
JOINT INSTITUTE FOR NUCLEAR RESEARCH

Veksler and Baldin laboratory of High Energy Physics

FINAL REPORT ON THE START PROGRAMME

Using Machine Learning for Particle Identification in MPD

Supervisor:
Dr. Artem A. Korobitsin

Student:
Tolkachev Grigorii, Russia

National Research Nuclear University MEPhI

Participation period:
August 1 - September 10

Dubna, 2022



Abstract

Currently, various tasks in particle physics can be solved using Machine Learn-
ing techniques. For instance, particle reconstruction (clustering), identification
(classification), and energy or direction measurement (regression) in calorime-
ters and tracking devices. Multivariate classification techniques are typically
used to combine the all available response off all involved detectors into vari-
ables, called particle identification classifiers. Thus, study was made of the
optimal MLP classifier selection for particle identification.
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Introduction

The diversity of the data in the field of relativistic heavy-ion collisions,
obtained by experiments at the SIS[1], AGS[2], SPS[3], RHIC[4] and LHC[5],
is already quite large and impressive. In recent years, the STAR[6] program
has produced a wealth of results to describe the bulk properties of the medium
created in Au+Au reactions for

√
SNN=7.7, 11.5, 14.6, 19.6, 27, 39, 62.4 and

200 GeV [7] by measuring several observables at mid rapidity. The Nuclotron-
base Ion Collider fAcility (NICA)[8] is a major science project realised by the
Joint Institute for Nuclear Research (JINR). Its aims to investigate phase dia-
gram of QCD matter in the region of maximum baryonic density by studying
(heavy-)ion collisions in the energy range from 2.5 to 11 GeV/nucleon.

The Multi-Purpose Detector (MPD)[9] program planned with the high
intensity NICA beams promises to provide deeper knowledge of the dynam-
ics of hadronic interactions and multiparticle production mechanisms at max-
imum baryon density, determine the nature of the phase transition between
the deconfined and hadronic matter and search for the critical point. The new
experimental program at the NICA-MPD will fill a niche in the energy scale,
which is not yet fully explored, and the results will bring about a deeper insight
into hadron dynamics and multiparticle production in the high baryon density
domain.

Particle IDentification (PID) at the MPD experiment relies on several
sub-detectors such as Time-Of-Flight (TOF) and Time Projection Chamber
(TPC). There are many technique for PID such as, the n-Sigma or the Bayesian
approach. In this paper, PID classifier based on Multilayer Perceptron (MLP)
are presented.
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Chapter 1

Introduction to the detector

1.1 The NICA accelerator complex

The NICA accelerator facility (see Fig. 1.1.1) consists of an injection, a
booster, the upgraded Nuclotron accelerator and two storage rings of a collider
[10]. The injector, which is designed and fabricated in cooperation with German

Figure 1.1.1 – A schematic view of the NICA accelerator complex.

and Russian research companies, consists of a heavy-ion source followed by a
heavy-ion linac (HILAC) and a RFQ fore-injector. The booster synchrotron
with its magnetic ring to be located inside of the existing yoke of the Dubna
Synchrophasotron will accelerate ions up to 600 MeV/nucleon energy. The
most challenging characteristics of the booster will be ultrahigh vacuum and
electron cooling. The upgraded Nuclotron should provide p, d, and heavy ion
beams with the maximum energy per nucleon of 5.8 GeV for A/Z=0.5 specie
and 4.5 GeV for 197Au nuclei. The initial luminosity is planned to be at least
1024cm−2s−1 with a relatively quick increase to at least 1025cm−2s−1. The
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design luminosity goal for NICA with all components, such as an Electron
Cooling System and the full set of RF cavities, is 1027cm−2s−1. Symmetric
collisions of heavy ions will be performed in the initial stages of the NICA
operation. Several types of ions are under consideration. These include 197Au

ions, which were used in previous and ongoing experiments at RHIC; 208Pb ions,
which were used for extensive data runs at SPS; and 209Bi ions, which are very
similar to Pb ions, but provide more reliable operation of the NICA injection
and acceleration complexes during the commissioning and first running phases.
For heavy ions, such as Au and Bi, the kinetic energy of the beam provided
by the Nuclotron will be in the range from 2.5 to 3.8 GeV per nucleon. In
the first year of operation, additional acceleration of the beams in the NICA
collider is not foreseen. Therefore the initial collision energy

