
Dubna, 2023 

 

 

JOINT INSTITUTE FOR NUCLEAR RESEARCH 

Veksler and Baldin Laboratory of High Energy Physics 

 

 

FINAL REPORT ON THE START PROGRAME 

 

Pion femtoscopy in the Zr +  Zr collisions at √sNN = 200 GeV in the 

STAR experiment 

 

 

 Supervisors: 

 
Korobitsin Artem 

Nigmatkulov Grigory 

 Student: 

 
Burov Nikolay, Moscow, 

NRNU MEPhI 

 Participation period: 

 10 July – 02 September, 2023 

 

  



 

 

Abstract 

One of the main objectives of the STAR experiment at the Relativistic Heavy 

Ion Collider (RHIC) is to study quark-gluon matter (QGM) produced in nuclear 

collisions. Spatio-temporal parameters characterizing the properties of QGM can be 

estimated using the method of correlation femtoscopy.  

In this paper, we present an estimate of the size of the emission region of 

identical pions in Zr + Zr collisions at √sNN = 200 GeV. Restored the reaction 

plane angles and to obtain a uniform distribution the following corrections are 

applied: recentering and flattening. The reaction plane resolution is obtained. 

Dependence on the azimuthal emission angle ∆Φ for different centralities and for 

transverse momentum of the pair kT is received.
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Introduction 

 

In 1956, two-particle intensity interferometry (HBT) was proposed and 

developed by astronomers Hanbury-Brown and Twiss to measure the angular sizes 

of distant stars [1]. In 1960, Goldhaber G. et al. applied this technique to elementary 

particle physics to study the angular distribution of identical pairs of pions in 

annihilations [2]. In the work, an increase in the number of pairs of identical pions 

born at small relative pulses was observed, which was explained by quantum 

statistical correlations leading to the symmetrization of the two-particle wave 

function. In the 1970s, Kopylov, Podhoretsky and others showed that this effect can 

be used to study the space-time characteristics of a system formed in collisions of 

particles and/or nuclei at accelerators [3, 4]. In the future, the method was called 

correlation femtoscopy.  

In collisions of ultrarelativistic heavy ions, the formation of quark-gluon 

matter (QGM) is expected. To get an idea of the properties of QGM, it is necessary 

to know the space-time parameters that characterize it, but the small size and short 

duration of the reaction do not allow them to be measured directly. However, 

quantum-statistical correlations in the birth of particles provide a direct relationship 

with the size and lifetime of the source.  
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Chapter 1. Theory basics 

  

1.1 Correlation function of two identical particles 

 

The two-particle correlation function is defined as the ratio of the Lorentz 

invariant normalized two-particle spectrum to the product of similar one-particle [5]: 

С(p1⃗⃗⃗⃗ , p2⃗⃗⃗⃗ ) = 
E1E2

d6N1,2

d3p1d
3p2

E1
d3N1
d3p1

 ∙ E2
d3N2
d3p2

,     (1.1.1) 

where E1 and E2  are the energy of the first and second type of particles; N1 and N2 

are the number of born particles of the first and second type with pulses p⃗ 1 and p⃗ 2; 

N1,2 are the number of pairs composed of particles of the first and second type with 

pulses p⃗ 1 and p⃗ 2. 

Using the Wigner function S(x, p), which is a function of the probability 

density of the birth of a particle with 4-momentum p =  (
E

c
, p⃗ ) at the point              

x =  (tc, r ), the spectra can be written as follows [5]: 

 

{
E
d3N

d3p
= ∫ d4x S(x, p),

E1E2
d6N1,2

d3p1d
3p2

= ∫ d4x1d
4x2S(x1, x2, p1, p2)|ф(x1, x2, p1, p2)|

2 .
 (1.1.2) 

where ф(x1, x2, p1, p2) is the wave function of two born particles. 

At the same time, the following assumptions are used in the calculations [6]: 

1) When constructing the correlation function, only the effects of quantum 

statistics and the interaction in the final state are taken into account; 

2) The particles descend incoherently or still imperceptibly, i.e. 

