[image: C:\Documents and Settings\Admin\Мои документы\Бланки, логотипы, подписи\jinr-blue-small.png]

JOINT INSTITUTE FOR NUCLEAR RESEARCH
Dzhelepov Laboratory of Nuclear Problems

FINAL REPORT ON THE
START PROGRAMME

Intel FPGA training. Introduction in development of FPGA based readout systems for Timepix series detectors

Supervisor:
Aleksandr Lapkin

Student:
Viktoria Makarova, Russia
Kazan Federal University

Participation period:
October 02 – November 12,
Summer Session 2022

Dubna, 2022
Abstract
Currently, the Laboratory of Nuclear Problems is developing a multi-energy X-ray tomograph. It differs from the usual one in that it can separate substances by changing the absorption of X-ray radiation at different energies. Multi-energy X-ray tomograph requires a detector that can determine the energy and position of each absorbed photons (single photon counting). Detectors need readout systems, that connect to computer and detector, as well as software for controlling the detector. For these purposes, it is planned to use a new model of the Timepix4 detector of the Medipix family. Therefore, it is necessary to develop a readout system for Timepix4 based on FPGAs.

Acknowledgments
I want to thank my supervisor Alexander Lapkin for valuable advice and continuous mentoring throughout the practice. Special thanks to the organizing committee for the opportunity to participate in the program. It was a great chance to work on an interesting project and gain unique experience in solving engineering tasks under the guidance of specialists.

Introduction
Currently, computed tomography is one of the most common imaging and diagnostic methods. This method is based on the fact that materials have different X-ray transmittance in different energy of radiation. The X-ray beam passes through the tissue layer in different directions. Then the transmitted radiation is detected and the information received is converted into an image. Currently, the Laboratory of Nuclear Problems is developing a multi-energy X-ray tomograph. It differs from the usual one in that it can separate substances by changing the absorption of X-ray radiation at different energies. For these purposes, it is planned to use semiconductor hybrid pixel detectors Timepix 4 of the Medipix family as a detector. The very first Medipix chip was released in the 1990s [1]. The development of Timepix4 has been launched in 2016 [2]. The main feature of Timepix is that detectors based on it allow not only to detect the presence of certain sources of radiation, but also to determine the energy of the particles emitted by them. Timepix4 has a larger pixel matrix and can handle higher data rates than other Medipix family devices [3]. It also has a higher energy and spatial resolution. This allows obtaining X-ray images, which make it possible to determine the chemical composition of samples on tomograms, study the microstructure of tissues of living organisms and determine the proportions of various substances in them. To use such detectors, it is necessary to develop a readout system. FPGA is a high-performance device, so it can be used to transfer and process large amounts of data at high speed. Thus, FPGA is a good option for implementing a readout system. For these purposes, the Quartus project design and debugging environment can be used. Therefore, the main purpose of this work is to improve skills in working with the Quartus Prime18.1 software and the Development Kit and be prepared for the next work. To improve skills FPGAs working 5 tasks were completed.

Task 1. Quartus basic functions.
The first step was to install the Quartus Prime 19.1 software. For this software to work correctly, the USB-Blaster II driver must have been installed. The appearance of the Programmer window when the Development Kit is connected DE 1_SoC without the driver installed is shown in Figure 1.1.
	[image:]

	Figure 1.1

 At the same time, an unknown device was detected in the Windows Device Manager. To install the driver, it is needed to update this device and specify the full path to the folder where the driver is located (drivers\usb-blaster-ii\x64). Then the USB-Blaster II driver will be installed. Also, it is needed to have disabled driver signature verification using the boot parameters. Having performed these actions, the Programmer window looks like in Figure 1.2.
	[image:]

	Figure 1.2

 The next step was to create a project in Quartus Prime 19.1. It was necessary to set the parameters such as project name, file name, project type and also to find the FPGA model – Cyclone V SoC 5CSEMA5F31 in the user's guide.
Then a schematic file was created and PLL was placed in it. PLL – is an automatic control system used for converting the clock signal, as well as for phase adjustment. It was necessary to setup the PLL: the input frequency was set to 50 MHz, the desired output frequency was set to 16.777408 MHz. Then this diagram was placed in a free field of the diagram. After that, a source file (Verilog HDL File) was created and the code is shown in Figure 1.3 was written in it.
	[image:]

	Figure 1.3

The first block of code specifies the input and output ports of this circuit. The output is 10 LEDs. The Reg type, which is used in this code file, is a data object that stores the value from one procedure assignment to the next and is used only in various functions and procedure blocks. The initial block is used to initialize variables, so it is used for setting input actions, i.e., initial values.
The procedure block described with always @(posedge Clock or posedge Reset) is triggered on the positive edge of the Clock or Reset signal. Therefore, at the rising edge of the clock signal, the next value will be written to the counter registers, which is equal the previous one plus one. This system works synchronously, but with asynchronous reset, i.e., not related to the clock frequency. To implement a synchronous reset scheme, it’s necessary to set always @(posedge Clock) in this block.
Then a schematic file was created. It contains the PLL element, 2 input ports, 1 output port, including 10 pins, a counter (described above), and an inverter (Not element). After that, all the blocks were connected to each other. The resulted scheme is shown in Figure 1.4.
	[image:]

	Figure 1.4

The next step was to work with Pin Planner. It was needed to specify the pin designations used in this diagram. The pin designations can be found in the user's manual [4]. An example is shown in Figure 1.5.
	[image:]

	Figure 1.5

The result after entering the required data in the Location column and assigning the value of I/O Standart 3.3 V was shown in Figure 1.6. It is also worth to mention that the Reset input was connected to the "0" button.
	[image:]

	Figure 1.6

The next step was setting time constraints. It is necessary to describe the external clock signal in the created time constraints file. The clock period was set to 20 ns. The derive_pll_clock command was used to automatically generate clock cycles for each PLL output. The time constraints file is shown in Figure 1.7.
	[image:]

	Figure 1.7

Then the project compiling can be started. After successfully completing this step, the Programmer window located on the toolbar is needed to open. It was necessary to select the Development Kit – DE1_SoC and the compiled project file. The programming can be started by clicking Start button.
The result of this program is an alternating flashing of the LEDs corresponding to the addition of 1, starting from 0 to 1023. A demonstration how the algorithm works is shown in Figure 1.8.
	[image:]
	[image:]

	Figure 1.8

Also, by changing the range of values in line 10 of the code shown in Figure 1.3, you can change the frequency of flashing LEDs. By changing this range to [30:21], the LED blinking frequency increased by ~ 8 times. The corrected version of the code is shown in Figure 1.9.
	[image:]

	Figure 1.9

The next task was to transfer the reset function to the "3" button of the Development Kit. To do this, it is necessary to change the output for Reset in Pin Planner. The result of these actions is shown in Figure 1.10.
	[image:]

	Figure 1.10

On the next stage, the project was modeled. The University Program VWF file was created for this purpose. In the field on the left, you need to add registers, inputs and outputs. After that, a clock signal of 50 MHz (20 ns) was applied to the Clock input using Overwrite Clock. Then high logic level was applied to the Reset input using the Forcing High button. In order to run the functional simulation correctly, it is necessary to correct the full path to the previously saved modeling1.vwf file, as well as to the modeling1.vwf.vt file. This file obtained as a result of running ModelSim TestBench and Script. The full path is needed to be corrected in all lines that appear on the screen in the Simulation Settings options. Figure 1.11 shows the fields where it is needed to replace the full path to the required file. In the first line, correct the current path for vector_source_source to the path through the output_files folder_files, and for testbench_file to the path through the modelsim folder. It is necessary to add the full path to the modeling1.vwf.vt file in the highlighted line 3. Then copy the modeling1.vwf.vt file from the modelsim folder to the qsim folder.
	[image:]

	Figure 1.11

After that, functional modeling was started, the results of which are shown in Figure 1.12.
	[image:]

	Figure 1.12

The state of the LEDs does not change when the clock pulse arrives. This fact can be explained because of selecting the [33:24] range of value in the code shown in Figure 1.3. Thus, the LEDs are in the "0" state, because the counter [33: 24] is in the "0" state for the set End time = 1 ms (while the first 4 digits are in the Z state). To observe the change in LED states, the range of these values can be changed, for example, to [9:0]. The result of the modified code is shown in Figure 1.13. The End time also can be increasing so the entire counter range [33:24] will change its state to "0" or "1" (but there is a limit of 100 microseconds).
	[image:]

	Figure 1.13

Then a time analysis of the project was performed, which resulted in the value Fmax=405.02 MHz. The maximum frequency value also changing by changing the range shown in Figure 1.3. By changing the range to [30:21], the Fmax becomes equal to 374.67 MHz.
The next step was to work with Chip Planner, which displayed the distribution of the clock signal from the PLL to the project implementation blocks using the Generate Fan-In Connection, Generate Fan-Out Connection and Expand Connection buttons. The resulting signal distribution result is shown in Figure 1.14.
	[image:]

	Figure 1.14

If the previously added PLL output is set as Region Clock by Assigment Editor, the scheme will change, as well as the value of Fmax. Figure 1.15 shows the distribution of the clock signal from PLL to project implementation blocks after previously made changes. Fmax in this case is 334.78 MHz.
	[image:]

	Figure 1.15

Conclusion: as a result of this project, the Quartus Prime 19.1 software was installed, the writing code skills in the Verilog language were obtained, as well as Quartus Prime 19.1, Pin Planner and ModelSim working skill. The result of this work is an alternating flashing of the LEDs corresponding to the addition of 1, starting from 0 to 1023, and also their flashing frequency can be changed.

Task №2. Project with LEDs, buttons and switches.
The first step was to create a project in Quartus Prime 19.1. It was necessary to set the parameters such as project name, file name, project type and also to find the FPGA model – Cyclone V SoC 5CSEMA5F31 in the user's guide.
Then the SystemVerilog HDL file was created. The code shown in Figure 2.1 was added to this file. The current file with the code was added to the project.
	[image:]

	Figure 2.1

The next step was to create a top-level file in the hierarchy (Verilog HDL File). The code shown in Figure 2.2 was added to this file. This code demonstrates which LEDs will light up when any of the 4 buttons are pressed. Then the current file with the code was also added to the project.
	[image:]
	[image:]

	Figure 2.2

The next step after successful Analysis and Synthesis was to work with Pin Planner. It was needed to specify the pin designations used in this diagram. The pin designations can be found in the user's manual. All the pins used in this diagram are shown in Figure 2.3. After entering the required data in the Location column, the I/O Standart column was set to 3.3 V, and the Current Strength column –was set to 16 mA.
	[image:]

	Figure 2.3

The next step was setting time constraints. It is necessary to describe the external clock signal in the created time constraints file. The clock period was set to 20 ns. The derive_pll_clock command was used to automatically generate clock cycles for each PLL output. The time constraints file is shown in Figure 2.4. Then the current file was added to the project.
	[image:]

	Figure 2.4

Then the project compilation can be started. After successfully completing this step, the Programmer window located on the toolbar is needed to open. It was necessary to select the Development Kit – DE1_SoC and the compiled project file. The final view of the Programmer window is shown in Figure 2.5. The programming can be started by clicking Start button.
	[image:]

	Figure 2.5

The result of this scheme is shown in Figures 2.6-2.9. The value "0101101001" was set by using the switches. The status of the LEDs in Figure 2.6 corresponds to the "3" button pressed. When the button is pressed, all 10 LEDs are turned on. This case will be discussed in more details later. The status of the LEDs in Figure 2.7 corresponds to the "2" button pressed. The glow of the LEDs depended on the state of the switch, i.e., LEDs with the switch in the "1" state were turned on. The status of the LEDs in Figure 2.8 corresponds to the "1" button pressed. This state is an inversion of the previous case, i.e., LEDs with the switch in the "0" state were turned on. The status of the LEDs in Figure 2.9 corresponds to the "0" button pressed. When the button is pressed, all 10 LEDs are turned off regardless of the switch position.

