JOINT INSTITUTE FOR NUCLEAR RESEARCH
Veksler and Baldin laboratory of High Energy Physics

FINAL REPORT ON THE
SUMMER STUDENT PROGRAM

Research model of the SAMPA application
specific integrated circuit for the MPD TPC-
detector

Supervisor:
Sergey Alexeevich Zaporozhets

Student:

Yauheni Zenkovich, Belarus
Belarusian State University
of Informatics and
Radioelectronics

Participation period:
June 13 — August 6

Dubna, 2016

Contents

INTrOAUCTION ... e it e 3
ANAlOG Part ... 4
AuXiliary tOO0ISoeeiii 4
Architecture and structure schemecccoeevviiiiiiinnn. 6
Changes of the SAMPA emulator...........ccooceveiiiiiineennn, 7
WaAVETOIMS ..eitii e 11
Operation of the ZSU module ..o, 15
(OF0] o (o1 11157 0] 0 £ 16

R O BN S . e e et aees 17

Introduction

The report’'s main objective is researching the design of a mixed signal
application-specific integrated circuit(ASIC) for data readout, called SAMPA
[1], which will be possibly implement on detector time projection chamber
(TPC) at NICA project. The international mega-science project NICA
(Nuclotron-based
lon Collider fAcility) complex is aimed in the study in the laboratory of the
properties of nuclear matter in the region of the maximum baryonic density. [2]

The ASIC SAMPA will be responsible for the amplification, sampling,
digital filtering and formatting of the signals incoming from the detection
chamber. Basically, this report is focused on the digital part and contains only
general information on the analog part. Also, this report presents the research
Verilog hardware description for the physics implementation of the SAMPA
digital part.

SAMPA is improved version of the chip used now-a-days, called ALTRO.
Among the list of upgrades, the most notable on the digital part for the MPD
TPC-detector are: smaller chip’s size and serialization of the output, in
opposite to the 40-bit bus on ALTRO / s-ALTRO. Also, the important
advantage is configured the continuous readout option, with keeping the old
triggered mode. The SAMPA ASIC adapts to different detector signals with
programmable parameters. Amongst the other most notable upgrades full 32
channels integration, two times the number of the previous chips, lower power
dissipation of 15mW / channel. Besides, SAMPA implements continuous data
readout, with automatic data acquisition triggering and data sending. The chip
outputs data through 4 serial links synchronous to a maximum clock of 320
MHz, while the digital signal processor (DSP) works nominally on 10 MHz and
is the main ASIC’s clock (bigger clock domain). SAMPA has 3 clock inputs:
320, 40 and 10 MHz. However only the 320 MHz is necessary for operation,
as the others may be derived from it by properly configuration of the clock
generation block. This block also always generates a 32 MHz clock from the
320 MHz. The configuration is performed via instructions, which are send
through an I°C interface.

The whole architecture is based on 10-bit values and the DSP block has
some data paths wider than 10-bit to achieve higher arithmetic precision.
Obviously, the price to pay is a higher area and power consumption by the
filters. Digital signal processing, zero suppression, data formatting, buffering
(before sending the data out) and instruction processing is performed
synchronous to the 10 MHz clock signal. The output block, responsible for
sending information serially, is the only one working on 320 MHz and the
interface between this block and the previous one, the data buffer (Ring Buffer)
is performed on 32 MHz to match different clock speeds and memory sizes.
Finally, a 20-bit 40 MHz global counter is implemented to provide a precise
time information about the initial time of an event. [3]

Analog part

Right after colliding, the particle beam generates millions of other
particles which create a voltage signal on the detection pads. These pads have
a capacitance which accumulates charge for the next block preamplifier. This
block, Preamplifier is an amplifier which is sensible to the charge on the
capacitance and is responsible for amplifying the signal induced on a pad.
Next, there’s the Shaper, responsible for transforming the incoming pulse in a
signal with a semi-gaussian shape. The idea behind the semi-gaussian shape
is extending the time duration of the signal, lowering the sampling rate needed
on the ADC to 10 MSPS. If the Shaper was not implemented, the sampling
rate would have to be high enough to sample a very fast pulse, maybe
reaching up to 1 GSPS , which would generate much more data and power
dissipation issues. Finally, the ADC generates 10 bits data on 10MHz (default
ADC clock) and provides it to SAMPA’s digital part, which is where this work is
focused.