S(x1, x2, p1, p2) =  S1(x1, p1) ∙ S2(x2, p2); 
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3) Smoothness and weak impulse dependence of the Wigner function, i.e.: 

S(x, p + δp) ≈ S(x, p),     (1.1.3) 

where δp is a small approximation of the pulse, functional for correlates, advanced 

capabilities of quantum statistics and real–time interaction; 

4) The identity of Wigner functions for identical particles, i.e. S1(x, p) ≡

 S2(x, p)  ≡ S(x, p). 

If we neglect the influence of the strong and Coulomb interaction, and leave 

only the contribution of the symmetrization of the free wave function of bosons, then 

for two pions we will have: 

 

ф(x1, x2, p1, p2) =
1

√2
(ф(x1, p1)ф(x2, p2) + ф(x1, p2)ф(x2, p1)). (1.1.4) 

 

Next, we will consider the values in the system of the center of inertia of the 

source, then, assuming that the pions propagate in the form of a plane wave and are 

emitted simultaneously, we can write: 

 

|ф(x1, x2, p1, p2)|
2 = |

1

√2
(e−ip1x1e−ip2x2 + e−ip2x1e−ip1x2)|

2

= 1 + cos(qr), (1.1.5) 

where the following designations are introduced r = x1 − x2 and q =  p1 − p2. 

By making the following variable substitution: 

 

{
k =

p1+p2

2
,

q = p1 − p2.
 ⟹ {

p1 = k +
q

2
,

p2 = k −
q

2
.
   (1.1.6) 

where k – pair 4-pulse 
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By rewriting the cosine in exponential form cos(qr) =
eiqr+e−iqr

2
 and taking 

into account the above assumptions, we can obtain the correlation function of two 

identical pions in the following form: 

 

C(q⃗ , k⃗ ) =
∫d4x1d

4x2S(x1,x2,p1,p2)|ф(x1,x2,p1,p2)|
2

∫d4x1S1(x1,p1) ∫d
4x2S2(x2,p2)

≈
∫d4x1d

4x2S1(x1,p1)S2(x2,p2)|ф(x1,x2,p1,p2)|
2

∫d4x1S1(x1,p1) ∫ d
4x2S2(x2,p2)

≈  

≈ 1 +
∫d4x1d

4x2S(x1,k+
q

2
)S(x2,k−

q

2
) cos(qr)

∫d4x1S1(x1,k+
q

2
) ∫d4x2S2(x2,k−

q

2
)
= 1 + |

∫d4xS(x,k)eiqx

∫d4xS(x,k)
|
2

= 1 + |s̃(q, k)|2, (1.1.7) 

where s̃(q, k) =  
∫d4xS(x,k)eiqx

∫d4xS(x,k)
 – the normalized Fourier transform of the source function. 

 

1.2 Gaussian parametrization and coordinate system 

 

If we assume that the source has Gaussian parametrization, then the 

correlation function (1.1.7) will have the form [7, 8]:  

 

C(q⃗ , k⃗ ) = 1 + exp(−Rαβ(k⃗ )qαqβ),  α, β = 0,1,2,3 (1.2.1) 

where Rαβ(k⃗ ) =  〈(xα − x̃α)(xβ − x̃β)〉 and the designation is entered: 

 

〈f(x)〉 =
∫d4xS(x,k)f(x)

∫d4xS(x,k)
      (1.2.2) 

 

The simplest form of the correlation function for a Gaussian source is one-

dimensional parametrization [7]: 

 

C(qinv, k⃗ ) = 1 + e
−qinv

2 Rinv
2

,     (1.2.3) 

where qinv
2 = −(p1 − p2)

2 = −(E1 − E2)
2 + (p⃗ 1 − p⃗ 2)

2 – the square of the 

relative 4 particle pulses, R_inv is the invariant radius of the emission region. 