	[image:]

	Figure 2.6

	[image:]

	Figure 2.7

	[image:]

	Figure 2.8

	[image:]

	Figure 2.9

When the "3" button is pressed, the brightness of the LEDs depends on the position of the switch. Figure 2.10 shows an example where all switches correspond to the "0" position, in this case the LEDs are turned off. As the position of the switches is changed to "1", the brightness of the LEDs increases. This fact is shown in Figures 2.11-2.13. At the same time, the leftmost switch provides the highest brightness of the LEDs, and the rightmost switch provides the lowest.
	[image:]

	Figure 2.10

	[image:]

	Figure 2.11

	[image:]

	Figure 2.12

	[image:]

	Figure 2.13

Then it was necessary to work with RTL Viewer. This is a utility that allows to see the logical implementation of a project in graphical form. To run this utility, user need to select Netlist Viewers from the Tools menu and then choose RTL Viewer. The result of running RTL Viewer is shown in Figure 2.14.
	[image:]

	Figure 2.14

The next step was to work with Chip Planner, which displayed the distribution of the clock signal from the PLL to the project implementation blocks using the Generate Fan-In Connection, Generate Fan-Out Connection and Expand Connection buttons. The resulting signal distribution result is shown in Figure 2.15. The result obtained by using the Expand Connection button, which allows to display all the components of the selected connection, is shown in Figure 2.16.
	[image:]

	Figure 2.15

	[image:]

	Figure 2.16

Then the SignalTap Logic Analyser, located in the Tools tab was used. It is necessary to add a clock signal (located in the right panel of the window) and tracking signals (located in the left panel). Basic OR is needed to be select in the Trigger Conditions column, and Falling Edge – for led_driver_driver:led_driver_inst_driver_inst|Reset. After that, it is necessary to compile the project, program the FPGA and get the data once. The set switches position and the result of pressing the KEY2 button are shown in Figure 2.17. The results obtained during these actions are shown in Figure 2.18.
	[image:]

	Figure 2.17

	[image:]

	Figure 2.18

Conclusion: as a result of this project, RTL Viewer and SignalTap Logic Analyser working skill were obtained. Also, Pin Planner and Chip Planner skills were improved. The result of this work is the LEDs flashing, which depends on which button is pressed.

Task 3. Quartus debugging tools.
The first step was to create a project in Quartus Prime 19.1. It was necessary to set the parameters such as project name, file name, project type and also to find the FPGA model – Cyclone V SoC 5CSEMA5F31 in the user's guide.
Then a schematic file was created and PLL was placed in it. PLL – is an automatic control system used for converting the clock signal, as well as for phase adjustment. It was necessary to setup the PLL: the input frequency was set to 50 MHz, the desired output frequency was set to 16.777408 MHz. Then this diagram was placed in a free field of the diagram. After that, a code file (Verilog HDL File) was created and the code is shown in Figure 3.1 was written in it.
	[image:]

	Figure 3.1

The first block of code specifies the input and output ports of this circuit. The output is 10 LEDs. The Reg type, which is used in this code file, is a data object that stores the value from one procedure assignment to the next and is used only in various functions and procedure blocks. The initial block is used to initialize variables, so it is used for setting input actions, i.e. initial values.
The procedure block described with always @(posedge Clock or posedge Reset) is triggered on the positive edge of the Clock or Reset signal. Therefore, at the rising edge of the clock signal, the next value will be written to the counter registers, which is equal the previous one plus one. This system works synchronously, but with asynchronous reset, i.e. not related to the clock frequency. To implement a synchronous reset scheme, it’s necessary to set always @(posedge Clock) in this block.
Then a schematic file was created. It contains the PLL element, 2 input ports, 1 output port with 10 pins, a counter (described above), and an inverter (Not element) and an OR element with 2 inputs (OR2). After that Intel FPGA In-System Sources & Probes was added under the name sys_probe. The Probe Port Width [0..512] parameter was set to 34. Then it is necessary to add the generated sys_probe.qip file to the project, and also place this probe on the empty space of the circuit. All the blocks were connected to each other. Then all I/Os were renamed as Clock, Reset, Led[33..24]. The bus from the Led output of the cnt module to the Probe input of the sys_probe module should be renamed as Led[33..0], as well as the bus leading to the Led pin[33..24] as Led[33..24]. The resulted scheme is shown in Figure 3.2.
	[image:]

	Figure 3.2

The next step was to work with Pin Planner. It was needed to specify the pin designations used in this diagram. The pin designations can be found in the user's manual. An example is shown in Figure 3.3.
	[image:]

	Figure 3.3

 The result after entering the required data in the Location column and assigning the value of I/O Standart 3.3 V was shown in Figure 3.4. It is also worth to mention that the Reset input was connected to the "0" button.
	[image:]

	Figure 3.4

The next step was setting time constraints. It is necessary to describe the external clock signal in the created time constraints file. The clock period was set to 20 ns. The derive_pll_clock command was used to automatically generate clock cycles for each PLL output. The time constraints file is shown in Figure 3.5.
	[image:]

	Figure 3.5

Then the project compilation can be started. After successfully completing this step, the Programmer window located on the toolbar is needed to open. It was necessary to select the Development Kit – DE1_SoC and the compiled project file. The programming can be started by clicking Start button.
The result of this program is an alternating flashing of the LEDs corresponding to the addition of 1, starting from 0 to 1023. An example of how the algorithm works is shown in Figure 3.6.
	[image:]
	[image:]

	Figure 3.6

The next step was to work with System Probe. It was necessary to run the In-System Sources and Probes Editor located in the Tools tab, then select the previously programmed FPGA (Hardware: DE_SoC [USB X], Device: @2:5CSE(BA5|MA5)...). The probe polling is needed to be enable by using the Continuously Read Probe Data. The result of these actions is shown in Figure 3.7. Signals with probe[33..24] represent an addition of 1 in binary code, the remaining signals are noise.
	[image:]

	Figure 3.7

In-System Sources and Probes Editor extends the set of verification tools and provides a dynamic debugging environment, as well as allows to control the internal signal. This way, data from all sources and samples in the project can be viewed. Continuously Read Probe Data allows to continuously sample data from the probe. The In-System Sources and Probes Editor allows to store up to 128k samples. This parameter is set in the Maximum Size line (in this project, it was chosen to be 2k).
The next step was to turn off the source probe, i.e. in the Data tab it was set to "0". After that, the probe polling was started again. The result is shown in Figure 3.8. The probe[33..0], which are project outputs, have a value of "0" while Source value is also "0". So, the Source is used to control the input data.
	[image:]

	Figure 3.8

Unfortunately, the In-System Sources and Probes Editor debugging tool has a drawback – a non-constant frequency of polling that cannot be adjusted by the user. This disadvantage is demonstrated in Figure 3.9. It’s clearly shows how much the frequency changes on probe[33..0] in the absence of any changes in the program code and settings.
	[image:]

	Figure 3.9

The next step was to use the SignalTap Logic Analyser located in the Tools tab. It is necessary to add a clock signal (in the Clock field in the right panel of the window) and tracking signals (cnt:inst2|Reset and cnt:inst2|counter[33..0] located in the left panel). Basic OR is needed to be select in the Trigger Conditions column, and Falling Edge – for cnt:inst2|Reset. After that, it is necessary to compile the project, program the FPGA and read the data once. The results obtained during these actions are shown in Figure 3.10.
	

	Figure 3.10

The SignalTap logic Analyzer is a debugging tool that displays signal behavior in real time, allowing to observe the interaction between hardware and software in projects [5]. This software allows to choose which signals to capture, when signal capture starts, and how many data samples to capture.
The next step was to configure SignalTap, so that data collection occurs after the counter reaches the value 0X1234567. To do this, in the Trigger Conditions column for cnt:inst2|counter[33..0] is needed to be set the "0X1234567" value, and in the line cnt:inst2 /Reset – "Don’'t care". Also the value for Trigger Conditions must be replaced with Basic AND. The view of the Setup window in SignalTap with the changes is shown in Figure 3.11. The result of these operations is shown in Figure 3.12. This figure shows that the beginning of the reference, i.e. zero value on the scale, which located at the top, corresponds to the state of the LEDs "1001000110100010101100111" (which is the number "1234567" in the hexadecimal numeral system).
	[image:]

	Figure 3.11

	[image:]

	Figure 3.12

Conclusion: As a result of this project, debugging tools In-System Sources and Probes Editor and SignalTap Logic Analyser working skills were improved. In-System Sources and Probes Editor is a simple tool for setting and managing internal signals. Unfortunately, this debugging tool is not suitable for monitoring high frequency signals. SignalTap Logic Analyzer records FPGA logic signals with the frequency of the selected clock signal and gives user the ability to monitor the signals in real time. Also, worth to mention that SignalTap Logic Analyzer consumes FPGA resources. These debugging tools help clearly demonstrate how the code works.

Task №4. SDRAM module testing.
The first stage was the creation of a project, which includes specifying the project name, the model of the FPGA used, etc. Then it was necessary to launch Platform Designer, located in the Tools tab. The Platform Designer window view is shown in Figure 4.1.
	[image:]

	Figure 4.1

Then it was necessary to place the SDRAM Controller, located in the Memory Interfaces and Controllers → SDRAM → SDRAM Controller Intel FPGA IP tab, the PLL (Basic Function → Clock, PLL and Resets → PLL Intel FPGA IP) and the JTAG – Avalon bridge (Basic Functions → Bridges and Adapters → Memory Mapped → JTAG to Avalon Master Bridge). You also need to configure all the elements described above. The first step was to set the requirement parameters, which are shown in Figure 4.2, in the Memory Profile and Timing tabs for the SDRAM Controller.
	[image:]

	Figure 4.2

Then the PLL was configured, the parameters of which are shown in Figure 4.3. The reference clock frequency was set to 50 MHz, and the number of Clock generators was set to 2: outclk0 and outclk1.
	[image:]

	Figure 4.3

[bookmark: _Hlk117692612]After that, by double-clicking in the Export window the necessary elements were exported – wire (named sdram), outclk1 (named sdram_clock) and locked (named locked). The appearance of the Platform Designer window after making the changes described earlier is shown in Figure 4.4.
	[image:]

	Figure 4.4

[bookmark: _Hlk117692924]Then the code was generated using Generate HDL. After that, the sdram.qip file was added to the project from its folder by using the Add/Remove Files. The next step was to write the code in the previously created DE1_SoC_sdram.v file. The Verilog HDL File with the code is shown in Figure 4.5.
	[image:]

	Figure 4.5

At first, input, output and inout (bidirectional) ports were set. Then the single-bit reset and locked circuits were announced. Then the example shown in Figure 4.6 was copied in the Instantiation Templates tab of the Platform Designer window for later declaring SDRAM module instances.
	[image:]

	Figure 4.6

 After that, you can proceed to creating the time constraints file, which is shown in Figure 4.7.
	[image:]

	Figure 4.7

Clock frequencies are described using the create_clock command. In this case, a generator with a frequency of 100 MHz is used, the source of which is the DRAM_CLK port. A second clock frequency with a period of 20 ns was also set. To use the get_ports function, when you select Insert Constraint, you must use the Create Timing Netlist tab after running the Timing Analyzer. Then you need to set input and output delays of 3 ns in the Synopsys Design Constraint File File(.sdc) using the set_input_delay and set_output_delay commands. The next step was to set the maximum and minimum time for input and output delays for clk_dram, the source of which is the previously announced output and bidirectional ports. These data were obtained from the Development Kit descriptions and manuals.
After successful Analysis and Synthesis, you can start working with Pin Planner. In the user's manual, you need to specify the pin designations used in this diagram. All the pins used in this diagram are shown in Figures 4.8, 4.9 and 4.10.
	[image:]

	Figure 4.8

	[image:]

	Figure 4.9

	[image:]

	Figure 4.10

After entering the required data in the Location column, the I/O Standart column was set to 3.3 V, and the Current Strength column –was set to 16 mA. The final view of the Pin Planner window after making all the changes is shown in Figure 4.11.
	[image:]

	Figure 4.11

The next step was to create a Tcl Script file containing the code shown in Figure 4.12. This code is used for memory testing. Lines 4 and 5 contain the initial values of the first elements of the Fibonacci sequence. Using the while loop, we described filling of rows, in which each next number is equal to the sum of the previous two. These steps are repeated until the number exceeds 0xffffffff value (i.e., 4294967295 in decimal).
	[image:]

	Figure 4.12

After that, you can start compiling the project. After successfully completing this step, you need to open the Programmer window located on the toolbar. You need to select the programmable board – DE1_SoC and the compiled project file. The final view of the Programmer window is shown in Figure 4.13. After that, you can click Start button to start programming.
	[image:]

	Figure 4.13

After finishing programming, the system console was launched (Tools → System Debugging Tools → System Console). The string "source DE1_SoC_sdram_test.tcl" was inserted in the Tcl Console window. Figure 4.14 shows the result that appears on the screen after running the test.

