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1 Introduction

To date, there is a method that allows you to directly measure the spatio-temporal
extent of the hadron production region and the parameters of hadron-hadron interaction,
which is called correlation femtoscopy. For the first time, the method of interferometric
measurements was proposed by R. Hanbury-Brown and R. Twiss to measure the angular
size of stars and other astronomical objects [1] (HBT-method). This method is based on
measuring the correlations of the photon double coincidence count intensity depending
on the distance between the detectors. The idea was developed in elementary particle
physics in the 60s in the work of G. Goldhaber, S. Goldhaber and W. Lee [2], within
which the angular distributions of pion pairs during pp-annihilation were considered; in
the same work, an increase in the number of like-charged pions with respect to opposite-
charged pions was found at small relative angles of expansion. Correlations of this kind are
explained by the quantum-statistical properties of the resulting particles: identical bosons
(particles with integer spin) which follow the Bose-Einstein statistics are more likely to
be born in a close phase space region, while fermions (particles with fractional spin) are
less likely due to the Fermi-Dirac statistics properties.

The works of G. Kopylov and M. Podgoretsky [3, 4] can be considered the beginning
of a wide application of interferometry to collisions of relativistic nuclei. In the analyzes
presented and subsequent to them, the HBT method has become a precision tool for
measuring the spatiotemporal properties of regions of homogeneity during kinetic freeze-
out (the phase of the evolution of a nucleus-nucleus collision, when the produced particles
cease to interact kinetically) during heavy ion collisions. Subsequently, the method of
measuring quantum-statistical correlations was called correlation femtoscopy.

In heavy ion collisions, femtoscopy is an important tool for studying the spatiotemporal
parameters of a particle emission source. The fundamental tasks of the research are: the
search and study of new forms of baryonic matter that have not been observed before, the
search for the reasons for the binding of quarks in nucleons, the search for a critical point
on the phase diagram of the state of matter.

This work is devoted to the study of two-particle momentum correlations of identical
pions in the STAR experiment at the RHIC accelerator, the study and estimation of the
size of the emission region of identical pions by constructing the correlation functions of
the latter.

2 Correlation femtoscopy in nuclear collisions

In elementary particle physics, the HBT method was applied by Goldhaber, Lee and
Pais in 1960 at the Bevatron when they studied the angular correlations of identical pions
in pp̄ annihilation. It was observed that at low relative momenta an increase in the number
of produced pion pairs occurred, which was explained not only by the finite dimensions of
the system, but also by its lifetime.

The task of interferometry is to obtain a certain function from the available exper-
imental data, which characterizes the source of emission of particles in the process of
collision of heavy nuclei. The HBT method makes it possible to estimate the source size
and particle emission time.
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To obtain the correlation function of identical bosons, we introduce the symmetrized
wave function of their descent [5], which consists of a set of plane waves:

Ψ(x⃗1, x⃗2, p⃗1, p⃗2) =
1

2
exp(ip⃗1x⃗1 + ip⃗2x⃗2 + ip⃗1x⃗2 + ip⃗2x⃗1), (1)

where x⃗1 and x⃗2 - points of emission of bosons with momenta p⃗1 and p⃗2.

Let the function ρ(x̄) describe the spatial distribution of boson emission points, then
the correlation function will take the form:

C(q⃗) =

Z
|Ψ12|2ρ(x⃗1)ρ(x⃗2)d

3x⃗1d
3x⃗2 = 1 + |ρ(q⃗)|2, (2)

where q⃗ = p⃗1 − p⃗2 - relative momentum.

The solution of the equation above makes it possible to obtain the spatial characteris-
tics of the particle emission region, but not the temporal ones. It is more informative to
use one- and two-particle distributions.

The probability of particle escape from the emission region is characterized by the

differential interaction cross section
dσ

dp
(p). The probability of two particles being emitted

is characterized, respectively, by the quantity
d2σ

dp1dp2

(p1, p2).

The two-particle correlation function is constructed as the ratio of the two-particle
momentum spectrum to the product of two one-particle momentum spectra [6]:

C(p⃗1, p⃗2) = N
P (p⃗1, p⃗2)

P1(p⃗1)P2(p⃗2)
, (3)

where N - normalization factor.