However, for a more detailed study of the spatio-temporal parameters of the 

QGM, a longitudinally Co-Moving coordinate system (LCMS) or the Bertsch-Pratt 
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system is used, in which k⃗ ∥ = 0 GeV/c, and the first axis is longitudinal, directed 

along the beam axis, the second is outward, along the transverse component of the 

momentum of the pair k⃗ T, and the third is sideward, orthogonal to the previous two 

and at the same time so that the left triple is formed. 

Visualization of the Bertsch-Pratt coordinate system is shown in Figure 1.1: 

 

Fig. 1.1 Bertsch-Pratt coordinate system 

 

It is assumed that for identical particles lie on the mass surface, i.e. the 

equalities are fulfilled: 

 

{
kq =

p1+p2

2
(p1 − p2) =

p1
2−p2

2

w
=

m1
2−m2

2

2
= 0 

kq = k0q0 − k⃗ q⃗ 
⟹ q0 =

k⃗⃗ q⃗⃗ 

k0
,  (1.2.4) 

 

Then the correlation function in the Bertsch-Pratt coordinate system will have 

the following form [8]: 

 

C(q⃗ , k⃗ ) = 1 + exp(−∑ Rij
2(k⃗ )qiqji,j=o,s,l ),    (1.2.5) 

where o,s,l – abbreviations from out, side, long.  
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Rij
2 (k⃗ ) are given by the following expression: 

 

Rij
2 = 〈(x̂i − βit̂)(x̂j − βjt̂)〉,  i, j = out, side, long (1.2.6) 

where βi =
ki

k0
 – the speed of the pair, and the notation is introduced x̂i = (x − x̃)i 

and t̂ = (t − t̃). 

Taking into account that βside =
ksidec

E
= 0  and βlong =

klongc

E
= 0, the radii 

Rout, Rside, Rlong are given by the following formulas: 

 

{

Rlong
2 = 〈x̂long

2 〉,

Rout
2 = 〈(x̂out − β⊥t̂)

2〉,

Rside
2 = 〈x̂side

2 〉,

,    (1.2.7) 

where β⊥ – transverse component of the paired velocity. 

 

1.3 Corrections for interaction in the final state 

 

The equations for the correlation function (1.1.7), (1.2.1) and (1.2.5) were 

derived from the assumption that there are no interactions in the final state, namely 

Coulomb and strong. It is also worth considering that short-lived resonances, also 

generated during collisions, decay weakly at a distance of several tenths of an fm, 

generating pions, as a result of which correlations are muted in the experiment. 

In the experiment, the following correlation function is used to adjust the 

experimental data taking into account the corrections for the interaction in the final 

state [7, 9, 10, 11]: 

 

C(q⃗ , k⃗ ) = N((1 − λ) + λKCoul(q⃗ ) (1 + G(q⃗ , k⃗ ))),  (1.3.1) 

where N – normalization, λ – a coefficient that takes into account the strength of 

correlations,  G(q⃗ , k⃗ ) =  exp(−∑ Rij
2(k⃗ )qiqji,j=o,s,l ) – Gaussian source function, 
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KCoul(q⃗ ) – Coulomb correction, numerically calculated by the formula:  

 

KCoul(q⃗ , k⃗ ) =
∫d4x1d

4x2S(x1,k)S(x2,k)|Ψ(q⃗⃗ ,r⃗ )|
2

∫d4x1S1(x1,k) ∫ d
4x2S2(x2,k)

,   (1.3.2) 

 

At the same time, Sinyukov Yu.M. it was shown that the correction for the 

Coulomb interaction weakly depends on the size of the source [10]. 

The influence of the strong interaction can be taken into account in a similar 

way [12], however, for light particles, such as pions, and large sizes of the emitting 

region, it is neglected. 

 

1.4 Obtaining a correlation function in an experiment 

 

The correlation function in the experiment is obtained as follows [8]: 

 

C(q⃗ , k⃗ ) =
A(q⃗⃗ )

B(q⃗⃗ )
,     (1.4.1)  

where A(q⃗ ) is the relative momentum distribution for pairs of identical pions 

from a single event; B(q⃗ ) is a similar background distribution that does not include 

the correlation effects of the birth of pions. This may be a distribution of non-

identical pairs of pions, or a distribution of identical pairs of pions, but from different 

events that have the same characteristic values, such as the centrality of the collision 

and the position of the vertex.  
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Chapter 2. STAR experiment 

 

In the STAR experiment (Solenoidal Tracker At RHIC), which is located at 

the relativistic heavy ion collider (RHIC) at Brookhaven National 

Laboratory (BNL, USA), collisions of ultrarelativistic heavy nuclei are performed 

in order to obtain QGM and further study its properties and structure.  