	[image:]

	Figure 4.14

It is also worth to mention the problems that occurred while working with the Tcl Console. The first result of the program launching was the "test is unsuccessful" message on the display, which indicates problems with memory. After that, to test the internal memory, the On Chip Memory Intel FPGA IP element (Basic Function → On Chip Memory) was added to the project in Platform Designer. The scheme of its connection is shown in Figure 4.15. Also in this figure, you can see that the start and end address values for On Chip Memory were accordingly changed to 0x04000000 and 0x04000fff in the Address Map tab.
	[image:]

	Figure 4.15

After compiling and running the project with the changes made on the Development Kit, the lines shown in Figure 4.16 were entered in System Console. Thus, it was concluded that the internal memory of this board works without errors, since it was possible to write a number into it and then read it. But at the same time, when writing the number "2" to the address 0x0, the external memory reads it as the value 0xffffffff, which corresponds to the number "-1" in the additional code.
	[image:]

	Figure 4.16

Conclusions: as a result of this project, the skills of working with Platform Designer and System Console were obtained. The SDRAM module was tested by using the code, which represents the Fibonacci sequence. Also, the operability of internal and external memory was checked.

Task №5. Nios II module testing.
The first stage was the creation of a project, which includes specifying the project name, the model of the FPGA used, etc. Then it was necessary to launch Platform Designer, located in the Tools tab. The Platform Designer window view is shown in Figure 5.1.
	[image:]

	Figure 5.1

Then it was necessary to place elements such as the Nios II processor, located in the Processors and Peripherals tab, memory (Basic Function → On Chip Memory → On Chip Memory (RAM or ROM) Intel FPGA IP), System ID (Basic Functions → Simulation; Debug and Verification → Debug and Performance → System ID Peripheral Intel FPGA IP) and UART via JTAG. Also 2 parallel I/O – PIOs (Processors and Peripherals → Peripherals → PIO) should be placed. These PIOs should be renamed as switch, and the other as led, and then export external_connection for them with the appropriate names. Then all the elements described above are need to be configured. The first step was to set the necessary parameters for Nios II, which are shown in Figure 5.2. But it is worth noting that Nios II was configured after the elements were connected, since it is impossible to specify memory vectors otherwise [6].
	

	Figure 5.2

For On Chip Memory the Total memory size parameter was set to 204800 bytes. Then the switch and led PIOs were configured: the Width parameter was set to 10, the Direction parameter value for switch – Input, and for led – Output. For the System ID, the value was set equal to 0x00c00000.
The appearance of the Platform Designer window is shown in Figure 5.3. It is also worth to mention that the Assign Base Addresses function was used to set the start and end address values for all elements.
	[image:]

	Figure 5.3

 Then the code was generated by using Generate HDL. After that the DE 1_SoC_nios.qip file was added to the project by using the Add/Remove Files option. The next step was to write the code in the previously created DE1_SoC_nios_tr.v file. The Verilog HDL File with the code is shown in Figure 5.4.
	[image:]

	Figure 5.4

The next step after successful Analysis and Synthesis was to work with Pin Planner. It was needed to specify the pin designations used in this diagram. The pin designations can be found in the user's manual. All the pins used in this diagram are shown in Figures 5.5.
	[image:]

	Figure 5.5

It is necessary to install the Eclipse development environment to continue working with the project. The file containing Eclipse must be unzipped to the Quartus program folder ".../nios2eds/bin". Then rename the resulted folder to "eclipse_nios2". Also, for correct operation, Eclipse requires the installation of Windows System for Linux and Ubuntu 18. Then the following command "wsl-set-default-version 1","sudo apt install wsl","sudo apt install dos2unix","sudo apt install make" should be entered on the command line. The Perspective value must be switched to Nios II when the Nios II Software Build Tool for Eclipse is running.
Then it is necessary to run the Eclipse program from the Nios II Command Shell.bat command line. The next step was to create a project (Nios II Application and BSP from Template), and select Hello World as the template. The program window with all the settings is shown in Figure 5.6.
	[image:]

	Figure 5.6

Then the code is shown in Figure 5.7 must be added to a hello_world.c file in the tab DE1_SoC_nios2_tr_software.
	[image:]

	Figure 5.7

 Then all Makefile in the DE1_SoC_nios2_tr_software and DE1_SoC_nios2_tr_software_bsp folders must be deleted in the Project. The folder with created BSP must be open in the Eclipse Nios II Command Shell.bat. The next stage is running the "dos2unix create-this-bsp" and ". /create-this-bsp --cpu-name nios2_gen2_0 --no-make" command. Then similar actions should be performed with the folder of created application DE1_SoC_nios2_tr_software by using the commands "dos2unix create-this-app" and ". /create-this-app --cpu-name nios2_gen2_0 --no-make". The "dos2unix" command implement instantly converting to Unix encoding. The command line containing all the commands described earlier is shown in Figure 5.8.
	[image:]

	Figure 5.8

The next step was to use the BSP Editor. Its settings are shown in Figure 5.9. The «enable_lightweight_device_driver_api» setting must be disabled. This option allows to reduce the amount of code and data.
	[image:]

	Figure 5.9

 After that, you need to open the Makefile created earlier in Eclipse, in which you need to replace 329 and 135 lines: APP_LDFLAGS += -msys-lib=$(call adjust-path-mixed,$(SYS_LIB)) with APP_LDFLAGS += -msys-lib=hal_bsp, and BUILD_PRE_PROCESS := on BUILD_PRE_PROCESS := touch $(ELF). srec, respectively. Without these corrections the project building and the elf file generation were unsuccessful. The changes made with the Makefile are shown in Figures 5.10 and 5.11.
	[image:]

	Figure 5.10

	[image:]

	Figure 5.11

Use the context menu to build the BSP and application by using the Build Project command.
Then the project compiling can be started. After successfully completing this step, the Programmer window located on the toolbar is needed to open. It was necessary to select the Development Kit – DE1_SoC and the compiled project file. The final view of the Programmer window is shown in Figure 5.12. The programming can be started by clicking Start button.
	[image:]

	Figure 5.12

Then it is necessary to run the application in the Eclipse program. The Target Connection tab appears after selecting Run as Nios II Hardware for DE1_SoC_nios2_tr_software. So it is needed to click Refresh Connections, and then 2 data-filled lines shown in Figure 5.13 will appear.
	[image:]

	Figure 5.13

Then by using the System ID Properties button, user need to check the values of Expected System ID and Connected System ID – they must match. These values are shown in Figure 5.14. Then the application can be started by using the Run button.
	[image:]

	Figure 5.14

The following switch position was set on Development Kit (shown in Figure 5.15), which is equal to the number 0101001011 in binary numeral system.
	[image:]

	Figure 5.15

 The result of the program was the illumination of those LEDs for which the switch was in the logical unit position, as well as the Nios II Console screen message shown in Figure 5.16. The number that appears on the screen corresponds to the number set using the switches, but in decimal number system.
	[image:]

	Figure 5.16

In order to increase the processor response time by 2 times, the number of repetitions in the loop for the variable j can be increased by 2 times. This result is shown in Figure 5.17. In practice, it was tested successful, that the processor response time increased by 2 times – from 1 to 2 minutes.
	[image:]

	Figure 5.17

Conclusions: as a result of this project, the skills of working with Eclipse development environment were obtained. The Nios II module was tested by using the code. The result of the program was the illumination of those LEDs for which the switch was in the logical unit position.

References
1. Medipix_CERN http://www.jinr.ru/wp-content/uploads/2016/03/ Medipix_CERN.pdf
2. Ballabriga R., Campbell M., Llopart X. An introduction to the Medipix family ASICs // Radiation Measurements. – 2020. – Т. 136. – С. 106271.
3. Llopart X. et al. Timepix4, a large area pixel detector readout chip which can be tiled on 4 sides providing sub-200 ps timestamp binning // Journal of Instrumentation. – 2022. – Т. 17. – №. 01. – С. C01044.
4. DE1_SoC User manual http://download.terasic.com/downloads/cd-rom/de1-soc/DE1-SoC_v.5.1.3_HWrevF.revG_SystemCD.zip
5. Quartus II Handbook, V.3 https://hamblen.ece.gatech.edu/ UP3/quartusii_handbook.pdf
6. Основы разработки встраиваемых систем на ПЛИС с использованием процессора NIOS® II : учеб. пособие / Д.С. Смирнов, И.Г. Дейнека, А.С. Алейник, И.А. Шарков.. – СПб: Университет ИТМО, 2019. – 95 с.

image6.png
Description

Signal Name FPGA Pin No. I/0 Standard
LEDR([0] PIN_V16 LED [0] 3.3V
LEDR[1] PIN_W16 LED [1] 3.3V
LEDR[2] PIN_V17 LED [2] 3.3V
LEDR([3] PIN_V18 LED [3] 3.3V
LEDR[4] PIN_W17 LED [4] 3.3V
LEDR[5] PIN_W19 LED [5] 3.3V
LEDR[6] PIN_Y19 LED [6] 3.3V
LEDR[7] PIN_W20 LED [7] 3.3V
LEDR[8] PIN_W21 LED [8] 3.3V
LEDR[9] PIN_Y21 LED [9] 3.3V

image7.png
ELE]

Report not available

Report

Groups Report

s =
v I Early Pin Plannir A

Tasks

Top View - Wire Bond
Cyclone V - 5CSEMA5F31C6
I

@@D@ {pjelelo\v/elolola)VololaloN/olal0) %
OOA %@V @V@@gove g@V@%%%
A\

i

e e,

0000,
OVOO!

OVOOOOADODOVOS
0R00)
m@o@A@@@ﬁ

63

A
e
N,
O
geé L
9
Q!

@@@A@@
oot
@@@@%.

<O

0
=<l>®
g%%
GO
900!
®i>_

@@w

§§®@®@

W Early Pin Plar EOVAYAVAV/ANV 2
N 12 NN X XN AV
5 o e gggge@gém
) o X3
B Export Pin As VAT g0 O @ Al %@v& A
B Pin Finder. VOODAOQOOYORIOVOO0V,
- pRaRe SGDOVOO00VORDOAG
v I~ Highlight Pi
enfient Pins ~}o@§ g@m@m@m@ R g@@m
EH 1/0 Banks v
< - > E=or]
* |Named; * ~[«» | Edit[X
s
n Node Name Direction Location I/OBank VREF Group ‘itter Locatior I/O Standard ~ Reserved urrentStreng Slew Rate if
@ Clock Input 'PINﬁAF1 4 3B B3B_NO PIN_AF14 3.3-VLVTTL 16mA ..ault)
‘@ Led[9] Output PIN_Y21 5A B5A_NO PIN_Y21 3.3-VLVTTL 16mA ..ault) 1 (default)
‘@ Led[8] Output PIN_W21 5A B5A_NO PIN_W21 3.3-VLVTTL 16mA ..ault) 1 (default)
‘@ Led[7] Output PIN_W20 5A B5A_NO PIN_W20 3.3-VLVTTL 16mA ..ault) 1 (default)
‘@ Led[6] Output PIN_Y19 4A B4A_NO PIN_Y19 3.3-VLVTTL 16mA ..ault) 1 (default)
‘@ Led[5] Output PIN_W19 4A B4A_NO PIN_W19 3.3-VLVTTL 16mA ..ault) 1 (default)
‘@ Led[4] Output PIN_W17 4A B4A_NO PIN_W17 3.3-VLVTTL 16mA ..ault) 1 (default)
‘@ Led[3] Output PIN_V18 4A B4A_NO PIN_V18 3.3-VLVTTL 16mA ..ault) 1 (default)
‘@ Led[2] Output PIN_V17 4A B4A_NO PIN_V17 3.3-VLVTTL 16mA ..ault) 1 (default)
‘@ Led[1] Output PIN_W16 4A B4A_NO PIN_W16 3.3-VLVTTL 16mA ..ault) 1 (default)
‘@ Led[0] Output PIN_V16 4A B4A_NO PIN_V16 3.3-VLVTTL 16mA ..ault) 1 (default)
» Reset Input PIN_AA14 3B B3B_NO PIN_Y16 3.3-VLVTTL 16mA ..ault)
<<new node>>

image8.png
1 derive_pTT_cTocks -create base_cTocks
2 ‘(reate,('lo(k ~name Clockl -period 20.000 [get_ports {Clock}]
3

image9.jpeg
L

image10.jpeg

image11.png
1 @moduTe cnt (

2 input Clock,

3 input Reset,

1

5 output [9:0] Led

6 |);