In what follows, the two-particle correlation function can be expressed in terms of the
variable q⃗.

The theoretical analysis of this formula establishes a connection between the space-
time structure of the particle emission source and the experimentally measured correlation
function.

2.1 Experimental correlation function

The experimental correlation function represents the ratio of the distribution A(q⃗) of
the relative momenta of pairs of identical bosons from one event to the analogous reference
distribution B(q⃗), where quantum-statistical correlations are suppressed:

C(q) =
A(q⃗)

B(q⃗)
(4)

In the study of two-particle correlations, the choice of the reference distribution plays
an important role. The reference distribution should repeat the experimental distribution
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except for the presence of quantum-statistical correlations. One of the methods to sup-
press them was the event mixing method, in which each particle from a pair of particles
belonged to different [7] events. Thus, all effects are recreated except for the Bose-Einstein
correlations and the interaction in the final state.

2.2 Coordinate system and parameterization of the correlation
function

For identical particles, the relative momentum q contains only three independent com-
ponents, while the source is described by three spatial and one temporal dimensions. As
a result, the relative momentum components are expressed in terms of a certain set of
correlation radii, depending on the choice of reference system and parameterization.

The most widely used “Out-Side-Long” parameterization is defined as follows. The
coordinate system in the space of relative momentum q⃗ = p⃗1 − p⃗2 of a pair of particles is
chosen so that the longitudinal direction long is parallel to the beam axis, the direction
out is parallel to the direction of the total transverse momentum of the pair
k⃗T = (p⃗1;T + p⃗2;T )/2, and the side direction is perpendicular to the long and out (fig. 1).

Figure 1: Schematic representation of an LCMS coordinate system

In this paper, we use a longitudinally co-moving coordinate system - Longitudinally
Co-Moving System (LCMS) [8], in which p1z + p2z = 0, where p1z and p2z - projections of
momenta of the first and second particles onto the z axis.

The radii of the particle emission region depend on the average transverse momentum
of pairs of particles kT . In the LCMS system, the correlation function can be represented
as the Bowler-Sinyukov function [9]:

C(q) = N [(1− λ) + λK(q)(1 +G(q))], (5)

where λ is the coefficient characterizing the strength of femtoscopic correlations, K(q)
is the Coulomb correction describing the Coulomb repulsion in the case of identical par-
ticles, N is the normalization factor. The function G(q) - the Gaussian source function -
is described by the following equation:

G(q) = exp(−q2
oR

2
o − q2

sR
2
s − q2

l R
2
l − 2qoqsR

2
os − 2qsqlR

2
sl − 2qoqlR

2
ol), (6)

where Rij are the corresponding emitter radii (out, side and long).
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Experimental correlation functions are usually fitted using the functions 5, 6. The
radii extracted after fitting determine not the size of the entire source, but the size of the
”homogeneity region” [10], which is a part of the source region emitting particles (fig. 2).

Figure 2: Region of homogeneity of particle emission source. Left - view along the collision
axis, right - across the collision axis

The concept of the region of homogeneity was introduced to explain the effect of the
dependence of the correlation radii on the transverse momentum of pairs of particles kT .

3 Experiment STAR and collision Data analysis

The data used for the analysis were obtained in the STAR experiment at RHIC [11].
The minimum bias Au+Au collisions sample at

√
sNN = 3 GeV were analized. The beam

was incident on a gold target 0.25 mm thick corresponding to a 1% interaction probability.
The target is installed in a vacuum pipe at 200.7 cm west of the STAR center and 2 cm
below the beam axis [12].

Each launch of the accelerator is assigned a unique Run Number, which is an eight-
digit number YYDDDRRR, where 2000+YY-1 is the year, DDD is the day of the year,
RRR is the run number on that day. Based on the dependence of the average measured
characteristics of collision events, it is possible to exclude RunNumbers that have signif-
icant deviations from the general trend. Such numbers may indicate incorrect operation
of the detector.