√
sNN may vary

from 7 up to 9.46 GeV, with the collision energy of 9.2 GeV being preferred,
so that results can be compared with those of RHIC-STAR that collected data
at the same energy. Delivering Au + Au collisions at

√
sNN up to 11 GeV

remains the key goal of the NICA project that will be accomplished after the
initial commissioning stage of operation. NICA will also provide the beams of
polarised protons and deuterons up to centre of mass energy of 27 GeV with
luminosity of 1032cm−2s−1 . Two collider rings of about 503 m circumference
each are based on double-aperture superconductive (SC) magnets which are
designed and manufactured in JINR Laboratory. The maximum field of SC
dipole magnets is of 1.8 T. For luminosity preservation in the collider, both an
electron and stochastic cooling systems will be constructed.

1.2 Multi-Purpose Detector (MPD)

The main physics experiment at NICA is the MPD, which will be operat-
ing at the collider. In 2018 an international scientific collaboration of MPD has
been established. Currently, it is composed of 42 institutes from 12 countries,
as well as JINR as a host institution. The collaboration will be operating the
MPD apparatus, which is shown schematically in Fig. 1.2.1. Its designated po-
sition is the MPD Hall, which is located at the northern straight section of the
NICA collider. Since 2020 the building has been available for MPD activities.

The MPD is designed as a 4π spectrometer capable of detecting charged
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Figure 1.2.1 – The overall schematic of the MPD subsystems.

hadrons, electrons and photons in heavy-ion collisions at high luminosity. The
beam line is surrounded by the large gaseous Time Projection Chamber (TPC)
which is enclosed by the Time-of- Flight (TOF) barrel. The TPC is the main
tracker, and in conjunction with the TOF they will provide precise momentum
measurements and particle identification.

The Electromagnetic Calorimeter (ECal) is placed in between the TOF
and the MPD Magnet. It will be used for detection of electromagnetic showers,
and will play the central role in photon and electron measurements. In the
forward direction, the Fast Forward Detector (FFD) is located still within the
TPC barrel. It will play the role of a wake-up trigger. The Forward Hadronic
Calorimeter (FHCal) is located near the Magnet endcaps. It will serve for de-
termination of the collision centrality and the orientation of the reaction plane
for collective flow studies. The silicon-based Inner Tracker System (ITS) will
be installed close to the interaction point in the second stage of the MPD con-
struction. It will greatly enhance tracking and secondary vertex reconstruction
capabilities. The miniBeBe detector, placed between the beam pipe and the
TPC, close to the beam, is designed to aid in triggering and start time deter-
mination for the TOF. The MPD Cosmic Ray Detector (MCORD), installed
on the outside of the MPD Magnet Yoke, will measure muons, also from the
cosmic showers.

It is expected that the MPD will produce event-by-event information on
charged particle tracks coming from the primary interaction vertices, together
with identification of those particles, and information on the collision centrality.
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The MPD identification power obtained for charged hadrons with combined
mass-squared (m2) from TOF and energy loss per distance (dE/dx) from TPC.
In this paper we show results which was received using simulation from the TPC
and TOF sub-detectors.

1.2.1 Time Projection Chamber (TPC)

The TPC is the main tracking detector of the MPD central barrel. It
is designed to perform three-dimensional precise tracking of charged particles
and momentum measurements for transverse momentum pT > 50 MeV/c. The
track reconstruction is based on the drift time and R-ϕ cylindrical coordinate
measurement of the primary ionisation clusters created by a charged particle
crossing the TPC. Charged particles traversing this volume ionise the gas mix-
ture of 90%Ar+10%CH4 along helix-shaped trajectories. It covers momentum
resolution for charged particles under 3% in the transverse momentum range
0.1 ≤ pT ≤1 GeV/c. The efficient tracking at pseudorapidities up to |η| ≤
1.2. Two-track resolution of about 1 cm. Hadron and lepton identification by
dE/dx measurements made with a resolution better than 8%.