7

8 reg [33:0] counter;

9

10 assign Led=counter[30:21];
11

12 initial

13 g begin

14 counter =0;
15 end
16
17 always @(posedge Clock or posedge Reset)
18 begin
19 if (Reset==1)

20 begin

21 counter<=0;

22 end else begin

23 counter<=counter+1'b1;
24 end

25 end

26

27 endmodule

image12.png
& Pin Planner - D:/task1/DE1_SOC_quartus - DE1_SOC_quartus

- a X
ey
=

File Edit View Processing Tools Window Help
& x Top View - WiraBond -
£ [Report 1) e Pin Legend 1)
(| Reportnotavailabie Symbol Pin Type ~
Q O userijo
¥ @ userassign..
by] Fitter assign...
p @ unbonded ..
rou Report
B po! . [] Reserved pin
Tasks nex ® DEV_OE
v I~ Early Pin Planning ® e @ DIFF_n
W Early Pin Planning.. ® DIFF_p
P Run 1/O Assignment / D) DIFF_n outp...
e v
W Export Pin Assignmen ® DIFF_p outp...
< > v
= |named!* v[&]eaiX [Fitter! pins: -
5
] Node Name Direction Location 1/OBank VREF Group ‘itter Locatior 1/OStandard ~Reserved urr *
®- Clock Input PIN_AF14 3B B3B_NO PIN_AF14 3.3-VLVTTL 161
‘@ Led[9] Output PIN_Y21 5A B5A_NO PIN_Y21 3.3-VLVTTL 161
‘@ Led[8] Output PIN_W21 5A B5A_NO PIN_W21 3.3-VLVTTL 161
‘@ Led[7] Output PIN_W20 5A B5A_NO PIN_W20 3.3-VLVTTL 161
‘@ Led[6] Output PIN_Y19 4A B4A_NO PIN_Y19 3.3-VLVTTL 161
‘@ Led[5] Output PIN_W19 4A B4A_NO PIN_W19 3.3-VLVTTL 161
‘@ Led[4] Output PIN_W17 4A B4A_NO PIN_W17 3.3-VLVTTL 161
‘@ Led[3] Output PIN_V18 4A B4A_NO PIN_V18 3.3-VLVTTL 161
‘@ Led[2] Output PIN_V17 4A B4A_NO PIN_V17 3.3-VLVTTL 161
‘@ Led[1] Output PIN_W16 4A B4A_NO PIN_W16 3.3-VLVTTL 161
‘@ Led[0] Output PIN_V16 4A B4A_NO PIN_V16 3.3-VLVTTL 161
.E - Reset Input PIN_Y16 3B B3B_NO PIN_Y16 3.3-VLVTTL 16,
2| < 2

0% 00:00:00

image13.png
S Simulation Options X

Caution: Improperly modifying these settings can cause the simulation to fail

HDL Language: @ Verilog O VHDL (The language used for the testbench and netlist)

Functional Simulation Settings Timing Simulation Settings

Testbench Generation Command (Functional Simulation):

Netlist Generation Command (Functional Simulation):

quartus_eda --write_settings_files=off --simulation --functional=on --flatten_buses=¢

ModelSim Script (Functional Simulation):

onerror {exit -code 1} ~
vib work

vlog -work work DE1_SOC_guartus.vo
VSim -novopt -C -t 1ps -L cyclonev_ver -L altera_ver -L altera_mf_ver -L 220mode
ved file -direction DE1_SOC_quartus.msim.ved
ved add -internal DE1_SOC_quartus_vlg_vec_tst/*
ved add -internal DE1_SOC_quartus_vlg_vec_tst/i1/*
proc simTimestamp {} {

echo "Simulation time: $:now ps*

if { [string equal running [runstatus]] } {

after 2500 simTimestamp

}
3}
after 2500 simTimestamp
run -all

anir v
<

Restore Defaults| | Save Cancel

image14.png
(O Simulation Waveform Editor - D:/task1/DE1_SOC_quartus - DE1_SOC_quartus - [DE1S0.. — u]

X
File Edit View Simulaton Help [search atieracom @

hl@ 50 b ZEOE B OEE 2 OE A R

Master Time Bar: « || » | Pointer: h54.14 ns| intervat: 5414 ns| start: | | Ena: | |

valueat ||OPS 1600ns 3200ns 4800ns 6400ns 8000ns 960.0ns
Name ops s

o [cok O (AR

% Led0] BO

% Led[1] BO

% Lled2] BO

% Led[3] BO

% Lled4] BO

% Led[s] BO

% Ledl6] BO

% Lled7] BO

% Led[g] BO

% Led[o] BO

® Reset B1

% > cntin... B7z7200.. | [00090006000§0009000500¢I000000G000G0005000G00(000G 00(000000GC

< >

image15.png
Master Time Bar: |0 ps. . *» | Pointer: |192.05 ns Interval: | 192.05 ns. Start: End:
Name Value at ops 6400 ns 128 us 192 us 256 us 32us 3.84us 4.48us 512us 576 us 64us 7.04us 7.68 us 832us 8.96 us 96us
0ps. ps

5 Clock B0 I (A
$ v Led 80000000000 ¢ ¢ BO000G00H0000G00G000AOAEAA0NAANNIONANCNA00AEINOANHAGHOAC0OACHGONOCONAEN
£ Ledl9] BO
£ Ledl8] BO
£ Ledl7] BO
£ Ledl6] BO
£ Leds] BO
£ Ledl4] BO
£ Led3] BO
£ Ledl2] BO
£ Led(1] BO
ES Led0] BO

Reset B1

¥y

ntinst2|c... B 222Z777777...

image16.png

image17.png

image18.png
1 HoduTe Ted_driver (

2 input Clock,

3 input Reset,

1

5 input [9:0] Time_in,

6 output Led

7 |

8

9 Togic Ted=0;

10 Jogic [9:01 counter=0;

11

12 assign Led=Ted;

13

14 always_ff @(posedge Clock, posedge Reset)
15 gBbegin

16 @ if (Reset==1) begin

17 counter<=0;

18 end else begin

19 counter<=counter+1'b1;

20 end

21 end

22

23 always_ff @(posedge Clock, posedge Reset)
24 p@begin

25 B if (Reset==1) begin

26 Ted<=0;

27 end else begin

28 if (counter==Time_in) begin
29 Ted<=0;

30 end else begin

31 if (counter==0) led<=1;
32 else Ted<=Ted;

33 end

34 end

35 end

36

37 endmodule

38

image19.png
Emodule DE1_SOC_Isb(
//clock
input CLOCK_50,
//KEY
input [3:0] KEY,
//LED

/LI
output [9:0] LEDR,
input [9:0] sw

wire Ted;
wire reset;

reg [1:0] state;
reg [0:0] Teds;

assign LEDR=leds
assign reset= |KEV[0]

Bled_driver Ted_driver_inst(
.Clock (CLOCK_50) ,
_Reset(reset),

.Time_in(sW),
‘Led(Ted)

image20.png
=]
B

=]

=]

=]

2
=]

=]

always @(posedge CLOCK_50, posedge reset)
begin
if (reset==1) begin
state<=0
end else begin
if (KEY[3 70) beg1n
state<:
end else beg1n
if (Kev[2]
state<=2'b10
end else begin
if (KEY[1]==0) begin
state<=2'b01;
end else begin
state<=state;
end
end
end
end
end

always @(posedge CLOCK_50, posedge reset)
begin
if (reset==1) begin
Teds<=0;
end else begin
case(state)
2'b11:Teds<={10{led}};
2'b10 Teds<=SW;
2'b01:]eds<=~SW;
2'b00:Teds<=0;
endcase
end
end

endmodule

image21.png
Node Name

& [CLOCK 50
®- KEY[3]

% LEDR[9]
% LEDR[8]
% LEDR[7]
% LEDR[6]
% LEDR[5]
% LEDR[4]
% LEDR[3]
% LEDR[2]
% LEDR[1]
% LEDR[O]
»- SW[9]
»- Sws]
»- SW[7]
»- SW[6]
®- SW[5]
B SW[4]
®- SW[3]
»- SW[2]
»- SW[1]
- SW[0]

Direction
Input
Input
Input
Input
Input
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input

Location

PIN_AF14.
PIN_Y16
PIN_W15
PIN_AA1S
PIN_AA14.
PIN_Y21
PIN_w21
PIN_W20
PIN_Y19
PIN_W19
PIN_W17
PIN_V18
PIN_V17
PIN_W16
PIN_V16
PIN_AET2
PIN_AD10
PIN_ACO
PIN_AET1
PIN_AD12
PIN_AD11
PIN_AF10
PIN_AFQ
PIN_ACT2
PIN_AB12

1/0 Bank

LYEYEYRYEIEIEIEIYISEYY

W w
> >

VREF Group

B3B_NO
B3B_NO
B3B_NO
B3B_NO
B3B_NO
B5A_NO
B5A_NO
B5A_NO
B4A_NO
B4A_NO
B4A_NO
B4A_NO
B4A_NO
B4A_NO
B4A_NO
B3A_NO
B3A_NO
B3A_NO
B3A_NO
B3A_NO
B3A_NO
B3A_NO
B3A_NO
B3A_NO
B3A_NO

“itter Locatior 1/0 Standard

PIN_AF14.
PIN_Y16
PIN_W15
PIN_AA1S
PIN_AA14.
PIN_Y21
PIN_w21
PIN_W20
PIN_Y19
PIN_W19
PIN_W17
PIN_V18
PIN_V17
PIN_W16
PIN_V16
PIN_AET2
PIN_AD10
PIN_ACO
PIN_AET1
PIN_AD12
PIN_AD11
PIN_AF10
PIN_AFQ
PIN_ACT2
PIN_AB12

33-VLVTTL
33-VLVTTL
33-VLVTTL

33-VLVTTL
33-VLVTTL
33-VLVTTL
33-VLVTTL
33-VLVTTL
33-VLVTTL
33-VLVTTL
33-VLVTTL
33-VLVTTL
33-VLVTTL

33-VLVTTL
33-VLVTTL
33-VLVTTL
33-VLVTTL
33-VLVTTL
33-VLVTTL

Reserved

Jrrent Streng'

16mA .ault)
16mA .ault)
16mA .ault)
16mA .ault)
16mA .ault)
16mA .ault)
16mA .ault)
16mA .ault)
16mA .ault)
16mA .ault)
16mA .ault)
16mA .ault)
16mA .ault)
16mA .ault)
16mA .ault)
16mA .ault)
16mA .ault)
16mA
16mA ...
16mA ...
16mA ...
16mA ...
16mA
16mA ...
16mA..

image22.png
FESoo~ounswnH|

[y

clock
create_clock -period 20.000 [get_ports_{CLOCK_50}]

#for enchancing USB BlasterII to be reliable

create_clock_-name_{altera_reserved_tck} -period 40 {altera_reserved_tck}
set_input_delay ~clock altera_reserved_tck —fall 3 [get_ports altera_reserved_tdil
set_input_delay ~clock { altera_reserved_tck } —fall 3 [get_ports altera_reserved_tms]
set_output_delay —clock { altera_reserved_tck } 3 [get_ports altera_reserved_tdo]
#create generated clock

derive_p11_clocks -create_base_clocks

#set clock uncertainly

[erive_clock_uncertainty

image23.png
& Programmer - Dy/task2/DE1_SOC_Isb - DE1_SOC_Isb - [DE1_SOC_Isb.cdf]

File Edit View Processing Tools Window Help

[m} X

Search altera.com

& Hardware Setup... |DE-SoC [USB-1] Mode: |JTAG

[Enable real-time ISP to allow background programming when available

g]

st File Device
= stop <none> SOCVHPS 00000000 <none>
3 Auto Deted | |OUTPULFiles/DET... SCSEMASF31 OOAFEFEO 00AFEFBO
X Delete

M Add File..| | |¢

Configure

Checksum Usercode Program/ Verify Blank- Examine

Check

** Change File
& save File
o
“ Add Device
thup
socvies SCSEMASF31
1'% pown « Too

image24.jpeg

image25.jpeg
LEORs LEORS LRI LEDR2 LEDRI
. ls ([») (o)

image26.jpeg
DR E PR >
cue|
SoRAM o)

el

" LC1PS_DORI
2 My~
T 13l ‘

CEl 0 ‘ ¥ Download DE1-SoC CD from JS
& &8 A& [| 1 7ht‘tp://t?fl-del-soc.terasic.com ‘_g

jejele]:

