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Introduction 
  
 The report’s main objective is researching the design of a mixed signal 
application-specific integrated circuit(ASIC) for data readout, called SAMPA 
[1], which will be possibly implement on detector time projection chamber 
(TPC) at  NICA project. The international mega-science project NICA 
(Nuclotron-based  
Ion Collider fAcility) complex is aimed in the study in the laboratory of the 
properties of nuclear matter in the region of the maximum baryonic density. [2] 
 The ASIC SAMPA will be responsible for the amplification, sampling, 
digital filtering and formatting of the signals incoming from the detection 
chamber. Basically, this report is focused on the digital part and contains only 
general information on the analog part. Also, this report presents the research 
Verilog hardware description for the physics implementation of the SAMPA 
digital part.  
 SAMPA is improved version of the chip used now-a-days, called ALTRO. 
Among the list of upgrades, the most notable on the digital part  for the MPD 
TPC-detector are: smaller chip’s size and serialization of the output, in 
opposite to the 40-bit bus on ALTRO / s-ALTRO. Also, the important 
advantage is configured the continuous readout option, with keeping the old 
triggered mode. The SAMPA ASIC adapts to different detector signals with 
programmable parameters. Amongst the other most notable upgrades full 32 
channels integration, two times the  number of the previous chips, lower power 
dissipation of 15mW / channel. Besides, SAMPA implements continuous data 
readout, with automatic data acquisition triggering and data sending. The chip 
outputs data through 4 serial links synchronous to a maximum clock of 320 
MHz, while the digital signal processor (DSP) works nominally on 10 MHz and 
is the main ASIC’s clock (bigger clock domain). SAMPA has 3 clock inputs: 
320, 40 and 10 MHz.  However only the 320 MHz is necessary for operation, 
as the others may be derived from it by properly configuration of the clock 
generation block. This block also always generates a 32 MHz clock from the 
320 MHz. The configuration is performed via instructions, which are send 
through an I2C interface. 
 The whole architecture is based on 10-bit values and the DSP block has 
some data paths wider than 10-bit to achieve higher arithmetic precision. 
Obviously, the price to pay is a higher area and power consumption by the 
filters. Digital signal processing, zero suppression, data formatting, buffering 
(before sending the data out) and instruction processing is performed 
synchronous to the 10 MHz clock signal. The output block, responsible for 
sending information serially, is the only one working on 320 MHz and the 
interface between this block and the previous one, the data buffer (Ring Buffer) 
is performed on 32 MHz to match different clock speeds and memory sizes. 
Finally, a 20-bit 40 MHz global counter is implemented to provide a precise 
time information about the initial time of an event. [3] 
 



Analog part 
 
 Right after colliding, the particle beam generates millions of other 
particles which create a voltage signal on the detection pads. These pads have 
a capacitance which accumulates charge for the next block preamplifier. This 
block, Preamplifier is an amplifier which is sensible to the charge on the 
capacitance and is responsible for amplifying the signal induced on a pad. 
Next, there’s the Shaper, responsible for transforming the incoming pulse in a 
signal with a semi-gaussian shape. The idea behind the semi-gaussian shape 
is extending the time duration of the signal, lowering the sampling rate needed 
on the ADC to 10 MSPS. If the Shaper was not implemented, the sampling 
rate would have to be high enough to sample a very fast pulse, maybe 
reaching up to 1 GSPS , which would generate much more data and power 
dissipation issues. Finally, the ADC generates 10 bits data on 10MHz (default 
ADC clock) and provides it to SAMPA’s digital part, which is where this work is 
focused. 
 

 
Figure 1 Structure scheme of the analog part 

 
 
Auxiliary tools 
 
 Hardware design platform for research the ASIC SAMPA will use the 
SoCKit development board built around the Altera System-on-Chip (SoC) 
FPGA. The board has many features  that allows users  to implement a wide 
range of designed  circuits. FPGA Device includes [4]: 

 Cyclone V SX SoC—5CSXFC6D6F31C6N  

 110K LEs, 41509 ALMs  

 5140 M10K memory blocks  

 6 FPGA PLLs and 3 HPS PLLs  

 2 Hard Memory Controllers  

 3.125G Transceivers  

 