Momentum measurements in combination with dE/dx travelled by a par-
ticle measurements, dE/dx are used for flow analysis of identified particles.
dE/dx traveled by a particle through a specific material is described by the
Bethe-Bloch formula:

dE

dx
=

4π

mec2
nz2

β2

(
e2

4πε0

)2 [
ln

(
2mec

2β2

I(1 − β2)

)
− β2

]
, (1.1)

where β equals v/c, v is velocity of the particle, c is the speed of light, E is the
energy of the particle, x is the distance travelled by the particle, me is the rest
mass of the electron, n is the electron density of the target, z is the particle
charge, e is the charge of the electron, ε0 is the vacuum permittivity an I the
mean excitation potential of the target. The TPC is calibrated in order to
describe dE/dx travelled with a parameterisation of the Bethe-Bloch formula.
By combining total momentum (ptot) and dE/dx measurements the particles
can be identified (see Fig. 1.2.2).
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Figure 1.2.2 – Distribution of dE/dx as a function of ptot for e π, K, protons and
deitrons. The units of dE/dx and ptot are GeV/cm and GeV/c, respectively.

1.2.2 Time-Of-Flight (TOF)

The Time-Of-Flight (TOF) system is intended to perform particle iden-
tification for momenta up to 2 GeV/c. The gas mixture is composed of 90% of
C2H2F4, 5% of SF6 and 5% of i−C4H10. The system includes the barrel part
and two endcaps and covers the pseudorapidity interval |η| < 2. The TOF is
based on Multigap Resistive Plate Counters (mRPC) with satisfactory timing
properties and efficiency in particle fluxes up to 103cm−2s−1. The 2.5 m diam-
eter barrel of TOF has a length of 500 cm to cover the pseudorapidity region
|η| < 1.4. The basic element of TOF is a 7 cm × 62 cm mRPC built of 12 glass
plates separated by 220 µm thick spacers forming 10 equal gas gaps. All the
counters are assembled in 12 azimuthal modules providing an overall geometric
efficiency of about 95%. Two options of the signal readout geometry are still
being considered. One is a pad structure with lateral dimensions of 3 × 3.5
cm, the other makes use of 3 cm wide strips with readout from both sides of
the strips. The endcap TOF system consists of two discs situated at both sides
of the TOF barrel. The inner diameter of the discs is 40 cm, the outer one is
250 cm resulting in a pseudorapidity coverage of 1.5 < |η| < 2. TOF measure
the particle velocity relative to the speed of light in vacuum, β = v/c which
allowing the mass square m2 of the particle to be determined:

m2 = p2(1/β2 − 1), (1.2)
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By combining ptot and m2 the particles can be identified (see Fig. 1.2.3).

Figure 1.2.3 – Distribution of m2 a function of ptot for π±, K± and protons. The
units of m2 and ptot are GeV2 and GeV/c, respectively.

In this analysis particle tracks are reconstructed using global tracks, which
are tracks reconstructed using both TPC and TOF signals. Particles are also
identified by using only the TPCs signal.
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Chapter 2

Data

The simulated data used in the work were obtained by the Monte Carlo
method using the generators UrQMDv3.4[11] and underwent the entire chain of
reconstructions, on the condition of real Bi-Bi collisions of the MPD experiment
with

√
sNN=9.2 GeV.