Woltage signal
on
detector pads

lonization

— 3| Detector pads Amplified

signal

Extended
signal

Preamplifier Shaper

Figure 1 Structure scheme of the analog part

Auxiliary tools

Hardware design platform for research the ASIC SAMPA will use the
SoCKit development board built around the Altera System-on-Chip (SoC)
FPGA. The board has many features that allows users to implement a wide
range of designed circuits. FPGA Device includes [4]:

Cyclone V SX SoOC—5CSXFC6D6F31C6N

110K LEs, 41509 ALMs

5140 M10K memory blocks

6 FPGA PLLs and 3 HPS PLLs
2 Hard Memory Controllers
3.125G Transceivers

Figure 2 A photograph of the SoCKit development board for research SAMPA

Software will use Quartus Il tools for use in debugging of hardware design.
The Quartus Il software includes many tools that are useful for a variety of
purposes. In this report | will use two types of tools: Netlist Viewers and
SignalTap Il Logic Analyzer.

The Netlist Viewers provide a graphical indication of a synthesized
circuit. A register transfer level (RTL) view of a designed circuit, generated
after the initial synthesis, can be seen by using the RTL Viewer . A view of the
final implementation, obtained after technology mapping , is available through
the Technology Map Viewer . If a designed circuit involves a finite state
machine, a diagram of this FSM can be examined by means of the State
Machine Viewer[5].

The RTL Viewer provides a block diagram view of a circuit, at the level of
registers, flip-flops and functional blocks that constitute the design. The
displayed image is the circuit generated after the analysis and initial synthesis
steps. It is not necessary to wait for the rest of the compilation process to be
completed, which includes placing and routing the designed circuit.

The original circuit of SAMPA (version SAMPA_emulator.r698) is given
in Figure 2.

SW[3..0]1[>>

KEY[3..0][>

rad_clk [

shift_reg:i_shift_reg

clock

shiftout[0..0]

i_Ei

{ > rad_so

rad_si[_>

shiftin[0..0]

taps[7..0]

0SC_50 B5B
RESET_n
slvs_rx >

pll:i_pll

refclk outclk 0

10'h295
O
1'ho
> clk_ADC

rst

Icore:i_sampa

10'h3e0 ADCdin0[9..0]
Hrstb

sampa_rst_n[_>

IMPW1 dinOUTSIDE[9..0]

sampa_test_in[9..0] >

MPW1 enBC1

sampa_enBC1 [>

MPW1 enBC2

sampa_enBC2 [>

MPW1_enTCFU

sampa_enTCFU [>

MPW1 enZSU

sampa_enZSU [

PW1 numSerialOut[1..0]

MPW1 dout[12..0]

[slvs_tx

ADCnDSP
LED[3..0]

adc_data[9..0]

[ext_trigger

> sampa_dout[12..0]
{"> sampa_instr_serial_out
> sampa_serialout0o
{> sampa_serialOutl
sampa_serialOut2
{> sampa_serialout3

sampa_numSerialout[1..0] [
sampa_selectin >
sampa_selectout{2..0] >

MPW1 selectin instr_serial out
MPW1 selectOut[2..0]
clk10in

clk40in

clk320in

10'h2b2 din8[9..0]
10'h3d5 din16[9..0]
hadd[3..0]

hb_trg

instr_serial in

clk40 [
clk320 >

sampa_hadd[3..0] >
sampa_hb_trg [_>
sampa_instr_serial_in >
sampa_sync[_»
sampa_trg [>

Figure 3 Original circuit of SAMPA (window RTL Viewer)

sync

trg

Quartus Il software includes a software-implemented tool that acts as a
virtual logic analyzer, which allows the user to examine signals that are going to
occur anywhere within a circuit implemented in an FPGA chip. It is called the
SignalTap Il Logic Analyzer.