(T3 Rhs SREY ~KEYI™T

image27.jpeg

image28.jpeg
Y cnz(ﬁ
(L=

oL

veczps =

Le“ﬁ“ LEDR Lz LEDRI //cd_(

image29.jpeg
LLLLALLLLELLILLLS
'SDRAM.

c||z|r.
¢

LEDRe LEDRS

image30.jpeg
R LEBRe RS LM LB
7 S -

image31.jpeg

image32.png
KEY[3.0]
state-13

ledsio.0]

ho

cLoCK 50>

sw.o

led_diveried_driver_nst

seus

¥

oaras |

Leorp 0]
1ong)

image33.png

image34.png

image35.jpeg
}-

o LLIMNINRIRRRARERRRRRRRLLLLE

5 'mlmaslc

m

AR ST

image36.png
log: Trig @ 2022/10/17 16:03:32 (0:0:2.0 elaps

[Typel

[Atias|

070 0 (B (070 000 0707 070 0" [WE 0™ &5

O 00 070 [0 [0 0 W

Name
driver_inst|counter{9.0]
driverled_driver_inst|Reset
= LEDR[9.0]

LEDR[9]

LEDR[8]

LEDR[7]

LEDR[6]

LEDR[5]

LEDR[4]

LEDR[3]

LEDR[2]

LEDR[1]

LEDR[0]
= KEY[3.0]

KEY[3]

KEY[2]

KEY[1]

KEY[0]
= Sw[9.0]

sw[o]

swig]

sw(7]

Swie]

Sw[5]

sw[4]

Sw[3]

sw(2]

sw[1]

sw[o]

I
2 i@ 1 1 20 2 2 2% 2 3
E 2 .9
[0 5 ¢ 3 2

000

&

i

—
Temn

image37.png
1 gmodule cnt(

2 input Clock,
3 input Reset,

4) output [33:0] Led

5 H

6 reg[33:0] counters|

7 assign Led = counter;

8

9 initial

10 © begin

11 counter=0;

12 end

13

14 always @(posedge Clock or posedge Reset)
15 8 begin

16 | if (Reset==1)

17 8 begin

18 counter <=0;

19 end else begin

20 counter <=counter+1'b1;
21 end

22 end

23 endmodule

image38.png
it

i
Gigck g . Lo
refclk autclk {17 Cloct Ledi33 e g E R
o o Rese
i
Reset [t m’%o i inst;
insts
Lo
Sys probe
probe
hafz2 0]
orone
source
source
inst svs prope

image39.png
& Pin Planner - D:/task 3/DE1_SoC_quartus - DE1_SoC_quartus

- a X
ey
=

File Edit View Processing Tools Window Help
N Tepm-viee o "
g Report L) i Pin Legend]
(| Reportnotavailabie . Symbol Pin Type ~
-3 3 O
¥ : °
) :] Fitter assign...
[Groups | Report f @ Unbonded ...
E Reserved pin
[Tasks me = b4 P
- - 5 ® Dev_oE
I~ Early Pin Planning A i
o \ DIFF_n
W Early Pin Planning.. 2 -
B nn tin Aerimnmnns E DIFF_p.
22 [DIFE n outo. v
Namedi * v[&]eaiX [Fitter! pins:at -
Node Name Direction Location 1/0 Bank VREF Group 1/O Standard ~ Reserved JrrentStreng Slew Ral
ed_tck Input 3.3-V LVTTL 16mA ..ault)
.rved_tdi Input 3.3-V LVTTL 16mA ..ault)
% altera_..ved_tdo Output 33-VLVTTL 16mA ..ault) 1 (defaul]
- red_tms Input 3.3-VLVTTL 16mA ..ault)
®- Clock Input PIN_AF14 3B B3B_NO 3.3-VLVTTL 16mA ..ault)
‘@ Led[33] Output PIN_Y21 5A B5A_NO 3.3-VLVTTL 16mA ..ault) 1 (default
‘@ Led[32] Output PIN_W21 5A B5A_NO 3.3-VLVTTL 16mA ..ault) 1 (default
‘@ Led[31] Output PIN_W20 5A B5A_NO 3.3-VLVTTL 16mA ..ault) 1 (default
‘@ Led[30] Output PIN_Y19 4A B4A_NO 3.3-VLVTTL 16mA ..ault) 1 (default
‘@ Led[29] Output PIN_W19 4A B4A_NO 3.3-VLVTTL 16mA ..ault) 1 (default
‘@ Led[28] Output PIN_W17 4A B4A_NO 3.3-VLVTTL 16mA ..ault) 1 (default
‘@ Led[27] Output PIN_V18 4A B4A_NO 3.3-VLVTTL 16mA ..ault) 1 (default
‘@ Led[26] Output PIN_V17 4A B4A_NO 3.3-VLVTTL 16mA ..ault) 1 (default
‘@ Led[25] Output PIN_W16 4A B4A_NO 3.3-VLVTTL 16mA ..ault) 1 (default
‘@ Led[24] Output PIN_V16 4A B4A_NO 3.3-VLVTTL 16mA ..ault) 1 (default
- Reset Input PIN_AA14 3B B3B_NO 3.3-VLVTTL 16mA ..ault)
<<new node>>

image40.png
Instance Manager: [EC

Ready to acquire

@ = JTAG Chain Configuration: | JTAG ready x

Probe read interval Event log Hardware: | DE-SoC [USB-1] Tl sews
Current interval: 0 samples per second Maximum size: 2K > Device: R RRRIREIECEY (Bl
© Automatic Save data to eventlog me I L
O Manual 1 s X -
Write source data: Continuously ¥
Index Instance ID Status Sources: 1 Probes: 34 Name
[Not running 34
o (-1 minute) Wed Oct 12 16:04:43 2022 722 ~
Index Type _Alias Name _ Data 2048, -1920 -1792 -1664 -1536 -1408 -1280 -1152 -1024 -896 768 | -640 532 -384 -256 -128 [}
P37 ¥ probe[31] 0
P30 ¥ probe[30] 1 _ I
P29 ¥y probe[20] 0 I .
P28 ¥z probe{28] 1 1T] I 1] 1]
P27 ¥ probe[27] 1 1 | | 1 | 1 | 1 | 1 | 1 | 1 |
P26 ¥y probe[26] o I I I e | 1 L
P25 ¥y probe[25] [| 1071 1
P24 ¥ probe[24] o NN n
P23 ¥ probe[23] 1 A
P22 ¥y probe[22] 1
P21 ¥ probel21] o [N RROLMATHGAT I T
P20 ¥y probel20] LI
P19 ¥y probe[19] o
P18 ¥y probe[18] o
P17 ¥y probe[17] o I | N
Pi6 ¥ probel16] I 811t T A8 A0 O O o A
P15 ¥ probel15] R O R A T AT A e e T o e Yo L R e i
P14 ¥y probe[14] o
P13 ¥y probe[13] 1
P12 ¥y probe[12] o
P11 ¥y probe[11] o
P10 ¥y probe[10] 1
P ¥ probe[o] o
P ¥r probels] [T S
P ¥r probel7] 1 I e O A
P ¥ probe[6] 1
P5 ¥ probe[5] 1
P4 ¥z probe[4]) (UM
P3 ¥z probe[3] 1 OGN
P2 ¥z probe[2] o M .
L i

image41.png
E - E]
Index Type _ Alias Name Data 8 7 ad il £ 3 2
P27 ¥ probe[27] o
P26 ¥ probe[26] o
P25 ¥y probe[25] o
P24 ¥y probe[24] o
P23 ¥y probe[23] o
P22 ¥y probe[22] o
P21 ¥y probe[21] o
P20 ¥ probe[20] o
P19 ¥y probe[19] o
P18 ¥y probe[18] o
P17 ¥ probe[17] o
P16 ¥ probe[16] o
P15 ¥y probe[15] o
P14 ¥y probe[14] o
P13 ¥y probe[13] o
P12 ¥y probe[12] o
P11 ¥y probe[11] o
P10 ¥ probe[10] o
P ¥ probe[o] o
ps ¥ probe[s] o
P7 ¥z probe[7] o
P ¥ probe[6] o
P5 ¥y probe[5] o
P4 ¥y probe[4] o
P3 ¥y probe[3] o
P2 ¥y probe[2] o
P ¥ probe[1] o
PO ¥y probe[0] [=
SI0] =4 & source[0.0] o
S0 - source[0] 0

image42.png
2o (-5 minutes) Mon Oct 17 12:18:19 2022 -436

Index Type Alias Name Data 2048, -1920 -1792 -1664 -1336 -1408 -1280 -1152 -1024 -806 -768 -640 -512 -384 -256 -128 0
’[33.0] ¥ probe[33.0] 6857467107
P33 ¥y probe[33] o
P32 ¥y probe[32] o
P31 ¥y probe[31] 0
P30 ¥y probe[30] 1
P29 ¥y probe[29] 1
P28 ¥y probe[28] o
P27 ¥y probe[27] o
P26 ¥y probe[26] 1
P25 ¥y probe[25] o
P24 ¥y probe[24] 1
P23 ¥y probe[23] 1
P22 ¥y probe[22] 1
P21 ¥y probe[21] 1
P20 ¥y probe[20] 1
P19 ¥y probe[19] o
P18 ¥y probe[18] 1
P17 ¥i probe[17] 1
P16 ¥y probe[16] 1
P15 ¥y probe[15] 1
P14 ¥y probe[14] o
P13 ¥y probe[13] 1
P12 ¥y probe[12] 1
P11 ¥y probe[11] o
Pl0 ¥ probe[10] o

image43.png
log Trig @ 2022/10/13 10:24:49 (0:0:56.2 elaf

[Typel
%

[Atias|

e

%
%

e
e

%
%

e
e

%
%

e
e

%
%

e
e

%
%

e
e

%
%

e
e

%
%

e
e

%

Name
cntinst2|counter[22]
cntinst2|counter[21]
cntinst2|counter[20]
cntinst2|counter[19]
cntinst2|counter[18]
cntinst2|counter(17]
cntinst2|counter[16]
cntinst2|counter[15]
cntinst2|counter[14]
cntinst2|counter[13]
cntinst2|counter[12]
cntinst2|counter[11]
cntinst2|counter[10]
cntinst2|counter(o]
cntinst2|counter(s]
cntinst2|counter(7]
cntinst2|counter(6]
cntinst2|counter(s]
cntinst2|counter(4]
cntinst2|counter(3]
cntinst2|counter(2]
cntinst2|counter(1]
cntinst2|counter(o]

inst2|Reset

I B R R B T B (P R R R PR L R R R R L R e VR S S R B P B L DI RGO

|

image44.png
log Trig @ 2022/10/13 14:57:37 (0:02.6 elaps 4=

=

[Type]atias| Name [11vawe12]2

[=

cntinst2|counter(33.0]

cntinst2|Reset

058993C24n

05A993C00n

0000000000

0000000010

0000000020

0000000030

0000000040

000000005h

image45.png
log Trig @ 2022/10/13 10:24:49 (0:0:56.2 elaf

[Typel
%

[Atias|

e

%
%

e
e

%
%

e
e

%
%

e
e

%
%

e
e

%
%

e
e

%
%

e
e

%
%

e
e

%

Name
cntinst2|counter[22]
cntinst2|counter[21]
cntinst2|counter[20]
cntinst2|counter[19]
cntinst2|counter[18]
cntinst2|counter(17]
cntinst2|counter[16]
cntinst2|counter[15]
cntinst2|counter[14]
cntinst2|counter[13]
cntinst2|counter[12]
cntinst2|counter[11]
cntinst2|counter[10]
cntinst2|counter(o]
cntinst2|counter(s]
cntinst2|counter(7]
cntinst2|counter(6]
cntinst2|counter(s]
cntinst2|counter(4]
cntinst2|counter(3]
cntinst2|counter(2]
cntinst2|counter(1]
cntinst2|counter(o]

inst2|Reset

I B R R B T B (P R R R PR L R R R R L R e VR S S R B P B L DI RGO

|

image1.png

image46.png
log Trig @ 2022/10/13 14:57:37 (0:02.6 elaps 4=

=

[Type]atias| Name [11vawe12]2

[=

cntinst2|counter(33.0]