2.1 Selection criteria

For a neural network research, as well as to compare particle identification
results, it is necessary to conduct a preliminary selection. The selection criterion
includes a restriction on the events and tracks that present in Tab. 2.1.1.

ptot |η| r nHints dca Vz
>0.1 GeV 1.5 1.25 > 15 < 5 > 10

Table 2.1.1 – selection criteria

Where ptot is total momentum of particle, η is pseudorapidity, r is sum
of squares of primary x and y vertices, nHints is the number of points at which
the tracks were restored, dca is distance of the closest approach. Selection on
momentum and pseudorapidity are associated with the acceptance and incom-
plete coverage the pseudorapidity of range in TPC detector. Other criteria were
used for quality improvements to the tracks.
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Chapter 3

Neural Network research

Nowadays, various tasks in particle physics can be solved using Machine
Learning (ML) techniques. For instance, particle reconstruction (clustering),
identification (classification), and energy or direction measurement (regression)
in calorimeters and tracking devices. In large high-energy physics experiments,
particles leave the traces in several detectors, some of which are specialised
in charged or neutral particle identification (PID). Usually a combination of
techniques among Cherenkov and transition radiations, ionisation loss, time-of-
flight measurements and calorimetry are simultaneously employed to guarantee
redundancy and a wide kinematic coverage. Multivariate classification tech-
niques are typically used to combine the all available response off all involved
detectors into variables, called PID classifiers.

3.1 Neural Network setup

There are many Neural Network including Deep Neural Network. Each
of them can be used for particle identification[12–14]. For first step of work the
simplest Neural Network was chosen Multilayer perceptron (MLP). MLP is one
of the standard method for multi-class and binary classification the evaluation
of which for PID is shown in this paper. Neural Network research was carried
out using the scikit-learn library [15]. During MLP research and efficiency
comparison were used data of 6 particles species such as: charged pion π±,
charged kaon K±, proton p and anti-proton p̄. Each of particle species dataset
contain 200000 lines.
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3.1.1 Feature selection

One of the initial part of the model preparation is feature selection. Fea-
ture selection is the process of reducing the number of input variables when
developing a predictive model. It is desirable to reduce the number of input
variables to both reduce the computational cost and, in some cases, to improve
the performance of the model. In the beginning we have the assemble of variable
which include: ptot(momentum), m2(m2), dE/dx(dedx), charge, nHints, dca,
eta, Vz, Vy, Vz. The fig. 3.1.1 shows correlation matrix for all input features.
It is not hard to notice that most features are not correlated or have very small

momentum
charge

dedx m2 nHints
eta dca Vx Vy Vz

momentum

charge

dedx

m2

nHints

eta

dca

Vx

Vy

Vz

1 -0.01 -0.01 0 -0 -0 0 -0 0 0

-0.01 1 0.1 -0 -0.03 -0 -0 0 -0 0

-0.01 0.1 1 -0 0.01 0 0.12 0 -0 0

0 -0 -0 1 -0.01 0 0 -0 0 0

-0 -0.03 0.01 -0.01 1 0.03 -0.21 0 0 0

-0 -0 0 0 0.03 1 -0 -0 -0 -0.08

0 -0 0.12 0 -0.21 -0 1 -0.01 0 -0

-0 0 0 -0 0 -0 -0.01 1 -0.01 -0

0 -0 -0 0 0 -0 0 -0.01 1 -0.01

0 0 0 0 0 -0.08 -0 -0 -0.01 1
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.1.1 – Correlation matrix for input features: ptot, m2, dE/dx, charge,
nHints, dca, eta, Vz, Vy.

correlation (< 20%) with each other.
During feature selection was used MLP model with basic hyper-parameters:

activation function - logistic, layer sizes - 50, number of iteration - 50, learning
rate - 0.01.

