of coupled equations (28) and (25) are solved together numerically using a fourth

order Runge-Kutta method. An interesting result is demonstrated below [7], when the normalized

voltage equals the radiation frequency i.e. when the Josephson frequency ωJ = ωR, a shapiro

step appears, for some values of SOC parameter r to be separated by a bump representing the

nonlinearity. Fig.(6) highlights this effect (red curve) for r = 0.56 and A = 0.1. This is reflected

on the magnetization curve (green curve) as two locking regions, represented by the steps of the

same widths, having the same frequency as ωR but the amplitude of the higher step is higher.

Figure 6: Effect of the electric component on the CVC (red curve) and y-component magnetiza-
tion (green curve) for A = 0.1, r = 0.56.

3.3 The effect of the magnetic component only

On including the magnetic component only, the system of equations (22) and (27) is solved

numerically. Fig.(7) below demonstrates two main features, a resonance splitting, and a locking

phenomenon as the latter case. It should be noted however that the reflection of the step in the

CVC on the magnetization curve does not correspond to a locking region of constant amplitude

as before, but is reflected as ”bubble” representing changing amplitude [8], but the system is

still locked with the same frequency ωR. It should also be noted that the resonance involved
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here is a different type of resonance from that involved in the case without radiation or with

the electric component only [8]. The former is due to direct interaction of the magnetization

in the system with the external magnetic component while the latter doesn’t depend on the

external radiation but the FMR of the system ΩF = γK/Mo or when normalized to ωc written

as ωF = ΩF/ωc. Fig.(7) below demonstrates the effect for r = 0.56 and hR = 1.7.

Figure 7: Effect of the magnetic component on the CVC (red curve) and y-component magneti-
zation (green curve) for hR = 1.7, r = 0.56.

3.4 The effect of both the electric and magnetic components

Including both the EMR components we solve the system of equations (28) and (27) numerically.

in this case, for the same parameters, we observe the interesting phenomena where a second

smaller ”bubble” appears to the left hand side shown in Fig.(8) . The nature of this bubble is

still unknown but in a following subsection we demonstrate, for certain values of parameters,

the ability to control its width.
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Figure 8: Effect of both EMR components on the CVC (red curve) and y-component magneti-
zation (green curve) for A = 0.1, hR = 1.7 and r = 0.56.

3.4.1 The effect of changing the amplitude of the magnetic component

The evolution of the magnetization curve for r = 0.4 on increasing hR from 0 to 2.6 can be

divided into regions showing similar behavior as will be discussed. The overall trend features a

resonance splitting, a locking phenomenon and magnetization oscillations due to the application

of the external magnetic field.

(a) (b)

Figure 9: The figures demonstrate the effect of increasing hR, labeled h in the figures, where
A = 0.05.
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Starting from hR = 0.1 we see in Fig.(9(a)) the magnetization curve shape slightly deviate

from that of hR = 0, the step is slightly curved, however, maintaining the locking phenomenon,

the resonance peak is slightly shifted downwards and to the left. hR = 0.2 and 0.3 show similar

behavior with the peak falling nonlinearly with hR increase. On increasing hR to 0.4, shown

in Fig.(9(b)), a slight rise with a small spike can be seen on the left hand side to the bubble.

A resonance peak shall rise on increasing hR while the right hand side peak continues to fall.

It should be noted that the width of the bubble increases as it is shifted downwards. This

continues till a flipping point is reached at hR = 0.9 where now the left hand side peak becomes

higher than the right, the width then decreases on increasing hR till reaching hR = 1.1.

From hR = 1.1, Fig.(10(a)) an interesting feature can be seen, a second bubble begins to form.

On reaching 1.4, Fig.(10(b)) the two bubbles become more pronounced, the whole curve shifts

upwards and the two bubbles widen pushing the two resonance peaks outwards. This continues

up until 1.9 where again the right hand side peak is flipped higher than the left. The two

bubbles width decreases. Similar results were also obtained for r = 0.7.

(a) (b)

Figure 10: The figures demonstrate the effect of increasing hR, labeled h in the figures, where
A = 0.05.

3.4.2 The effect of changing the amplitude of the electric component

We demonstrate the effect for two values of SOC, r = 0.4 whose level is around v = 0.485 and for

r = 0.7 whose level is below it. The CVC and magnetization curves for both cases are presented

in Fig.(11)below with parameters A = 0.05 and hR = 1.7.
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(a) (b)

(c) (d)

Figure 11: (a), (b): CVC curves for the three cases, for r = 0.4 on the left hand side and r = 0.7
on the right hand side, (c), (d): show the corresponding magnetization curves, note that there
are three scales, not shown, one for each, the scales have been adjusted to emphasize the shape
of each one separately.

We start with amplitude A = 0 and increment it in units of 0.01 till A = 0.1. The effect for

r = 0.4 is demonstrated below in Fig.(12).
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(a) (b)

(c)

Figure 12: The figures demonstrate the evolution and width change of the smaller bubble for
r = 0.4.

It can be seen that as A increases the smaller bubble begins to form and its width increases

while the larger one’s width remain nearly constant. The data for the widths vs A is presented

in Fig.(13).
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(a) (b)

Figure 13: Width change of both bubbles vs the amplitude A.

Figure (13) illustrates the fact noticed in figures (12), it can be seen that the change in

width of the larger bubble WL isn’t that great with respect to the smaller one whose width Ws

increases steadily with A.

A similar result is also demonstrated for the r = 0.7 case.

(a) (b)

Figure 14: The figures demonstrate the evolution and width change of the smaller bubble for
r = 0.7.
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(a) (b)

Figure 15: The figures demonstrate the evolution and width change of the smaller bubble for
r = 0.7.

4 Conclusion

In this study we demonstrated some interesting features for the anomalous ϕo SFS Josephson

junction. Ferromagnetic resonance and negative differential resistance phenomena have been

shown for a ϕo without any external radiation. Application of the electric component introduced

a locking phenomena leading to the appearance of constant amplitude magnetization steps with

the same width as the Shapiro steps appearing in the CVC. The effect of the magnetic field

component has also been studied where instead of a step appearing in the magnetization curve, a

bubble-like feature appears. The width of the corresponding CVC step in this case is dependent

on r. Intriguing results have been obtained by including both components together. A second

bubble whose nature is yet to be known appears, and for some parameters we demonstrated the

ability to control its width. We also demonstrated the effect of the amplitude of the magnetic

component on the behavior of the magnetization curves. The effect of both the electric and

magnetic components shows many interesting features which are yet to be explained.
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