cntinst2|Reset

058993C24n

05A993C00n

0000000000

0000000010

0000000020

0000000030

0000000040

000000005h

image47.png
Lock mode: | " Allow all changes

[Data Enabe] Trigger Enable Trigger Conditions
1[4 Basic AND S
001234567h

& cntinst2|counter(33.0]
cntinst2|counter(33]
cntinst2|counter(32]
cntinst2|counter(31]
cntinst2|counter[30]
cntinst2|counter(29]
cntinst2|counter(28]
cntinst2|counter(27]
cntinst2|counter[26]
cntinst2|counter(25]
cntinst2|counter(24]
cntinst2|counter(23]
cntinst2|counter(22]
cntinst2|counter(21]
cntinst2|counter[20]
cntinst2|counter[19]
cntinst2|counter[18]
cntinst2|counter[17]
cntinstz|counter[16]
cntinst2|counter[15]
cntinst2|counter[14]
cntinst2|counter[13]
cntinst2|counter(12]
cntinst2|counter[11]
cntinst2|counter[10]
cntinst2|counter(o]
cntinst2|counter(8]
cntinst2|counter(7]
cntinst2|counter(6]
cntinst2|counter{5]
cntinst2|counter{4]
cntinst2|counter{3]
cntinst2|counter(2]
cntinst2|counter{1]
cntinst2|counter(0]

cntinst2|Reset

e e R

B =1=1=1le lo =1 =1l |=1lle |=l]le o lo =1le |=1|=l|lelo lo =l]e lo|=l|lelo o lo oo lo|lo o

orforfoefoe oo o= fofo oo oo o fo oo

image48.png
log: Trig @ 2022/10/14 14:46:55 (0:07.1 elaps = |

[Type[Atias] Name

%@ | | cntinst2|counter[18]
% | | cntinst2|counter(17]
%@ | | cntinst2|counter[16]
%@ | | cntinst2|counter(15]
% | | cntinst2|counter[14]
%@ | | - cntinst2|counter[13]
%@ | | - cntinst2|counter[12]
% | | cntinst2|counter(11]
%@ | | cntinst2|counter[10]
%@ | | cntinst2|counter(9]
% | | cntinst2|counter(s]
%@ | | cntinst2|counter[7]
%@ | | cntinst2|counter(6]
% | | cntinst2|counter(s]
%@ | | cntinst2|counter(4]
%@ | | cntinst2|counter(3]
% | | cntinst2|counter 2]
%@ | | cntinst2|counter1]
Py cntinst2|counter[0]

cntinst2|Reset

Jo vawe 1[5, 16 24 32 LD 45 55 64 iz B0 B8 20 05
o
<
T
o
<
o
o
o
<
o
<
o
T —
1
o - o o . I
o |J 1
7 1 1
KON N oy Ty Ny o Y oy o N oy o Yy oy Yy Yy Yy Yy Yy Yy Yy Yy Y oy Yy oy oy oy oy 0 oy
T L L L L L L A A L L A A L A L P P P L L L L UL L L L L L L L L AL L L L L L L L L AL L LT
0

image49.png
2 Platform Designer - unsaved.qsys* (D\taskd\unsaved.qsys)
File Edit System Generate View Tools Help

[P cieg | s
Y x| &
Project
 New Component...
System
Library
Basic Functions
oS
Interface Protocols
Low Power
Memory Interfaces and Controllers
Processors and Peripherals
Qs Iterconnect
Tri-State Components
University Program

New... | | Edit.. * Add...

(TS etem Contents | 50| Address Map 5| Interconnect Requirements 53 =)

1 [4] M system: unsaved

* use con. Description Export Clock Base End RQ Tags Opcode Name
o (Clock Source

X IClock Tnput ok exported

= clk_in_reset Reset Input reset

= dk (Clock Output ck_0

N clk_reset Reset Output

x

A it ¥ ¥ current filter:

Type Path Message

0 Errors, 0 Warnings.

L BBeavTe 34eCh TeKCT 415 Noncka

Generate HDL... | | Finish

956
3 € dx PYC B,

20.102022

image50.png
m 2
: sdram _Path: new_sdram_controller_0

SDRAM Controller Intel FPGA IP

altera_avalon_new_sdram_controller

-dol® =
: sdram _ Path: new_sdram_controller_0

Details

SDRAM Controller Intel FPGA IP

altera_avalon_new_sdram_controller

Details

Memory Profile Timing

- Data width

Bits: 16 v

[Architecture

Chip select: [1
Banks: (g

- Address Width

Row: 13

Column: [19

[* Generic Memory model (simulation only)

[[] nclude a functional memory model in the system testbench

Memory Size = 64 MBytes
33554432 x 16
512 MBits

Memory Profile Timing
CAS latency cycles::

Tnitialization refresh cycles:
Issue one refresh command every:

Delay after powerup, before initialzation:
Duration of refresh command (t_rfc):

Duration of precharge command (t_rp):
ACTIVE to READ or WRITE delay (t_rcd):
Access time (t_ac):

Write recovery time (t_wr, no auto precharge):

O1
02
@3

7.8125

100.0

700

15.0

15.0

54

14.0

-do

22 RaRER

image51.png
L] 2
: sdram _Path: pil_0

PLL Intel FPGA IP
atera_pll

-do

Details

General | Clock Switchover Cascading MIF Streaming Settings Advanced Parameters

Device Speed Grade: A
PLL Mode: Tnteger-NPLL v
Reference Clock Frequency: 50,0 Mz
‘Operation Mode: direct. v
Enable locked output port
[] Enable physical output clock parameters.
[~ Output Clocks
Number Of Clocks: 2w
~ outcko
Desired Frequendy: [100.0 MHz

Actual Frequency: 100.000000 Mtz

Phase Shift units: ps v

Phase Shift: o =

Actual Phase Shift: [0ps v

Duty Cycle: 50 %
~ outcki

Desired Frequendy: [100.0 MHz

Actual Frequency:
Phase Shift units:
Phase Shift:
‘Actual Phase Shift:
Duty Cydle:

Copy.

s~
3000
3000 ps v
50

image52.png
Use Connections Name Export Clock Base
ck
= L Reset Input reset
dk (Clock Output ldk 0
clk_reset Reset Output
© new_sdram_cont... SDRAM Controller Intel FPGA P
— (Clock Tnput pll_0_out...
| reset Reset Input [kl
s s |Avalon Memory Mapped Slave [kl 0x0000_0000
wire (Conduit isdram
51 master_0 [ITAG to Avalon Master ridge
+—— (Clock Input pl_0_out...
——| dk_reset Reset Input
| master |Avalon Memory Mapped Master k]
master_reset Reset Output
8 plLo PLL Intel FPGA TP
| refck (Clock Tnput ck_0
| reset Reset Input
—— outcko \Clock Output pll_0_outc...
o outckt \Clock Output 'sdram_clock pll_0_outc...
locked (Conduit locked

image53.png
Bmodule DE1_SOC_sdram(
//clock

input CLOCK_50,
//SDRAM
output
output
output
output
output
output

DRAM_CAS_N,
DRAM_CKE,
DRAM_CLK,
DRAM_CS_N,

output DRAM_LDQM,
output DRAM_RAS_N,
output DRAM_UDQM,
output DRAM_WE_N,
//key

input [3:0] KEY,
//ed

/e
output [9:0] LEDR

wire reset;
wire locked;

//structural coding

inout [15:0] DRAM_DQ,

[12:0] DRAM_ADDR,
[1:0]1 DRAM_BA,

assign LEDR={10{1 o(ked}}

assign reset=(&KEY);

sdram_sdram_inst(
“clk_c
.reset_reset_n
"sdram_addr
Isdram_ba
Isdram_cas_n
“sdram_cke
Isdram_cs_n
Isdram_dq
“sdram_dqm
Isdram_ras_n
Isdram_we_n
“Tocked_export

), -sdranclock-c1k

endmodule

(CLOCK_50),
(reset),
(DRAM_ADDR) ,
(DRAM_BA) ,
(SDRAM_CAS_N) ,
(DRAM_CKE) ,
(DRAM_CS_N) ,
(DRAM_DQ) ,
({DRAM_UDQM, DRAM_LDQM}),
(DRAM_RAS_N) ,
(DRAM_WE_N) ,
(Tocked)
(DRAM_CLK)

image54.png
& Instantiation Template X
You can copy the example HDL below to declare an instance of sdram.

HDL Language: |Verilog

Example HOL
sdram w0 (
-clk_clk (<connected-to-clk_cli>) " clk.clk
-locked_export (<comnected-to-locked export>), // locked. export]
.reset_resetn (<comnected-to-reset_resetn>), // zeset. resec |
-sdram_adde (<connected~to-adram_addr>), " sdran. addr
.sdram_ba (<connected-to-sdram_ba>), " ba
.sdramcasn (<comnected-to-siram casm>), // .casn
-sdram_cke (<connected-to-sdram_cke>), " Lcke
.sdram_ca_n (<connected~to-sdran_cs_n>), " csn
-sdram_dq (<connected-to-sdram_da>), " -aq
-sdran_daqn (<connected-to-sdram_dqm>), " -aqm
.sdremrasn (<comnected-to-siram rasm>), // rasn
.sdram_ve_n (<connected~to-sdran_we_n>), " wen
-sdram_clock clk (<connected-to-sdram_clock clk>) // sdram clock.clk
02
< >

copy || dlose

image55.png
fcreate_cTock -period 20.000 [get_ports CLOCK_50T
create_clock -period "100 MHz" -name clk_dram [get_ports DRAM_CLK]

create_clock_-name_{altera_reserved_tck} -period 40 {altera_reserved_tck}
set_input_delay ~clock altera_reserved_tck —fall 3 [get_ports altera_reserved tdi]
set_input_delay ~clock altera_reserved_tck —fall 3 [get_ports altera_reserved_tms]
set_output_delay —clock altera_reserved_tck 3 [get_ports altera_reserved_tdo]

derive_p11_clocks -create_base_clocks
derive_clock_uncertainty

#set _input delay (board delay (data)+propagation delay-board delay(clock))
set_input_delay ~clock { clk_dram } -max -0.048 [get ports DRAM_DQ*]
set_input_delay ~clock { clk_dram } -min -0.05/ [get_ports DRAM_DQ*]

#set output delay

#max: board delay (data) - board delay (clock) + tsu (external device)
#min: board delay (data) - board delay (clock) -th (external device)
set_output_delay -clock { clk_dram } -max 1.452 [get_ports DRAM_DQ*]
set_output_delay -clock { clk_dram } -min -0.857 [get_ports DRAM_DQ*]
set_output_delay -clock { clk_c } -max 1.531 [get_ports DRAM_ADDR¥]
set_output_delay -clock { clk_c } -min -0.805 [get_ports DRAM_ADDR¥]
set_output_delay -clock { clk_c } -max 1.533 [get_ports DRAM_*DQM]
set_output_delay -clock { clk_c } -min -0.805 [get_ports DRAM_*DQM]
set_output_delay -clock { clk_c } -max 1.510 [get_ports DRAM_BA*]
set_output_delay -clock { clk_c } -min -0.800 [get_ports DRAM_BA*]
set_output_delay -clock { clk_dram } -max 1.520 [get_ports DRAM_RAS_N]
set_output_delay -clock { clk_dram } -min -0.780 [get_ports DRAM_RAS_N]
set_output_delay -clock { clk_c } -max 1.500 [get_ports DRAM_CAS_N]
set_output_delay -clock { clk_c } -min -0.800 [get_ports DRAM_CAS_N]
set_output_delay -clock { clk_c } -max 1.545 [get_ports DRAM_WE_N]
set_output_delay -clock { clk_c } -min -0.755 [get_ports DRAM_WE_N]
set_output_delay -clock { clk_c } -max 1.496 [get_ports DRAM_CKE]
set_output_delay -clock { clk_c } -min -0.804 [get_ports DRAM_CKE]
set_output_delay -clock { clk_c } -max 1.508 [get_ports DRAM_CS_N]
set_output_delay -clock { clk_c } -min -0.792 [get_ports DRAM_CS_N]

image2.png
) Hardware Setup

Hardware Settings JTAG Settings.

Select a programming hardware setup to use when programming devices. This programming

hardware setup applies only to the current programmer window.

Currently selected hardware: |No Hardware

Hardware frequency:

Available hardware items

Hardware Server Port

Add Hardware...

Remove Hardware.