 

 

Fig. 2.1 The scheme of STAR 

 

The experiment consists of a set of detectors [12], whose main task is to 

register particles formed in nuclear collisions. The data obtained using the Time 

Projection Chamber (TPC) and the Time of Flight system (TOF) were used in the 

work. 

 

2.1 Time Projection Chamber 

 

The Time-projection Chamber (TPC) is a track detector. It is one of the main 

detectors used in the STAR experiment, necessary for measuring the coordinates of 

the tracks of charged particles, as well as specific ionization losses [13]. The TPC is 

placed in the external field of a solenoid magnet, with a strength equal to 0.5 T [14], 



 

11 

 

which makes it possible to measure the momentum of particles by the curvature of 

tracks in the range from 100
MeV

c
 to 30

GeV

c
, where c ≈ 2.997 ∙ 108

m

s
 is the speed of 

light in vacuum. 

Figure 2.2 schematically shows the time-projection chamber [13]: 

 

 

Fig. 2.2 The scheme of TPC 

 

 

Fig. 2.3 The scheme of TPC sector 

 

The reading ends of the TPC are divided into 12 recording 

sectors (Figure 2.3), each of which consists of 2 recording modules – internal and 

external. The internal module is necessary for a more accurate restoration of the 
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coordinates of the beginning of the track, the external one - for collecting more 

electron clusters and, as a consequence, restoring the specific ionization and total 

energy losses of the charged particle. 

Due to the fact that the specific ionization losses for π mesons, K mesons and 

protons for pulses greater than 700 MeV have similar values, it is not possible to 

identify them using only the TPC detector. Therefore, a Time-of-Flight 

system (TOF) is used to identify particles with large pulses. 

 

2.2 Time of Flight 

 

The TOF system consists of two separate detector systems. The first is the 

vertex Position Detector (VPD), which registers the collision time and the vertex 

coordinate along the beam axis relative to the center of the TPC. The second is the 

Time-of-Flight subsystem (TOFp), which registers the arrival time of the particle in 

the detector [15]. 

Figure 2.4 schematically shows the time-of-flight system [15]: 

 

Fig. 2.4 The scheme of Time-of-Flight system 
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The collision time tstart and the coordinate along the beam axis relative to the 

TPC zvertex vertex center can be determined by the following formulas [16]: 

 

{
zvertex =

c(tEast−tWest)

2
,

tstart =
tEast+tWest

2
−
L

c
.
    (2.1) 

where c – the speed of light, L – the distance between the "West" ("East") detector 

and the center TPC, tWest(tEast) – the time of registration of γ-quanta "West" 

("East") by the detector. 

To identify a particle, information about the time of flight is used, i.e. the time 

between its entry into a certain segment of the detector and the collision of an ion 

beam. Using the track information from the TPC, it is possible to determine the 

momentum of a particle and the length of its trajectory. 

For each track registered in TOFp, you can determine the speed value β: 

 

𝛽 = 
Ltrack

c(tTOFp− tstart)
,     (2.2) 

where Ltrack – particle track length, tstart – collision time, tTOFp − particle 

registration time measured by TOFp, 𝑐 – the speed of light. 
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Chapter 3. Data analysis 

 

The data of collisions nuclei of zirconium 96 ( Zr40
96 ) at the energy in the center 

of mass system per pair of nucleons √sNN = 200 GeV were used in the work 

obtained on the STAR experiment in 2018. Events processed ~ 30 ∙ 106. 

 

3.1 Selection of events, tracks and particle pairs  

 

To select events, 2 detectors are used – TPC, to restore the position of the 

collision vertex (primary vertex) in space, and VPD, to separately restore the z 

coordinate, whose axis is directed along the beam and is counted from the center of 

the TPC. 