On the first step in feature selection was evaluated weight matrix of MLP
(see Fig. 3.1.2) As can be seen, not zero value of weight almost for each element

Figure 3.1.2 – Weight matrix

of MLP have four features: ptot, charge, dEdx and m2. Nevertheless, such
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features as nHints, eta and dca in some of column have a non-zero weight.
That is why it is necessary to evaluate the quality of the classification with
different combination of the features. For model evaluation in this section and
following is used f1 score which is defined as:

f1 = 2 ∗ recall ∗ precision
recall + precision

, (3.1)

F1 Score is the Harmonic Mean between precision and recall. The range for F1
Score is [0, 1] and a perfect model has an F-score of 1.

precision =
TP

TP + FP
, recall =

TP

TP + FN
(3.2)

Precision is the fraction of true positive examples among the examples that the
model classified as positive (see Eq. 3.2 left). Recall, also known as sensitivity,
is the fraction of examples classified as positive, among the total number of
positive examples (see Eq. 3.2 right).

The fig. 3.1.3 demonstrates dependence of the f1-score for each class on
the combination of the features. The basis of features is: ptot, charge, dEdx

and m2. As can be noted, the larges f1-score value have π± and p species.

Figure 3.1.3 – Dependence of the f1-score on set of features

The reason K± species have the lowest f1-score is that, for instance, their m2

distribution are between p and π and mixes with all of them (see Fig.1.2.3).
Evaluation of the impact of the additional features show that each of features
reduce or increase f1-score for different species. For example, usage the nHints
feature increase f-score for p,K− species and decrease f-score for π−, p̄ species.
Hence, in the following work were used features: ptot, charge, dE/dx and m2.
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3.1.2 Hyperparameters selection

The performance of a model can drastically depend on the choice of its
hyperparameters. The choice of the optimal hyperparameters is more art than
science, if we want to run it manually. Since the algorithms, the goals, the data
types, and the data volumes change considerably from one project to another,
there is no single best choice for hyperparameter values that fits all models and
all problems. Instead, hyperparameters must be optimized within the context
of each machine learning project. Even with in-depth domain knowledge by an
expert, the task of manual optimisation of the model hyperparameters can be
very time-consuming. An alternative approach is to set aside the expert and
adopt an automatic approach. An automatic procedure to detect the optimal
set of hyperparameters for a given model in a given project in terms of some
performance metric is called an optimization strategy. Four commonly used op-
timization strategies: Grid search, Random search, Hill climbing and Bayesian
optimization.

In this work was used Bayesian optimisation based on the optuna[16]
package. The Bayesian optimisation strategy selects the next hyperparameter
value based on the function outputs in the previous iterations. Unlike hill climb-
ing, Bayesian optimisation looks at past iterations globally and not only at the
last one. In Bayesian optimisation for MLP were used set of hyperparameters
that are presented in Table 3.1.1.

hidden_layer_sizes 10 - 70
max_iter 10 - 100

learning_rate_init 0.0001 - 0.01
activation logistic, tanh, relu

learning_rate constant, invscaling, adaptive

Table 3.1.1 – Set of hyperparameters that were used in Bayesian optimisation

Where hidden_layer_sizes is the ith element represents the number of
neurons in the ith hidden layer, max_iter is number of epochs, learning_rate_init
is the initial learning rate used which controls the step-size in updating the
weights, activation is the name of the output activation function and learn-
ing_rate is the learning rate schedule for weight updates.
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For evaluation the quality of the model in Bayesian optimisation was used
weighted f1-score which is defined as the weighted F1-score of each class by the
number of samples from that class and divide by the total number of samples.
For Bayesian optimisation was performed 50 trials. Almost all models with
different parameters found during optimisation have f1-score > 0.97.

In Fig.3.1.4 the dependence of the weighted f1-score on the value of hy-
perparameters is presented. As can be noted, logistic activation function has

Figure 3.1.4 – Dependence of the weighted f1-score on the value of each of the
hyperparameters

been selected for a larger number of models, models with relu and tanh activa-
tion function has been selected for the fewer models. All models with differnet
learning_rate value type have good f1-score. Invscaling and adaptive learning
rate has been selected for a larger number of models, constant learning rate
has been selected for fewer number of models. The wast majority of models
have learning_rate_init 0.0001-0.0050.In Fig.3.1.5 the map of hyperpartmetrs