Architecture and structure scheme

Hearbeat
trigger

Neighbor
data

SAMPA i l
Neighbar Heartbeat
. Channel 31 ‘
z — Serialowd ————
Channel 0
Analog Digital
i b serisloutl ———p
= DSP
e Pre- Baseline Digital Baseline Baseline Data Format F— ™
;";:: [Shaper — A0C 01 mpies | commection1 | Shaper [Comection2 ™ Corection2 [|| ume | 7| Mokder i) RingBuffer
L L T =T | L 1| |
k . f— seralouty ———
pedestal Channel
— memary registers
Event fi Clock Baseline
manager RILCE) manager control
I “‘ T
Eut.ernal SDA, SCL Clocks,
trigger Clock config

Figure 4 Architecture SAMPA

-- .
! HB trigger NB stop data Neighbour input Nei
: ighbour stop data +
' Clocks 12C signals Reset Sync trigger .
' clock config Chip address Power on reset Event trigger Neighb, '
' eighbour Registers Serial out «
. delay compenstaion Serial out x11 .
X . E—
X Clock manager 12 slow control Reset manager Trigger generator + 3
. Data I Read |pata} '
. ¢ * ‘ ‘ Neighbour ready | enable .
i control Channel 2 '
. Resets ordering N
v v
Registers Neighbour
|TAG Global registers Soft reset R ringbuffer
A 4 44 Event control and trigger count Eut HB trigger ~
trigge! s i > Heartbeat
Event manager ync trigger packet generator
S amly Link sync
Various global settings BX control and BX count Bunch crossing BX count | Treg Link sync ”
unter > packet generator [~
[Channel register control
Event control
Channel registers
. ADCinput ! Tail Zero
. t) 307| Channel
| Pre trigger buffer (75 BC1 [=obl o iation Is*| sz [T3 B3 [T suppresion Data compression fingbuffer
oL = 2 Ct
— 1
Filters Huffman
32

Figure 5 Structure scheme of the digital part SAMPA

Changes of the SAMPA emulator

The original version firmware which is an emulator SAMPA'’s chip has
some defects or just unfinished parts.

1) Module oneshot was inserted to avoid the bounce of the buttons .
Nothing was done with the bounce of the switches (there was no need) .

2) Assignments for some of the most important inputs to the buttons and
the switches:

Hrstb = key_os[0]; // Hard reset of all the system
(asynchronous)

hb trg = key os[l]; // Being installed provides HeartBeat signal from
out SerialOutO

sync = key_0s[2]; // Being installed resets Bcrosscount

trg =key os[3]; /I External trigger for Trigger mode (may be not
used due to Nios (embedded processor), which may generate this signal)

SWI[0] // Was used for temporal assignments;

instr_serial_in = SW[1]; // The value of the constant 1 generates constant
SoftReset, which obstructs the analysis of the work of the system. This input
was set to 0 by a switch. However it is important to improve understanding of
of this input operation, as it is used to enter the commands in SAMPA.

selectin = SWJ2]; // Selects: to send a constant or a signal to ZSU
input

enZSu = SWI3]J; // Selects: to set zero suppression threshold to
O orto 1.

3) Module pll, which is already embedded in the project, was used to
generation of the frequency 10 MHz. However also the frequencies 40 and 320

MHz are necessary to set initial mode (initial reset). These frequencies were
not embedded in the original project. The needed frequencies were added into
the already prepared module pll, and then this module was used to frequency
generation.

4) The project code was simplified, by reason of long compilation
(compilation must be done an every time after the code and settings
SignalTapll changes, even if the signal is added or removed). The original
module Icore had 3 input channels: din0, din8, dinl16. After the changes in the
modules: Icore, dfu_rb_so, serialoutO; the project became only for one
channel. Also the next modules: serialoutl3, serialout2; were eliminated from
the project and only one serial out: serialoutO; was remained to simplify the
research. Also the changes were added to the module Icore.