Due to the fact that in the experiment the time offset between "West" and 

"East" VPD was not zero, so in the future we will consider those events whose z 

coordinate of the primary vertex belongs to the next 

interval: −35.0 cm ≤  Vz ≤  25.0 cm. 

In order to exclude incorrect reconstruction of the primary vertex, such events 

were selected in which the difference between the restored z coordinates of the TPC 

and VPD detectors modulo was no more than 5 cm: |Vz,TPC − Vz,VPD| ≤ 5 cm and 

the values of each of the coordinates were greater than 10−5 cm, because if the 

vertex was not restored, then it was assigned values equal to 0 cm. 

At the same time, in order to reduce the influence of the background from 

events related to the interaction of the beam and the walls of the collider tube, a 

restriction on the radial component of the primary vertex is introduced: |Vr| ≤ 2 cm. 
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Final cuts for events: 

 

{
 
 

 
 

Vx, Vy, Vz ≥ 10
−5cm,

−35.0 см ≤ Vz,TPC ≤ 25.0 cm,

|Vz,TPC − Vz,VPD| ≤ 5 cm,

|Vr| =  √Vx
2 + Vy

2 ≤ 2 cm.

    (3.1.1) 

 

Due to the finite resolution and geometric features of the TPC detector and 

the imperfection of reconstruction methods, for the most accurate recovery and 

reduction of data contamination by secondary charged particles, it is necessary that 

the track parameters satisfy the following restrictions: 

 

{

nHits ≥ 16,
nHits

nHitsPoss
≥  0.51,

|η| ≤ 1,

    (3.1.2) 

where nHits – the number of registered electronic clusters used in the reconstruction 

of tracks (hits); nHitsPoss – the number of registered electronic clusters that may 

belong to this track; η  – pseudorapidity. 

The identification of particles takes place on the basis of specific ionization 

losses measured using the TPC detector and arising from the passage of a charged 

particle through a substance. 

At the same time, in order to find the size of the emission region using 

correlation femtoscopy, it is necessary that the particles originate from the region of 

space in which the collision of heavy ions occurred, for this the tracks must be 

primary. 

The selection of pions with higher values of the pulse modulus only by the 

TPC detector is complicated by the fact that for some types of particles the graphs 

of specific ionization losses have intersections, therefore, for more accurate 

identification it is also necessary to use the TOF detector. 
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The final criteria for the selection of peonies using two types of 

identification – TPC and TOF, are presented in the table 3.1. 

 

Table 3.1 Final cuts for tracks 

nHits ≥ 16 

nHits

nHitsPoss
≥  0.51 

|η| ≤ 1 

Primary tracks 

TPC: TPC & TOF: 

|𝑛𝜎𝜋| ≤ 2 |𝑛𝜎𝜋| ≤ 3 

0.15 GeV/c ≤ |p⃗ | ≤ 0.60 GeV/c 
−0.015 ≤ (

1

βi
−
1

βπ
 ) ≤ 0.015 

0.60 GeV/c ≤ |p⃗ | ≤ 1.80 GeV/c 

 

In correlation femtoscopy, pairs of particles born with close pulses are the 

main objects of research, therefore, the effects associated with incorrect 

reconstruction of tracks, namely, the splitting of one track into two and the merging 

of two tracks into one, are the main sources of measurement inaccuracy. 

To reduce the effect of splitting and merging, restrictions are introduced on 

the values called Splitting Level (SL) and Fraction of Merging Row (FMR). 

Final cuts for particle pairs:  

 

{
−0.5 ≤ 𝑆𝐿 ≤ 0.6,
−1.0 ≤ 𝐹𝑀𝑅 ≤  0.1,

     (3.1.3) 
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3.2 Reconstruction of reaction plane angle 

 

In this work, the reaction plane angles recovered using the TPC detector were 

used. Therefore, in order to avoid correlations of the particle birth angle and the 

angle of the reaction plane, the TPC detector was divided into 2 parts: West (η ≥ 0) 

and East (η < 0). At the same time, during the analysis, the spectra of particle pairs 

from West (East) TPC were plotted relative to the angle from East (West) TPC. 