Figure 3.1.5 – Map of hyperparameters hidden_layer_sizes and max_iter
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hidden_layer_sizes and max_iter. As mentioned above almost all models have
f-score > 0.97, therefore, it is necessary to choose a model which have small
number of the hidden_layer_sizes and max_iter. In this case, simplifying the
model reduces the computational coast. The model with hidden_layer_sizes =
33 and max_iter = 64 was chosen. The full set of parameters that were chosen
presented in Table 3.1.2.

hidden_layer_sizes 36
max_iter 48

learning_rate_init 0.006
activation logistic

learning_rate constant

Table 3.1.2 – Optimal set of hyperparemetrs

It is important to clarify that we can choose max_iter less than 48 when
the loss or score is not improving by at least 0.0001 for 10 consecutive iterations.
Different models combination with the bigger number of hidden layers were
also considered. Nevertheless, adding additional hidden layers does not make
significant contribution in the f1-score.

3.2 Training in different range of momentum

In this section are presented one of two addition approach that was re-
searched for improve the correctly classification quality of the species. The
main idea of this approach is to train MLP model using data from different
range of ptot. For this research the ptot ranges were selected:

[0.0, 0.5, 1.0, 1.5, 2.5]

The number of particles of a given species i that are identified correctly
dNtrue (aka TP) by model which was trained in full range of ptot and models
that were trained in different range of ptot were compered.

Ratio =
dNPartial range model

true /dp

dNFull range model
true /dp

, (3.3)
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The models that was trained in different range of the ptot had the same set of
hyperparameters as full momentum model. In Fig.3.2.1 and 3.2.2 the rations
(see Eq. 3.3) for each species are demostraited. As visible, ratio has upper
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Figure 3.2.1 – Ratio for π−, K−

and lower deviation from 1.0. Thus, it can be concluded that train in differ-
ent range of momentum does not make significant contribution in the particle
identification. Nevertheless, the chosen binning is not optimal. That is why

0 0.5 1 1.5 2 2.5
 Momentum [GeV/c]

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04 R
at

io

 

(a)

0 0.5 1 1.5 2 2.5
 Momentum [GeV/c]

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04 R
at

io

 

(b)

0 0.5 1 1.5 2 2.5
 Momentum [GeV/c]

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04 R
at

io

 

(c)

0 0.5 1 1.5 2 2.5
 Momentum [GeV/c]

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04 R
at

io

 

(d)

Figure 3.2.2 – Ratio for p, π+, K+, p̄

studies with different range of momentum can be preform in future.
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3.3 Binary classification for each particle

In this section are presented the second addition approach that was re-
searched for improve the correctly classification quality of the species. The
main idea of this approach is to do binary MLP classifier for each species. In
other words, to train models on the relabled data for each species and after that
combine the model output. For each classifier have been done Bayesian opti-
misation. By analogy, which is described in the Sec. 3.1.1 have been selected
hyperparameters for each binary MLP classifier. The sets of hyperparametrs
for each binary MLP classifier almost have coincided with each other. That is
why for each species was used the same set of hyperparametrs. The selected
hyperparameters shown in Table 3.3.1

hidden_layer_sizes 30
max_iter 40

learning_rate_init 0.006
activation logistic

learning_rate constant

Table 3.3.1 – Optimal set of hyperparemetrs for binary classifier

It is not difficult to see that hyperparametrs for binary classification al-
most coincides to the hyperparametrs for multi classification. Considering early
stopping, which is described in the end of the section 3.1.2 the sets of hypert-
paremtres could be the same
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Figure 3.3.1 – Ratio for π−, K−

Prediction of the binary classifiers combination have been compered with
the multi-classification prediction. By analogy to the previous additional ap-
proach (see Sec. 3.2) ratio of the right answers was compered. The results of
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Figure 3.3.2 – Ratio for p, π+, K+, p̄

models comparison shown in Fig 3.3.1 and 3.3.2. This plots show us that for
wast majority of the particle species this approach decrease or does not make
significant contribution. But for π+ and π− species (see Fig. 3.3.1a, 3.3.2b)
approach make significant contribution about 20 − 30% in range of ptot > 1.5