Close

image56.png
Signal Name FPGA Pin No. /0 Standard
DRAM_ADDR[0] PIN_AK14 SDRAM Address[0] 33V
DRAM_ADDR[1] PIN_AH14 SDRAM Address[1] 33V
DRAM_ADDR[2] PIN_AG15 SDRAM Address[2] 33V
DRAM_ADDR[3] PIN_AE14 SDRAM Address[3] 33V
DRAM_ADDR[4] PIN_AB15 SDRAM Address[4] 33V
DRAM_ADDR[5] PIN_AC14 SDRAM Address[5] 33V
DRAM_ADDR[6] PIN_AD14 SDRAM Address[6] 33V
DRAM_ADDR[7] PIN_AF15 SDRAM Address[7] 33V
DRAM_ADDR[8] PIN_AH15 SDRAM Address[8] 33V
DRAM_ADDR[9] PIN_AG13 SDRAM Address[9] 33V
DDRAM_ADDR[10] PIN_AG12 SDRAM Address[10] 33V
DDRAM_ADDR[11] PIN_AH13 SDRAM Address[11] 33V
DRAM_ADDR[12] PIN_AJ14 SDRAM Address|[12] 33V
DRAM_DQ[0] PIN_AK6 SDRAM Data[0] 33V
DRAM_DQ[1] PIN_AJ7 SDRAM Data[1] 33V
DRAM_DQ[2] PIN_AK7 SDRAM Data[2] 33V
DRAM_DQ[3] PIN_AKS SDRAM Dataf3] 33V
DRAM_DQ[4] PIN_AK9 'SDRAM Data[4] 33V
DRAM_DQ[5] PIN_AG10 'SDRAM Datals] 33V

image57.png
DRAM_DQ[6] PIN_AK11 'SDRAM Data[6] 3.3v
DRAM_DQ[7] PIN_AJ11 SDRAM Data[7] 33V
DRAM_DQ[8] PIN_AH10 SDRAM Datal8] 33V
DRAM_DQ[9] PIN_AJ10 SDRAM Datal9] 33V
DRAM_DQ[10] PIN_AJ9 'SDRAM Data[10] 33V
DRAM_DQ[11] PIN_AH9 SDRAM Data[11] 33V
DRAM_DQ[12] PIN_AH8 SDRAM Data[12] 33V
DRAM_DQ[13] PIN_AH7 'SDRAM Data[13] 33V
DRAM_DQ[14] PIN_AJ6 SDRAM Data[14] 33V
DRAM_DQ[15] PIN_AJS 'SDRAM Data[15] 33V
DRAM_BA[0] PIN_AF13 SDRAM Bank Address[0] 33V
DRAM_BA[1] PIN_AJ12 SDRAM Bank Address[1] 33V
DRAM_LDGM PIN_AB13 SDRAM byte Data Mask[0] 33V
DRAM_UDQM PIN_AK12 SDRAM byte Data Mask[1] 33V
DRAM_RAS_N PIN_AE13 SDRAM Row Address Strobe 33V
DRAM_CAS_N PIN_AF11 'SDRAM Column Address Strobe 33V
DRAM_CKE PIN_AK13 SDRAM Clock Enable 33V
DRAM_CLK PIN_AH12 SDRAM Clock 33V
DRAM_WE_N PIN_AA13 SDRAM Write Enable 33V
DRAM_CS_N PIN_AG11 'SDRAM Chip Select 3.3V

image58.png
Signal Name FPGA Pin No. Description 1/0 Standard
LEDR[0] PIN_V16 LED [0] 33v
LEDR[1] PIN_W16 LED [1] 33v
LEDR[2] PIN_V17 LED [2] 33v
LEDR[3] PIN_V18 LED [3] 33v
LEDR[4] PIN_W17 LED [4] 33v
LEDR(5] PIN_W19 LED [5] 33v
LEDR(6] PIN_Y19 LED [6] 33v
LEDR[7] PIN_W20 LED [7] 33v
LEDR(8] PIN_W21 LED [8] 33v
LEDR([9] PIN_Y21 LED [9] 33v

image59.png
% b pooscer oun
| DaavAdoRcn) cur
|5 omav_anoecor ovn

|3 poavanorsl” cuns
|5 mavpnomt) own
S poavtaooRc) cuns
|5 pnomt) own
S paavanoes] cuns
|5 avanomi) own
S oot anoe] cun
|5 omav_aoomia) own
% peavianoRc] cun
|5 omav_soomol own
S oot oun
(% o) oun
S pecis oun
[Sommice o
[pcx oun
[Sommicn o
% oeavioas
2 oo oata s
|2 oeavioacts e
2 oo oat) s
|2 oeavioac
2 oo oato) s
|2 oeavivan’ ar
% oo oa) s
|2 oeaviva
S oo oat) s
|2 oeavivas)
S oo oa) s
|2 oeavioa) ar
S oo oa) s
|2 oeavioacs
S oo oa0) s
[peaioon own
(% e o
|% e oun
(% omanven o
£ ey o
=) o
& ren ou.
=) o
Gl o
Sl o
Buom oww
Sima oww
o oww
Slea o
Bl o
[Sien o
s oww
Sl o
£ s vt ot

[St e oo

0 Bank

BESESSSYN B EEE s EEEE A A A EEEEEEEEEEEEEEEEEEEEEEEEES

VAEF Group e Lot 0 Sandard

=
=
=
o

o
=5
&=
o+
Ao

s
e
e

i
i

1
oy
oo
Joy
oo
oy
Tt
Joeeniy
Tt
Joety
Tt
Joey
Tt
Jory
Jorenty
oy

fory
foy

fosy
it

oy
it
it
St

prowy
ey

e

ey

image60.png
et
set

set
set

set
set

master_path [lindex [get_service_paths master] O]
claim_path [claim_service "master” $master_path mylib]

data0 0
datal 1

addr 0
il

Bwhile {Sdatal<OxffFFFfff} {

set

master_write_32 Sclaim path Saddr Sdatal
puts _[format "the %u Fibonachi is %u" i $datall
set i [expr Si+1]

set dataz [expr Sdata0+Sdatall

set data0 Sdatal

set datal Sdata?

et addr fexpr Sadires]

addr_end [expr Saddr-4]

puts [format "the naximum address is %u" Saddr_end]

set
set
set
set
set

addr 0
test 1
data0 0
datal 1
data2 0

Bwhile {Saddr<Saddr_end} {

=]

}

set data [master_read_32 Sclaim_path Saddr 1]
set addr [expr Saddr+4]
if {Sdatall=Sdata} {

set test 0

1

set data2 [expr $data0+Sdatal]
set data0 Sdatal

set datal Sdata2

2if {Stest==1} {

puts "test is succesful”

} else {

puts "test is unsuccesful"

close_service master Sclaim_path

image61.PNG
% source DE1_SoC_sdram_test.tcl
the 1 Fibonachi is 1
the 2 Fibonachi is 1
the 3 Fibonachi is 2
the 4 Fibonachi is 3
the 5 Fibonachi is §
the € Fibonachi is 8
the 7 Fibonachi is 13
the ¢ Fibonachi is 21
the 9 Fibonachi is 34
the 10 Fibonachi is 55
the 11 Fibonachi is 89

the 12 Fibonachi is 144
the 13 Fibonachi is 233
the 14 Fibonachi is 377
the 15 Fibonachi is €10
the 16 Fibonachi is 987
the 17 Fibonachi is 1597
the 18 Fibonachi is 2584

image62.png
Use Connections

dk
clk_reset
master
master_reset
8 plLo
reflk
reset
outclko
outckt
locked
& onchip_memory2_0|
ki
s

Reset Input
(Clock Output

Reset Output

|SDRAM Contrller Intel FPGA TP
(Clock Input

Reset Input

|Avalon Memory Mapped Slave
(Conduit

[ITAG to Avalon Master ridge
(Clock Tnput

Reset Input

|Avalon Memory Mapped Master
Reset Output

PLL Intel FPGA TP

(Clock Tnput

Reset Input

\Clock Output

\Clock Output

(Conduit

/0n-Chip Memory (RAM or ROM).
(Clock Tnput

|Avalon Memory Mapped Slave

resetl

Reset Input

Export

Ei-

'sdram

'sdram_clock

pll_0_out...
)
akl

pll_0_out...

Lelk]

clk_0

pll_0_outc..
pll_0_outc..

pll_0_out...
ekt

k1]

0x0000_0000

0x0400_0000

End

oxosze_rers

lox0400_ozrs

image63.png
% set master_path [lindex [get_service paths master] 0]
set claim path [claim service "master” S$master_path mylib]
/channels/local/mylib/master_1

% master_write_32 $claim path 0x04000000 2

% master_read 32 $claim path 0x04000000 1
0x00000002
% master_write_32 $claim path 0x0 2

% master_read 32 $claim path 0x0 1
OXFEEFFEER

image64.png
Nios II P

altera_nios2_gen2

Nios II P
altera_nios2_gen2

Main Vectors Caches and Memory Interfaces Arithmetic Instructions MMU and MPU Settings JTAG

Main Vectors Caches and Memory Interfaces Arithmetic Instructions

MMU and b

= Select an Implementation

[~ Reset Vector

Nios T Core: (@) Nios /e

O tios f
Nios II/e Nios II/f
summary |[Resource-optimized 32-bit RISC | Performance-optimized 32-bit RISC
Features [JTAG Debug JTAG Debug
ECC RAM Protection Hardware Multiply/ Divide
Instruction/Data Caches
I Tightly-Coupled Masters
ECC RAM Protection
External Interrupt Controller
shadow Register Sets
Py
My

RAM Usage 2 + Options

2+ Options

Reset vector memory:
Reset vector offset:
Reset vector:

onchip_memory2_0.s1
000000000
000008000

[~ Exception Vector

Exception vector memory:

onchip_memory2_0.s1

Exception vector offset: 000000020
Exception vector: 000008020
|~ Fast TLB Miss Exception Vector
Fast TLB Miss Exception vector memory: |jjone
Fast TLB Miss Exception vector offset: |0x00000000
Fast TLB Miss Exception vector: 000000000

image3.png
) Hardware Setup

Hardware Settings JTAG Settings.

Select a programming hardware setup to use when programming devices. This programming

hardware setup applies only to the current programmer window.

Currently selected hardware:

Hardware frequency:

Available hardware items

No Hardware

No Hardware
DE-SoC [USB-1]

Hardware
DE-SoC

Server Port
Local USB-1

Add Hardware...

Remove Hardware.

Close

image65.png
Use Connections

reset
data_master
instruction_master
irq
debug_reset_requ..
debug_mem_siave
custom_instructio...
& onchip_memory2_0|
ki
s
resett
8 switch
dk
reset
st
external_connection
B led
k.
reset
s
external_connection
B sysid_qsys_0
dk
reset
control_slave
B jtag_uvart_0
dk
reset
‘avalon_jtag_siave
i

Description
\Clock Source
(Clock Tnput
Reset Input
(Clock Output
Reset Output

Reset Input
|Avalon Memory Mapped Master
|Avalon Memory Mapped Master
[Interrupt Receiver

Reset Output

|Avalon Memory Mapped Slave
\Custom Instruction Master

/On-Chip Memory (RAM or ROM)...

(Clock Tnput
|Avalon Memory Mapped Slave
Reset Input

PIO (Parallel 1/0) Intel FPGA TP
(Clock Tnput

Reset Input

|Avalon Memory Mapped Slave
(Conduit

PIO (Parallel 1/0) Intel FPGA TP
(Clock Tnput

Reset Input

|Avalon Memory Mapped Slave
(Conduit

|System ID Peripheral Intel FPGA...