To reconstruct the reaction plane angle a Q-vector is used, the components of 

which are given by the expression [17, 18]:  

 

{
Qx = ∑ pt cos(2ϕ)i ,

Qy = ∑ pt sin(2ϕ)i ,
     (3.2.1) 

where pt – transverse momentum of the particle; ϕ – the azimuth angle of the 

particle in the TPC coordinate system. 

Then the angle of the reaction plane can be found using the following 

expression [f: 

 

Ψ2 =
1

2
arctan (

Qy

Qx
),     (3.2.2) 

 

At the same time, due to the symmetry of the experiment, the distribution of 

the angle of the reaction plane over the events should be uniform. However, in the 

experiment, due to the imperfection of the detectors, this is not the case. Therefore, 

the following corrections are applied to obtain a uniform distribution [19, 20]: 

1. Recentering - one subtracts from the Q-vector of each event, the Q-vector 

averaged over many events: Q1 = Q0 − 〈Q0〉, where Q0 and Q1 – Q-vector before 

and after correction. Averaging is carried out for all events. 
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2. Flattening – fit the non-flat distributions of the reaction plane angle to a 

Fourier expansion and to apply an event-by-event shifting of the reaction planes in 

order to make the final distributions isotropic [20, 21]:  

 

{
Ψ2
2 = Ψ2

1 + ΔΨ2
1,

ΔΨ2
1 =

1

2
∑

2

m
(〈sin(2mΨ2

1)〉 cos(2mΨ2
1) + 〈cos(2mΨ2

1)〉 sin(2mΨ2
1)),

mmax
m=1

 (3.2.3) 

where Ψ2
1 and Ψ2

2 – reaction plane angle before and after correction; 

An example of the distribution of the reaction plane angle before and after 

correction for a centrality 10 −  30 % and East TPC is shown in the Figure 3.1 : 

 

 

Fig. 3.1 Distribution of the reaction plane angle 

 

The Fourier expansion used the first 10 terms. As you can see, after all the 

corrections, the distribution became uniform. 

 

3.3 The reaction plane resolution 

 

Because the position of the true reaction plane is not known a priori, one can 

only perform Fourier decomposition of the invariant particle distribution E
d3N

d3p
 with 

Original 
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respect to the reconstructed position of the reaction plane Ψn where n is the order of 

the harmonic from which this position is reconstructed. Due to the finite multiplicity, 

the difference between the true and the reconstructed reaction plane is not zero. 

Thus, the obtained distributions must be adjusted taking into account the resolution 

of the reaction plane. The resolution of the reaction plane is given by the 

formula [20]: 

 

Res =  √2 〈cos (n(Ψn,East − Ψn,West))〉,    (3.3.1) 

 

The obtained dependence of the reaction plane resolution on the centrality is 

shown in the figure 3.2: 

 

 

Fig. 3.2 Reaction plane resolution 

 

As you can see, the reaction plane resolution has a maximum at a centrality 

of 10 − 30 %. 

R
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o
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o

n
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Chapter 4. Dependences of femtoscopic radii on the relative angle of 

emission of a particle pair 

 

Having extracted the orientation of the reaction plane from the final 

distribution of the emitted particle momenta, one can then address the question of 

their spatial distribution relative to the reaction plane by measuring two-particle 

correlations as a function of the azimuthal emission angle ∆Φ (i.e. the direction of 

the transverse momentum vector k⃗ T of the emitted particle pairs relative to reaction 

plane angle). Complementing the spectral information on the momentum-space 

structure of the source with space-time information from the correlation functions 

severely constrains models for the dynamical evolution of the reaction zone. For 

noncentral collisions interesting questions that can be addressed in this way are the 

origin and manifestation of anisotropic collective flow and its consequences for the 

space-time evolution of the fireball, from which information about the intensity of 

rescattering effects and the degree of thermalization in particular during the early 

stages of the collision can be extracted 

To study the dependence of the size of the particle emission region, three-

dimensional correlation functions for collision centralities:0 − 10, 10 − 30,       

30 − 50, 50 − 70 %, and for the transverse momentum of the pair kT: 0.10 − 0.20, 

0.20 − 0.30, 0.30 − 0.40, 0.40 − 0.50, 0.50 − 0.60 GeV/c depending on the 

azimuthal emission angle ∆Φ were constructed. 