[GeV/c]. Despite the large contribution in the high ptot range for π± the ap-
proach was not used in the final research of efficiency (see Sec. 4.2).
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Chapter 4

Particle Identification

Simple selections based on the individual Particle Identification (PID)
signals of each sub-detector do not take full advantage of the PID capabilities of
MPD. An example of this is illustrated in Fig. 4.0.1, which shows the separation
of the expected TPC and TOF signals for π+, K+ and p with ptot in the range
0.7 < ptot < 1.0 GeV/c. Clearly, the separation in the two-dimensional plane

Figure 4.0.1 – dE/dx (from TPC) versus mass-squared (from TOF) distribution
for π+, K+ and p species.

(the peak-to-peak distance) of e.g. pions and kaons is larger than the separation
of each individual one-dimensional projection. That is why, it is necessary to
use different approaches for particle identification.
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4.1 n-Sigma approach

One of the standard approach for combining the information from sev-
eral sub-detectors is n-Sigma approach. Basic idea of the n-Sigma approach is
to perform parameterisation for Bethe-Bloch energy loss formula (see Eq.1.1)
using asymmetric Gaussian function. The most probability value ⟨dE/dx⟩ and
standard deviation σdE/dx are obtained from projection energy loss in TPC for
each given momentum. The most commonly used discriminating variable for
PID is the Nσ variable, defined as the deviation of the measured signal from
the most probability value for every species of particle i. For TPC NσTPC

is
defined as:

N i
σTPC

=
dE/dx− ⟨dE/dx⟩i

σi
TPC

, (4.1)

The same procedure is performed for m2 from TOF:

Nσi
TOF

=
m2 − ⟨m2⟩i

σi
m2

, (4.2)

where ⟨m2⟩ is most probability value and σm2 standard deviation for m2.
A certain species is assigned to a particle if this value lies within a certain

range around the expectation NσTPC
= 2 and NσTOF

= 2.

Nσ ≤
√

N 2
σi
TOF

+ N 2
σi
TPC

, (4.3)

If the condition 4.3 is met for N i
TPC and N i

TOF the particle compatible to
i-species. In case a particle can be compatible with more than one species
n-Sigma approach corresponds to false decision. The application of the PID
n-Sigma approach was based on MpdRoot[17] framework.
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4.2 Comparison of MLP and n-Sigma approach

In this section show results of comparison of two approach for particle
identification. In order to evaluate the quality of PID approach it is necessary
to compute efficiency. The PID Efficiency of the species i is defined as the
proportion of particles of a given species i that are identified correctly dN i

true

in certain momentum range dp divided by all generated i particle dN i
textallgen.

in the same momentum range dp.

Efficiency =
dN i

true/dp

dN i
all gen./dp

, (4.4)

Results of efficiency comparison is demonstrated in Fig. 4.2.1. As can be seen,
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Figure 4.2.1 – Comparison of the MLP(green) and nSigma(red) approach effi-
ciency for π−, K−, p, π+, K+, p̄

for each particle species MLP approach have higher efficiency then n-Sigma
approach for full range of momentum.
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Conclusion

In this paper, several studies have been performed to improve the qual-
ity of PID using MLP classifier. For MLP multi-classifier have been chosen
the number of features that contribute the biggest contribution in identifica-
tion. Using Bayesian optimisation have chosen the hyperparametrs that do not
complicate MLP model and allow to get high f1-score.

Additional approaches for improve the correctly classification quality of
the species were researched. Each of them have not shown significant results
for PID, however these approaches can be researched in future with another
setting.

The n-Sigma approach was studied and compared with MLP approach
for particle identification. It was shown usage MLP classifier for particle iden-
tification considerably improves efficiency for each particle species.

The improvement is shown only for the certain version of MC simulation
data. In the future, it is planned to conduct research for a wide set of MC data.
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