5) The first module, where the data is coming after ADC is called
presamples. Presamples accumulates a number of samples so that the chip
has access to before-trigger samples (useful for triggered run only). Also, the
analog part provides data from ADC in 10-bit 2’'s complement. However, the
rest of the digital part (read, DSP) is design to work with 10-bit data going from
0 to 1023, in opposite to -512 to 511 as in 2’s complement format. This is
compensated by adding 512 to the input by inverting the MSb as below:

assign din_unsigned = {~din[9], din[8:0]};

In this project our data (input signal) will not come from ADC, because now
there is no real signal from TPC. Input data are generated by embedded Nios
processor and stored in shift register. Therefore we don't need the module
presamples now, and the data will go to the output of the module: assign dout
= din;

6) The unit DSP (including units BC1,DS (digital shaper or tail
cancellation filter), BC2) was not researched and the data do not go through
this unit. I.e the input signal comes straight to the input of the module ZSU.
This change was implemented at the module filters.

7) Optionally: the settings for ZSU are located in the module chrgu.
Presamples was set to 3, and | set it to 2. Postsamples was set to 7, and | set
it to 3. The glitch was remained at 2, a threshold was remained at 10 (or
changed to 37). The global settings of Sampa are provided through the module
tbunit. ns_e (number of sample per event (width of time window)) was 1021
(max vulue) | set 160. Contmode may be deactivated. Other settings of tbunit
have not changed.

8) Changes in the code of the module ring_buffer:

a) If the positive edge of frequency is 10 MHz and if the option
d wr_en is set, then the data will be written to the memory and also the
register of num10bit will count the quantity of the recorded data during the
whole time window. Further when the time window ends, the value from
num10bit transmits into the register, called size, which defines the quantity of
the data must be sent from the output of the module ring_buffer. The output
state machine of the module ring_buffer provides data transfer. Frequency of

data transfer is 32 MHz. Below the part of the original code is shown (register
num210bit):

always @(posedge clk10)

begin
// Stores data and increases the number of 10-bit words on packet
if(d_wr_en)
num10bit <= num10bit + 1;
else
numZ10bit <= O;
end

When a constant (above threshold, if MPW1_enZSU is set) comes to the
input of the module ring_buffer, then no problems with observing the output
signal appear (d_wr_en is set during all the time window), in that case the
correct value num210bit will be sent to the register size. However if a signal,
generated by a Nios, comes to the input of the module ring_buffer, then in the
beginning the quantity of counted data will be correctly copied into num210bit,
but further, when signal ends (d_wr_en will set to 0), num10bit will reset, and
the output state machine will not send data, because size equals zero. To
avoid this mistake the following condition was added:

always @(posedge clk10)

begin
// Stores data and increases the number of 10-bit words on packet
if(d_wr_en)
num10bit <= num10bit + 1;
else if (outputState == s_sendH5)
numZ10bit <= 0;
end

It is not necessary that the condition was just such. The main thing is that
the counted value num10bit doesn't have to change until the transfer of the
output state machine to the condition s sendH3 (look, how the value size is
formed in the code).

b) After the added changes, described in the point above, the data (if
they are) will appear always on the output, but not always these data will be

correct. This is due to the fact, that a signal can come at any time. For
example, if a signal doesn't appear at an every time window then, if the
following string:

assign d_rd_en = (outputState == s_sendData);
is not changed to:

assign d_rd_en = (outputState == s_sendData) & reading;
data on the output will be displayed incorrectly. Unfortunately, other causes of
malfunctions of the code are possible. For instance, if the time window
truncates the input signal. To avoid such a kind of the problem it is necessary
to improve debug relation between the pointer to reading and the pointer to
writing of the data.
9) In the original project Sampa a constant comes to the input of the module
Icore. To get more interesting results and to extend capability to manage by
Sampa using this chip, Nios processor was added, which executes the
following functions: forming input signal, setting of the external trigger signal.
Subsequently Nios perhaps will be able to read and write global registers of
Sampa. Also shift register, used for matching frequency Nios and Sampa, was
added at this project. Nios writes input data in shift register and subsequently
this data are sent in Sampa on the frequency 10 MHz. Shift register sends the
data in Sampa only if the time window is set, and enables signal (from Nios)
reset. The changing of the code of Nios gives the opportunity to get a various
input signal for Sampa and to do this quickly without full compilation of the
project.
The circuit of Sampa after the added changes is given in Figure 2.