 
Figure 2  A photograph of the SoCKit development board for research SAMPA 

 
Software will use Quartus II tools for use in debugging of hardware design. 
The Quartus II software includes many tools that are useful for a variety of 
purposes. In this report I will use two types of tools: Netlist Viewers and 
SignalTap II Logic Analyzer. 
 The Netlist Viewers provide a graphical indication of a synthesized 
circuit. A register transfer level (RTL) view of a designed circuit, generated 
after the initial synthesis, can be seen by using the RTL Viewer . A view of the 
final implementation, obtained after technology mapping , is available through 
the Technology Map Viewer . If a designed circuit involves a finite state 
machine, a diagram of this FSM can be examined by means of the State 
Machine Viewer[5]. 
 The RTL Viewer provides a block diagram view of a circuit, at the level of 
registers, flip-flops and functional blocks that constitute the design. The 
displayed image is the circuit generated after the analysis and initial synthesis 
steps. It is not necessary to wait for the rest of the compilation process to be 
completed, which includes placing and routing the designed circuit.  
 The original circuit of SAMPA (version  SAMPA_emulator.r698) is given 
in Figure 2. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 3 Original circuit of SAMPA (window RTL Viewer) 
 

 Quartus II software includes a software-implemented tool that acts as a 
virtual logic analyzer, which allows the user to examine signals that are going to 
occur anywhere within a circuit implemented in an FPGA chip. It is called the 
SignalTap II Logic Analyzer.  

 
Architecture and structure scheme 

Figure 4 Architecture SAMPA 



Figure 5 Structure scheme of the digital part SAMPA 
 
 

Changes of the SAMPA emulator 
 The original version firmware which is an emulator SAMPA’s chip has 
some  defects or just unfinished parts.  
 1) Module oneshot was inserted to avoid the bounce of the buttons . 
Nothing was done with the bounce of the switches (there was no need) . 
 2)  Assignments for some of the most important inputs to the buttons and 
the switches: 
 Hrstb  = key_os[0]; // Hard reset of all the system 
(asynchronous) 
 hb_trg =  key_os[1]; // Being installed provides HeartBeat signal from 
out SerialOut0 
 sync = key_os[2]; // Being installed resets Bcrosscount 
 trg = key_os[3]; // External trigger for Trigger mode (may be not 
used due to Nios (embedded processor), which may generate this signal) 
 
 SW[0] // Was used for temporal assignments; 
 instr_serial_in = SW[1]; // The value of the constant 1 generates constant 
SoftReset, which obstructs the analysis of the work of the system. This input 
was set to 0 by a switch. However it is important to improve understanding of 
of this input operation, as it is used to enter the commands in SAMPA. 
 selectIn = SW[2]; // Selects: to send a constant or a signal to ZSU 
input  
 enZSu  = SW[3]; // Selects: to set zero suppression threshold to 
0 or to 1. 
 
 3) Module pll, which is already embedded in the project, was used to 
generation of the frequency 10 MHz. However also the frequencies 40 and 320 



MHz are necessary to set initial mode (initial reset). These frequencies were 
not embedded in the original project. The needed frequencies were added into 
the already prepared module pll, and then this module was used to frequency 
generation. 
 4) The project code was simplified, by reason of long compilation 
(compilation must be done an every time after the code and settings 
SignalTapII changes, even if the signal is added or removed). The original 
module lcore had 3 input channels: din0, din8, din16. After the changes in the 
modules: lcore, dfu_rb_so, serialout0;  the project became only for one 
channel. Also the next modules: serialout13, serialout2; were eliminated from 
the project and only one serial out: serialout0; was remained to simplify the 
research. Also the changes were added to the module lcore. 
 5) The first module, where the data is coming after ADC is called 
presamples. Presamples accumulates a number of samples so that the chip 
has access to before-trigger samples (useful for triggered run only). Also, the 
analog part provides data from ADC in 10-bit 2’s complement. However, the 
rest of the digital part (read, DSP) is design to work with 10-bit data going from 
0 to 1023, in opposite to -512 to 511 as in 2’s complement format. This is 
compensated by adding 512 to the input by inverting the MSb as below: 
 assign din_unsigned = {~din[9], din[8:0]}; 
In this project our data (input signal) will not come from ADC, because now 
there is no real signal from TPC. Input data are generated by embedded Nios 
processor and stored in shift register. Therefore we don't need the module 
presamples now, and the data will go to the output of the module: assign dout 
= din;  
 6)  The unit DSP (including units BC1,DS (digital shaper or tail 
cancellation filter), BC2) was not researched and the data do not go through 
this unit. I.e the input signal comes straight to the input of the module ZSU. 
This change was implemented at the module filters. 
 7) Optionally: the settings for ZSU are located in the module chrgu. 
Presamples was set to 3, and I set it to 2. Postsamples was set to 7, and I set 
it to 3. The glitch was remained at 2, a threshold was remained at 10 (or 
changed to 37). The global settings of Sampa are provided through the module 
tbunit. ns_e (number of sample per event (width of time window)) was 1021 
(max vulue) I set 160. Contmode may be deactivated. Other settings of tbunit 
have not changed. 
 8) Changes in the code of the module ring_buffer: 
  a)  If the positive edge of frequency is 10 MHz and if the option 
d_wr_en is set, then the data will be written to the memory and also the 
register of num10bit will count the quantity of the recorded data during the 
whole time window. Further when the time window ends, the value from 
num10bit transmits into the register, called size, which defines the quantity of 
the data must be sent from the output of the module ring_buffer. The output 
state machine of the module ring_buffer provides data transfer. Frequency of 