(Clock Tnput
Reset Input

|Avalon Memory Mapped Slave
ITAG UART Intel FPGA P
(Clock Tnput

Reset Input

|Avalon Memory Mapped Slave
iInterrupt Sender

Export

Ei-

Clock

lck_0

elk]
elk]
elk]
elk]
elk]
elk]

clk_0
clkt]
clki]

clk_0
elk]
elk]

clk_0
Lelk]
Lelk]

clk_0
elk]
elk]

clk_0
Lelk]
Lelk]
elk]

10 o

0x0001_0800

0x0000_8000

0x0001_1010

0x0001_1000

0x0001_1020

0x0000_0000

End

180 31,

lox0001_osrs

l0x0000_c£££

lox0001_101£

l0x0001_100%

l0x0001_1027

l0x0000_0007

image66.png
1 EpoduTe DEI_SoC_nios (

2 input CLOCK_50,

3 input [3:0] KEY,

4 output [9:0] LEDR,

5 input [9:01 sw

6 |);

7

8

9 = DE1_SoC_nios u0 (

10 .clk_clk (CLOCK_50) , /] clk.clk
11 .Tled_export (LEDR), 1/ Ted. export
12 .reset_reset_n (KEY[0]), // reset.reset_n
13) switch_export (Sw) /7 switch.export

11 5

15

16 endmodule

image67.png
&5 Pin Planner - Dy/nios/DE1_SoC_nios2.tr - DE1_SoC_nios2_tr

File Edit View Processing Tools Window Help

g [Report e x
§]| Reportnotavailable
Y
¥
pu
Groups Report
[Tasks [ma
x| ¥ I Early Pin Planning e
@ W Early Pin Planning..
! B oo Accinmnne s
3 l< >
; Named: * v |«»| Edit Input
& | Node Name Direction Location I/OBank VREF Group ‘tter Locatior I/O Standard Reserved
2| |& cock 50 Input PIN_AF14 3B B3B_NO PIN_AF14 33-VLVTTL
) & KEY[3] Input PIN_Y16 3B B3B_NO PIN_Y16 33-VLVTTL
£ & KEY[2] Input PIN_W15 3B B3B_NO PIN_W15 33-VLVTTL
3 - KEY[1] Input PIN_AA15 3B B3B_NO PIN_AA15 3.3-VLVTTL
W |® eV Input PIN_AA14 3B B3B_NO PIN_AA14 33-VLVTTL
‘@ LEDR[9] Output PIN_Y21 5A B5A_NO PIN_Y21 3.3-VLVTTL
‘& LEDR[8] Output PIN_W21 5A B5A_NO PIN_W21 3.3-VLVTTL
%% LEDR[7] oOutput PIN_W20 5A B5A_NO PIN_W20 33-VLVTTL
%% LEDR[6] Output PIN_Y19 4A B4A_NO PIN_Y19 33-VLVTTL
% LEDR[5] Output PIN_W19 4A B4A_NO PIN_W19 33-VLVTTL
% LEDR[4] Output PIN_W17 4A B4A_NO PIN_W17 33-VLVTTL
% LEDR[3] Output PIN_V18 4A B4A_NO PIN_V18 33-VLVTTL
% LEDR[2] Output PIN_V17 4A B4A_NO PIN_V17 33-VLVTTL
% LEDR[1] Output PIN_W16 4A B4A_NO PIN_W16 33-VLVTTL
% LEDR[O] oOutput PIN_V16 4A B4A_NO PIN_V16 33-VLVTTL
»- SW[9] Input PIN_AE12 3A B3A_NO PIN_AE12 3.3-VLVTTL
» SW[8] Input PIN_AD10 3A B3A_NO PIN_AD10 3.3-VLVTTL
B SW[7] Input PIN_ACO 3A B3A_NO PIN_ACO 33-VLVTTL
& Swe] Input PIN_AE11 3A B3A_NO PIN_AE11 33-VLVTTL
- SWI5] Input PIN_AD12 3A B3A_NO PIN_AD12 3.3-VLVTTL
» SW[4] Input PIN_AD11 3A B3A_NO PIN_AD11 3.3-VLVTTL
»- SWI3] Input PIN_AF10 3A B3A_NO PIN_AF10 3.3-VLVTTL
» SW[2] Input PIN_AF9 3A B3A_NO PIN_AF9 3.3-VLVTTL
» SW[1] Input PIN_AC12 3A B3A_NO PIN_AC12
= SW[0] Input PIN_AB12 3A B3A_NO PIN_AB12 3.3-VLVTTL

image68.png
& Nios Il Application and BSP from Template

Nios I Software Examples
@ Path to .sopcinfo file must not contain spaces.

Target hardware information

SOPC Information File name: | Di\task 5\DE1_SoC_niossopcinfo

CPU name:

Application project

Project name: | DE1_SoC_nios2_tr_software

jse default location

Project location:

Project template.
Templates Template description
Float2 Functionality | [Hello World prints "Hello from Nios II'to ~
Float2 GCC STDOUT.
Float2 Performance
Hello Freestanding This example runs with or without the
Hello MicroC/05-1I MicroC/OS-1i RTOS and requires an STDOUT
o | | device in your system’s hardware.
v
<Back Next > Finish Cancel

image69.PNG
& hello_world.c 52

2¢ * "Hello World" example.[]
16

17

19 #include "io.h"
19 #include "system.
20 #include <stdio.h>

21

22-void sw_get_command (alt_u32 sw_base, int*prd) {
23 *prd = TORD(sw_base, 0) & 0x000003ff;

24)

25

26-int main()

27 {

28 printf("Hello from Nios II!
25 int prd
30 unsigned long j;

31

32 while(1) {

33 for (j=0; j<50000000; j++){}

34 sw_get_command (SWITCH_BASE, &prd);
35 printf("Switches=%u\n", prd);

36 TOWR (LED_BASE, 0, prd) ;

37}

38

39 return 0;

40}

a1

image70.png
Altera Nios2 Command Shell

t@LAPTOP-DLFQGAT6: /mnt/d/task’/software/DE]_So_nios2_tr_software# cd /mnt/d/task5/software/DE1_SoC_nios2_tr_software_bsp
16: /mnt/d/taskS/software/DE1_SoC_nios2_tr_software bsp# dos2unix create-this-bsp

~/create-this-bsp —-cpu-name nios2,
: Running "nios2-bsp hal . ../../DE1_SoC_nios2_tr.sopcinfo --cpu-name nios2_gen2 0"
Inios2-bsp: Using /mnt/c/intelFPGA/19.1/nios2eds/sdk2/bin/bsp-set-defaults.tcl to set system-dependent settings.

Iios2-bsp: Updating existing BSP because ./settings.bsp exists.

Iios2-bsp: Running "nios2-bsp-update-settings.exe --settings ./settings.bsp --bsp-dir . --sopc d:/taskS/DE1_SoC_nios2_tr.sopcinfo --script c:/intelFPGA/19.1/nios2eds/sdk2/bin/bsp-set-defaults.tcl --cpu-name nio
Js2_gen2_

Updating BSP settings...

update-settings --settings ./settings.bsp --bsp-dir . --sopc d:/task5/DE1_SoC_nios2_tr.sopcinfo --script c:/intelFPGA/19.1/nios2eds/sdk2/bin/bsp-set-defaults.tcl --cpu-name nios2_gen2_O
Initializing BSP components...
roOt@LAPTOP-DLFQGAT6: /mnt/c/intelFPGA/19. T# Cd /mnt/d/tasks/sof tware/DE1_S0C_nios_tr_software
root@LAPTOP-DLFQGAT6: /mnt/d/task5/sof tware/DE1_SoC_nios2_tr_software# dos2unix create-this-app

root@LAPTOP-DLFQGAT6: /mnt/d/task5/sof tware/DE1_SoC_nios2_tr_software# ./create-this-app --cpu-name nios2_gen2 @ --no-make
[create-this-app: Running "nios2-app-generate-makefile.exe --bsp-dir ../DEL_SoC_nios2_tr_software bsp --set QUARTUS_PROJECT DI
-files hello_world.c”
INFO: nios2-app-generate-makefile --bsp-dir ../DE1_SoC_nios2_tr_software_bsp --set QUARTUS_PROJECT_DIR ../../
[INFO: Generating application makefile

INFO: Generated file "D:\task5\software\DE1_SoC_nios2_tr_software\Makefile"

JINFO: Application makefile generated

./../ --elf-name DE1_SoC_nios2_tr_software.elf --set OBIDUMP_INCLUDE_SOURCE 1 --src

elf-name DE1_SoC_nios2_tr_software.elf --set OBJDUMP_INCLUDE_SOURCE 1 --src-files hello_world.c

image71.png
= BSP Editor - settings.bsp

Fie Edt Toos Help

Main | Software Packages Drivers _ Linker St Enable File Generation Target BSP Directory.

CPUname: rios2_gen2 0
‘Operating system: _ Altera HAL
BSP target drectory:

‘SOPC Informaton fie: - Dx\taskSIDE1_SoC_rios.sopdinfo

Version: [default -

\taskSlsoftware\DE1_SoC_nios2_tr_software_bsp.

Stdout.
stderr
‘enable_small_c_lbrary
‘enable_gprof
‘enable_reduced_device_drivers
‘enable_sim_optimze
inker
-enable_exception_stack
‘exception_stack_sze.

enable_interrupt_stack
interrupt_stack_sze

[=make
‘bsp_cfiags_debug
‘bsp_cfiags_optimzation
cfiags_mgpopt:

-exception_stack_memory_region_

interrupt_stack_memory_region_n

~

max_file_descriptors:

log_port:

[] enable_exit

[] enable_dlean_exit

[] enable_runtime_stack_checking

[enable_c_plus_plus

[enable_ightweight_device_driver_api
Mo e

‘enable_sopc._sysid_check
custom_newlib_flags:

2

‘enable_instruction_related_exceptions_api

none

Information problems Processing

© Loading drvers rom ansenbl report.

(@ Finshed oading civrs flom ensenble report,
(@ Losding 85P sttings fom settngs fe.

/@ Mapped module: "nios2_gen2_0" to use the default driver version.
@ Mapped module: “tag_uart_0" to use the default driver version.
@ Mapped module: led” to use the default driver version.
/@ Mapped module: “switch” to use the defauit driver version.
/@ Mapped module: “sysid_asys_0” to use the defauit driver version.

|© Fiished loading SOPC Buider system ino fle D:\teskS\DE1_SoC_nios sopeinfo”

image72.png
325ifneq ($(CRTO),)
326APP_LDFLAGS += -msys-crt0='$(call adjust-path-mixed,$(CRTO0))'
327 endif

328ifneq ($(SYS_LIB),)

329APP_LDFLAGS += -msys-lib=hal bsp

330 endif

331

332endif # !AVOID NIOS2_GCC3_OPTIONS

image73.png
133

1344 Pre- and post- processor settings.
135BUILD_PRE_PROCESS := touch $(ELF).srec
136 BUILD_POST_PROCESS
137

image74.png
Name: | DE1_SoC_nios2_tr_software Nios Il Hardware configuration

Project M Target Connection %+ Debugger| [[] Common| / Source|

Connections.

[T osabe s 1 Consle viw

Quartus Project Fi name! < Using defaul_sopcinfo & i fles extracted from ELF >

System ID checks
nors msmaiched sysiem B
lgnore mismatched system timestamp

Processors:
Cable Device DeviceD nstanceD Name Architecture skl
Resolve Names
‘System D Propertes.
Byte Stream Devices:
Cable Device DeviceD nstanceD Name Version

image4.png
1 Emodule cnt_(
2 input clock,
3 input Reset,
4
5 output [9:0] Led
6 s
7
8 reg [33:0] counter;
9
10 assign Led = counter[33:24];
11
12 initial
13 @ begin
14 counter = 0;
15 end
16
17 always @(posedge Clock or posedge Reset)
18 g begin
19 | if (Reset == 1)
20 ©= begin
21 counter <= 0;
22 end else begin
23 counter <= counter + 1'bl;
24 end
25 end
26
27 endmodule

image75.png
sy
Expected system ID base address: 0x31028
Expectd sysem D: 02600000
Comectedsysm: 0300000

Expectd ystem tmestang: 1667210254

Comectedsysem tinestanp: 1667210258

tem ID Properties

Chose.

image76.png
[2] Problems I Tasks = Console I Nios Il Console 2 [Properties.
DE1_SoC_nies2_tr_software Nis I Harduware configuration - cabl: DE-SoC on locahost USE-1]device
Hello from Nios II!

Switches = 331

image77.png
[2] Problems I Tasks = Console I Nios Il Console 2 [Properties.
DE1_SoC_ios2_r_software Nios 1 Hardware configuraton - cabe: DE-SoC on locahost [USB-1] device D 2in
Hello from Nios II!

Suitenes = 331

image78.png
9-int main ()

10 {

11 printf ("Hello from Nios IT!\n'

12

13 int prd=0;

14 unsigned long j;

15

16 while (1) {

17 for (j=0; j<100000000; j++) {}
18 sw_get_command (SWITCH BASE, &prd);
19 printf ("Switches = %u\n", prd);
20 IOWR (LED_BASE, 0, prd);

21 }

22 return 0;

23 }

image5.png
ol it

Giogi B outelk Cloct Lede. Ledlo.0
%o I Rese

Ressl ! ing insti

inst