oloJue

aaaaaa

Figure 6 Circuit of Sampa with the added changes (window RTL Viewer)

Waveforms

The time window is defined as a configurable amount of samples which
defines the size of a packet. This is the period, when the digital part is
acquiring the samples from the ADC and feeding it to the DSP. At an every
time, when the time window finishes, a new packet is generated. The chip has
two main triggering methods:

Continuous Mode

A 1021 max samples

I * Uninterruptable
data acquisition

=
=

< Start of next time window
" and end of the previous

Triggered Mode

1021 max samples 1021 max samples

_ Ext. trigger Ext. trigger

End of time window

Figure 7 SAMPA'’s operation modes

1) Triggered: when an external signal (through dedicated trigger pin) is
asserted.
2) Continuous: the time window starts automatically when continuous mode
Is activated.

For all waveforms, which will be shown below in this point, Sampa’s
operation mode will be continuous.

Example of the data, which will be coming on input of the ZSU module::

PRES =2 o]
POSTS =3
o (@)
o]
o THRESHOLD
o 0 O O 0O 0 O 0
FLAG BIT

HNEEEEEEEEEEE

Figure 8 Example signal, which will be generated from Nios

Waveforms for ZSU module given in Figure 9.

log: Trig @ 2016/07/13.

135 0000 capsee) \

log: Trig @ 201607118 09:41:35 (0:0:0.0 clapsec) |
Type [Alias Neme == T S B T o Tous Tz A Toots T £ oo X T
* Icore:i_s chrols[0].chrollflters fitersizsuzsujrsio_|
2 leore:i : i O LA AL AATR AR LARTLATIAASLAATRAF AN
< chrols[0].chrollfilters:filters|zsu:zsuldin[9..0] 00%h 00%h I 009h
C 0] 00%h 00%h T 005h
* Icoreri_s Lchrols[O]. chrolfitersfilters|zsL:zsulflag 1
a 0An

roi3: chrols[o] chroljfiters:fitersjzsu 0 0

Jzsu: 0] n

hroi32:chrol32|chrol:chrols[O]. chroljfiters:flters|zsu:zsulseq_mask[L..0] 7

Figure 9a ZSU waveform test

e [= T o 3 =20 = = Hew £ D
Icore:i_s chols[0].chrolfilters:filters|zsu:zsulrstb

B Icore:i ¢ chols[o].chrolffilters:filters|zsu-zsulclk

5 ampalchrol32:chrol32[chrolchrols[o].chrolfiters:fters|zsuzsu]din[9..0] won 08 { 000 1 00Fn | 00 | 6oon | 0uch [0B | G0an o0

B mpalchrol32:chrol32|chrol-chrols[o].chiolfitersiters|zsuzsuldou9-.0] won T o8 T 0oon [oon | ooen | con [00ch [008 [own | o0

* Icore:i 0]. f

d[9..0] 00AR
0 D
] o
mask[L.0] 2n

Figure 9b Processing the input data

Waveforms for DFU module given in Figure 10.