data transfer is 32 MHz. Below the part of the original code is shown (register 
num10bit): 
 
always @(posedge clk10) 
begin 
 ………………………… 
 ………………………… 
  // Stores data and increases the number of 10-bit words on packet 
  if(d_wr_en) 
   num10bit <= num10bit + 1;  
  else  
   num10bit <= 0; 
 ………………………… 
 ………………………… 
end 
  
 When a constant (above threshold, if MPW1_enZSU is set) comes to the 
input of the module ring_buffer, then no problems with observing the output 
signal appear (d_wr_en  is set during all the time window), in that case the 
correct value num10bit will be sent to the register size. However if a signal, 
generated by a Nios, comes to the input of the module ring_buffer, then in the 
beginning the quantity of counted data will be correctly copied into num10bit, 
but further, when signal ends ( d_wr_en will set to 0), num10bit will reset, and 
the output state machine will not send data, because size equals zero. To 
avoid this mistake the following condition was added: 
 
always @(posedge clk10) 
begin 
 ………………………… 
 ………………………… 
  // Stores data and increases the number of 10-bit words on packet 
  if(d_wr_en)  
   num10bit <= num10bit + 1;  
  else if (outputState == s_sendH5)  
   num10bit <= 0; 
 ………………………… 
 ………………………… 
end 
 
 It is not necessary that the condition was just such. The main thing is that 
the counted value num10bit doesn't have to change until the transfer of the 
output state machine to the condition s_sendH3 (look, how the value  size is 
formed in the code). 
 b) After the added changes, described in the point above, the data (if 
they are) will appear always on the output, but not always these data will be 



correct. This is due to the fact, that a signal can come at any time. For 
example, if a signal doesn't appear at an every time window then, if the 
following string: 
 assign d_rd_en = (outputState == s_sendData); 
is not changed to:  
 assign d_rd_en = (outputState == s_sendData) & reading;  
data on the output will be displayed incorrectly. Unfortunately, other causes of 
malfunctions of the code are possible. For instance, if the time window 
truncates the input signal. To avoid such a kind of the problem it is necessary 
to improve debug relation between the pointer to reading and the pointer to 
writing of the data.  
 9) In the original project Sampa a constant comes to the input of the module 
lcore. To get more interesting results and to extend capability to manage by 
Sampa using this chip, Nios processor was added, which executes the 
following functions: forming input signal, setting of the external trigger signal. 
Subsequently Nios perhaps will be able to read and write global registers of 
Sampa.  Also shift register, used for matching frequency Nios and Sampa, was 
added at this project. Nios writes input data in shift register and subsequently 
this data are sent in Sampa on the frequency 10 MHz. Shift register sends the 
data in Sampa only if the time window is set, and enables signal (from Nios) 
reset. The changing of the code of Nios gives the opportunity to get a various 
input signal for Sampa and to do this quickly without full compilation of the 
project. 
The circuit of Sampa after the added changes is given in Figure 2. 
 

 
Figure 6 Circuit of Sampa with the added changes (window RTL Viewer) 

 
 
 

 

 
 
 
 
 



Waveforms 
 The time window is defined as a configurable amount of samples which 
defines the size of a packet. This is the period, when the digital part is 
acquiring the samples from the ADC and feeding it to the DSP. At an every 
time, when the time window finishes, a new packet is generated. The chip has 
two main triggering methods: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 SAMPA’s operation modes 

 

1)  Triggered: when an external signal (through dedicated trigger pin) is 
asserted. 
2) Continuous: the time window starts automatically when continuous mode 
is activated. 
 For all waveforms, which will be shown below in this point, Sampa’s 
operation mode will be continuous. 
 Example of the data, which will be coming on input of the ZSU module:: 
 
 
 
 
 
 
 
 
 
 

Figure 8 Example signal, which will be generated from Nios 

 
 



Waveforms for  ZSU module given in Figure 9. 
 