In this analysis, the following RunNumber should be excluded:

19151029, 19151045, 19152001, 19152078, 19153023, 19153032,

19153065, 19154012, 19154013, 19154014, 19154015, 19154016,

19154017, 19154018, 19154019, 19154020, 19154021, 19154022,

19154023, 19154024, 19154026, 19154046, 19154051, 19154056

One of the characteristics of nuclear collisions is multiplicity, which is defined as the
number of produced secondary particles per interaction. For a fixed target, particle mul-
tiplicity is shown in fig. 3.

5



Figure 3: Secondary particle multiplicity distribution

The values of the obtained multiplicity are compared with the ranges of centralities
that characterize the degree of overlap of nuclei during a collision. For example, centrality
0% corresponds to central (frontal) collisions, and 100% - to peripheral collisions, where
there are no areas of intersection of nuclei. The table 1 shows the correspondence between
centralities and multiplicities.

Table 1: Values of Centralities and Multiplicities of Secondary Particles

Centrality

Multiplicity

0-5 %

195-142

5-10 %

141-119

10-15 %

118-101

15-20 %

100-86

20-25 %

85-72

25-30 %

71-60
Centrality

Multiplicity

30-35 %

59-50

35-40 %

49-41

40-45 %

40-33

45-50 %

32-36

50-55 %

25-21

55-60 %

20-16
Centrality

Multiplicity

60-65 %

15-12

65-70 %

11-9

70-75 %

8-7

75-80 %

6-5

For the selection of events, the number of which is about 2.8 · 108 in the data set, the
distributions shown in fig. 4 were constructed and the following restrictions were defined:

• 195 < Vz < 205 cm - the vertex of the collision in the Z axis,

• Vr < 2 cm - vertex of collision of nuclei in X and Y coordinates.
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Figure 4: The vertex of the collision of nuclei in the coordinates Z (a), X and Y (b)

To select tracks, some of the distributions presented in the figure 5 were constructed.
The red lines show the distributions, where the restrictions on events were taken into
account, and the green lines show the distributions for events and tracks. The following
restrictions have been chosen:

• nHits > 15 - the number of ionization points in the detector, which ensures a fairly
accurate reconstruction of the track,

• 0.52 < nHitsF it/nHitsPoss < 4 - the ratio of the received number of hits (ioniza-
tion points) in the detector to the total number of hits,

• 0.15 < p < 1.5 GeV - track momentum (fig. 5 (a)),

• 0.15 < pT < 1.5 GeV - transverse momentum of the track ,

• −2 < η < 0 - pseudorapidity (fig. 5 (b)),

• 0 < DCA < 3 cm - where DCA - Distance of Closest Approach - the shortest
distance from the track to the collision vertex, particles with high values of the
DCA are more likely to be produced from secondary interactions and not in the
initial collision of nuclei.
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Figure 5: Distribution of track momentum (a) and pseudorapidity (b)

To construct the correlation functions of identical pions, it is necessary to identify the
pions in the best possible way. Identification was carried out using the combination of
time-projection and time-of-flight systems in the momentum range from 0.15 to 1.5 GeV:

• 0.15 < p < 0.55 GeV/c: |nSigma(Pion)| < 2, |nSigma(others)| > 2, where nSigma
is deviation of experimentally measured ionization losses from theoretical ones,

• 0.55 < p < 1.5 GeV/c: |nSigma(Pion)| < 3, −0.05 < m2 < 0.08 GeV2/c4,
|1/β − 1/β(π)| < 0.015, where β is the particle velocity.

Thus, based on all of the above, charged pions were identified using restrictions on
events, tracks, and particles.

To construct the correlation functions of identical pions, it is necessary to select pairs of
particles that belong either to the same event or to different events (to suppress quantum-
statistical correlations). During the reconstruction of tracks, the effects of merging or
splitting tracks may occur. Merging tracks means that one track is reconstructed as a
pair of tracks, while splitting means that two tracks are reconstructed as one [7].

In order to correctly split tracks, each track is assigned some binary code, the length
of which can be a maximum of 45 (one bit for each pad), where 1 means the presence of a
hit in this row of pads, and 0 means its absence. By comparing the resulting set of codes,
we can estimate the probability of splitting tracks. The figure 6 shows an example of track
reconstruction, where sets of circles and rectangles represent impact from separate tracks.
On the left, two separate tracks are shown, and on the right, a candidate for splitting
tracks.
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