o o @ 2015407113 0948.10 (0. s 12 \

Type |Allas — I ol Teus B Ths T) EED Tizm T T Tous T 52|
* Swio] i
b Icore: chrols[0].chrol|dfudfulrstb T
B chrols{O] hroljdfudulclk T AR A A AR A AR ARAAPAATAR LA AP AA.
* chrols[0].chrol|dfu:dfulDR 1
* chrols[O].chrol|dfu:dfulfiag 1
3 chrols{O].chrol|dfu:dfulw 1])
e] 0zn [T T 002n
.0] oo [T Qwsn
9 ovsn [T 09n
9 o0zn T T 02h
] 066 T 066h
] 066 [T 056n
p o i
log: Trig @ 2016/07/18 09:48:10 (0:0:0.1 elapsed) 52 |
Tyme | Alies Name [Ee BhE £ S Tam SO To Tous 07 o o ToBuE Tis
* SW[0]
* lcoresi_t x
* lcoresi_t x
2 lcore:i_: dfulDR [L
& lcoresi_s chrols{0].chrol|dfu:dfulilag | 1
kil Icoreri_s chrois{0].chrolldfu:dfuftw
fcoreri_ chols[0] chroljdfu:afuldin9..0] 00%h T oosn | ooon | ooen | ooen | ooon | ooch | ooer | ooaR | Gith
Icore:_s chrols[0].chrol|dfu: 0] 008h [oo8n | oooh | ooFn | ooEn | oobh | ooch | 00Bh | 00AR | 00%h
Icore:_s chrols[0].chrol|dfu: 0] 066h [0san [0s8n | osch | 0sDh | 0sEn | 05en | 060h | 061 | 062n | 083h | 0s4h | 06sh | 066h
Icore:_s chrols[0].chrol|dfu:dfulcnt[9..0] 002h 0030 | 00ah | 005h | o06h | o07n | ooBh | 0osh | 00An | 00Bn | ooch | 00Dh | ODER | 00Fh I 002h
Icore:_s chrols[0].chrol|dfu:dfujdout[9..0] 002h I 009h [ooeh | ooon | oorh | ooeh | oobn [ooch | ooBh [ooAn | 009h T os6n 00Fh I 002h
Icore:i_s chrols[0].chrol|dfu: 0] 066h [0san [0sBn | osch | 05Dh | 05En | OsFh | 060k | 061h | 062h | 063h | 064h | 0650 | 0660
Icore:i Chrols[0].chroldfu:dfuftc[9..0]

[os6n { os7n | osen | Ossn | OsAn | OsBn | OsCn | G50 | Osen | Oseh | 06oh | Oein | O6zn | Oesn | Oean | oesn | oeen | o6zn | oeen | oaeh | 0eAn | OeBn | 06Ch | O6Dh | Oeen Jookn

Figure 10b Assertion of flag coming from ZSU. Formation of DFU data

Waveforms for ring_buffer module given in Figure 11.

log: Trig @ 2016/07/18 10:56:30 (0:0:0.2 elapsed) #2 |
Tyme | Alles Nerme (T 0 37 Fas T Thw o s A o0 o0 £ B2 EZT o Ao
* chrolfring_buffer:ring_buffer|rstb_10 [|
* chrolfring_buffer:ring_buffer|rstb_32 [1
2 looreii A —
% looreii 0 N 00 AT AT AN ATV LTSRN AN
B3 Icore:i_s chroljring_buffer:ring_buffer|tw 5 [
B e chrolring_bufterring bufierfag| 1
pajchrol32:chrol32|chrol:chrols[0] chroljring_bufferring_buffer|dinf9..0] [T 0020 T 0020
Iroljing_bufferring_buffer|storeHeader[49..0]
chrols{O].chrollring_buffer ring_t 0 50 o | Son S5
Ilring_buffer:ring t /_2048x10:datajmem_out[9..0] 00%h 00ch T (e Ooch
ing_buffer:ring t /_256x10 _ou9..0] 30 3550 3360 T
hrols{0] chroljring_buffer:ring_t 0] on on on o
¥ chrols[0].chroljring_buffer:ring._t
i ampalchrol32:chroi32|chrol.chrols[0].chroljring_buffer:ing_buffern_empty
kil ampalchrol32:chroi32|chrol:chrols[O] chroljring_buffer:iing_buffer|n_wr_en
kil ampajchrol32:chrol32|chrol:ehrols[O]. chroljring_buffer:ing_buffer|h_rd_en
hroi32:chrol32jchrol chrols[0] choljring_buffer:ring_bufferjn_ra_pt[7..0] Fon o AR o
hrol32:chrol32chrol:chrols[0] chroljring_buffer.ring_bufferjn_wr_pt[7..0] 0h o AR T
ehrol:chrols[O].chroljring_bufter:ring_t 2.0] T n h i
hrollring_buffer-ring_ ize[9.0] 500 [T [o0
¥ ampajchrol32:chrol32|chrol.chrols[0] chroljring_buffering_buffer|d_wr_en
¥ ampalchrol32:chrol32|chrol.chrols[0].chroljring_buffering_buffer|d_rd_en
; 0} cholring_butterzing_buteria_wr_pq20..0] [T 2 T e
B (01.chroling_buffer:ring_bufferld_rd_p[10..0] | Fm 2 306
® chrolring_buffer:ring_buffer|DR |
® ‘chrols[0].chrol|ring_buffer-ring_buffer|d_full |
E chrols[O].chrolfing_buffer:ring_t o [T Wrn T G W T o0h
E chrols[0].chroljring_buifer.ring_bufterjn_wr_mux(9. 0] 3550 T 3560 1T 3560 T 357h
Z s :chrols{0] chrollring_buffer:ring_buffer|n_full
E chroi32:chrol32jchrol:chrols[0] chraljring_buffer:ring_bufferdata_truncated
* chrols[0].chroljring_buffer:ring._t