To fit to the obtained distributions and, as a consequence, to extract the size 

of the emission region, the correlation function of the Gaussian source was used, 

taking into account the correction for the Coulomb interaction of particles in the final 

state, which is given by the equation (1.3.1).  
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An example of one-dimensional projections of some of the obtained 

correlation functions together with their fit is shown in Figure 4.1: 

 

 

Fig. 4.1 Projections of the correlation function for the centrality of 0-10%, the 

momentum kT = 0.30 − 0.40 GeV/c and the azimuthal emission 

angle ∆Φ =  
π

8
−
π

4
 for a) positively and b) negatively charged pions. 

 

At the same time, the correlation functions for positively and negatively 

charged pions were compared by searching for the ratio 
Cπ+π+(qout,qside,qlong)

Cπ−π−(qout,qside,qlong)
.  The 

resulting distributions are shown in Figure 4.2. 

 

 

 

 

 

 

 

а) 

б) 
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Fig. 4.2 a) Correlation functions for the centrality of 0-10%, the momentum 

kT = 0.30 − 0.40 GeV/c and the azimuthal emission angle ∆Φ =
π

8
−
π

4
 for 

positive and negative pions with their fits. b) Their attitude. 

 

As can be seen from the relations in Figure 4.2, the difference between the 

correlation functions for positive and negative pions is less than 1%. 

The dependence of femtoscopic parameters on the azimuthal emission angle 

∆Φ for different centralities and transverse momentum of the pair k⃗ T obtained by 

fitting is shown in Figures 4.3-4.4. 
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Fig. 4.3 The dependence a) Rout
2 , b) Rside

2 , c) Rlong
2 , d) Rout−side

2  on the 

azimuthal emission angle ∆Φ for different centralities. 

 

As can be seen from the dependencies, the size of the particle emission region 

decreases with increasing centrality. This is due to a decrease in the overlap area of 

colliding nuclei and, as a consequence, the number of nucleons interacting in the 

reaction. 

 

a) b) 

c) d) 
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Fig. 4.3 The dependence a) Rout
2 , b) Rside

2 , c) Rlong
2 , d) Rout−side

2  on the 

azimuthal emission angle ∆Φ for different pair momentum k⃗ T. 

 

The size reduction with the help of an impulse pair can be explained by the 

presence of collective flows. [22, 23, 24]. 

  

a) b) 

c) d) 
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Conclusion 

 

In this work, data on collisions of zirconium nuclei Zr +  Zr at the energy in 

the center of mass system per pair of nucleons √sNN = 200 GeV were processed 

obtained in the STAR experiment in 2018. 

The reaction plane angles of the second order Ψ2 are restored. To obtain a 

uniform distribution of the reaction plane angle, correction methods were applied: 

recentering and flattening. Also, the reaction plane resolution is obtained. 

Three-dimensional distributions of the relative momentum                                  

q⃗ = (qout, qside, qlong) for collision centralities: 0 − 10, 10 − 30, 30 − 50,      

50 − 70 %, and for transverse momentum of the pair kT: 0.10 − 0.20,               

0.20 − 0.30, 0.30 − 0.40, 0.40 − 0.50, 0.50 − 0.60 GeV/c depending on the 

azimuthal emission angle ∆Φ were obtained. 

By adjusting the correlation function of the Gaussian source, taking into 

account the correction for the Coulomb interaction of particles in the final state to 

the obtained distributions, the size of the emitting region was estimated. Their 

dependence on the azimuthal emission angle ∆Φ for different centralities and for 

transverse momentum of the pair kT is also investigated.  
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