Figure 9a ZSU waveform test 
 

Figure 9b Processing the input data  
 
 
Waveforms for  DFU module given in Figure 10. 
 

Figure 10a DFU waveform test 
 

Figure 10b Assertion of flag coming from ZSU. Formation of DFU data  
 

Waveforms for ring_buffer module given in Figure 11. 
 

Figure 11a  ring_buffer waveform test 



Figure 11b  When the time window ends then forms beginning of a packet 
 

Figure 11c  The end of the time window. Formation of header 
 

Figure 11d  The end of the time window. Showed packet of data 
 
 
 
 
 
 
 
 



Waveforms for serialout0 module given in Figure 12. 
 

Figure 12a  serialout0 waveform test 
 

Figure 12b  Getting data from the  ring_buffer module. Copying data in register 
dataTypeMux 

 

Figure 12c  Sending data through serial interface 
 

Waveforms for heartbeat module given in Figure 13. 
 

Figure 13  Heartbeat waveform test 
 
 



Operation of the ZSU module   
 
Initial conditions: 
frequency = 10 MHz; 
1 sample = 1 period = 0,1 us; 
ns_e (number of sample per event) = 300; 
the width of the time window = ns_e * period = 300 * 100 = 30 us; 
ns_s (number of sample per signal)= 8 ; 
The width of the signal = ns_s * period = 8 * 100 = 0,8 us; 
Number of sample per header = 5; 
Number of presamples1 = 2; 
Number of postsamples2 = 3; 
 

Number of 
signals on 

top base line 

Number of 
sample per input 

signals 

Number of 
sample per 

payload  

Number of sample 
per packet when 

ZSU filter enabled 

Number of sample 
per packet when 

ZSU filter disabled 

0 0 0 5 307 

1 8 15 20 307 

2 16 30 35 307 

3 24 45 50 307 

4 32 60 65 307 

 
packet = payload + header; 
payload  =  Presamles + ns_s + Postsamples + TC3 +CS4; 
payload 0 =   0  +    0    +     0  +  0   +  0; 
payload 1 =   2 +    8    +     3  +  1   +  1; 
payload 2 =   4 +    16  +     6  +  2   +  2; 
payload 3 =   6 +    24  +     9  +  3   +  3; 
payload 4 =   8 +    32  +     12  +  4   +  4; 
 
 
 
 
 
 
 
 
1. Presamples is samples before the actual pulse arrives. 
2. Postsamples is samples after the actual pulse arrives. 
3. Cluster size (CS): 10-bit field containing a 0 to 1023 value that represents the number of 
10-bit words on the cluster. It includes itself and the TC, as the sum of all clusters. 
4. Time count (TC): 10-bit field, which contains the time from 0 to 1023 of the first valid 
sample, locating the cluster data in time, as the time information is lost due to Zero 
Suppression. 

 



Conclusions 
The limited set of SAMPA chip is manufactured and available for 

evaluation. The test platform including a processor is required for verification the 
chip and for check the chip conformance to specification. Present work is based 
on the chip HDL description (SAMPAemu) which targeted for design testing 
procedures. A concept for the test platform was designed using FPGA – equipped 
Altera development board. An Idea is to provide test platform with embedded 
RISC processor (Nios) as a board controller. Nios generates test vectors, 
configuring mode operation of the SAMPAemu and initialize data processing. 

The processor provides opportunity for check the work of the SAMPAemu 
for any input data, i.e Nios can model signals from ADC. As firmware Nios and 
SAMPAemu both synthesized in FPGA test procedures flexibility are achieved. 

Nios takes few FPGA resources and can be synthesized in the width range 
Altera chips, for example Cyclone III or MAX 10.  

While developing test platform firmware system level debugging tool 
SignalTapII was used. The tool allows to examine signals that are going to occur 
anywhere within a circuit implemented in an FPGA chip. Important feature of 
SignalTapII is the fact that it doesn’t spoil parameters of measured signals. This is 
the guarantee that waveforms given in above is correct. 

 Further project development assumes to control SAMPAemu state via I2C 
interface. Also it is important to study operation of DSP (including Base line 
correction and tail cancellation filter). The work performed above is base for future 
development. 
 At the present time the chip SAMPA is very perspective solution for TPC 
readout system design.  
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