Figure 1la

ring_buffer waveform test

log: Trig @ 2016/07/18 10:56:30 (0:00.2 elapsed) #2 [
Type | Al — T Teus EAT Tus g EXT EeT g Tins
e als[0].chrollring_buffer-ring_bufferlrsth_10
P als[0].chrollring_bufferring_buffer|rsth_32
i Icorei IREp IRy i I IR I g I I IR IR IR IR g I I I I IR I U R T
i Icorei e B O U Sy S N ey Y Sy S S [y
Icore:i_s .chroljring_buffer:ring_butfer|tw | |
reii_s j_buffer:ring_buffer|iag
<hroljfing_buffer:ring_buffer|din[9..0] %z
|_buffer:ring_buffer] [49.0]
hrollring_buffer.ing o Saon T Toon 1 D D A T A D A A " O EF
Jing_bUfer:ring_L y_204@ out(9.0] oo Y D O T B och
ing_buffer:ring_t 256410 _out(9.0] Soon T Toon . o
rol:chrols[0].chroljring_bufter-ring_L o o T n Jzn)anlan]on] 0 T o
* chrols[0].chrollring_buffer ring_ I]
¥ Jchrol chrols[0].chroljring_buffer:ring_buffer|h_empty 1 f
¥ Jchrol chrols[0] chroljring_buffer:ring_buferjn_wr_en T 1
B Jchrol chrols[0].croljring_buffer:ring_bufferjh_rd_en
hrok Ghrolring_buffer:ring_bufferih_ra_pt[7..0] AR [FBn[Fcn]Fon Fen] [
hrok Ghrolring_bufter:ring_bufferh_wr_pi{7..0] FAR [Fen | Fon | _FomnJ Fen] P
(0].chroljring_buffer:ring_ 3.0] m = T & T T & 1 7w T oo | I
chrals{0].chroljring_buffer.ring_bufter|size[9..0] Goon T S D S S O A O O A A 000
B Jchrol chrols[0].chroljring_buffer:ring_buffer|d_wr_en
B Jchrol chrols[0].croljring_buffer:ring_bufer]d_rd_en f
B o Chiolring_bufter-ring_buferld_wi_pi[10..0] o
B o chrollring_buffer:ring_buffer|d_rd_pi[10..0] e O D O D O A A 060
B reii_:) bufferiring_buffer|DR
B s chrols[0].chroljing_bufferring_buffer|d_full
B o chvolring_bufter:ring_t o Sor T [
< ‘0l32:chrolz|chrol:chrols[0].chrollring_buffer:ring_bufferjn_wr_mux(9..0] E T I T | m
B s chrols[0].chroljing_bufferring buffer|n_full
B chrol32:chrol32{chrol:chrols(o].chrolfing_buffer:fing_bufferjdata_truncated
* chrols[0].chrollring_buffer ring_

Figure 11b When the time window ends then forms beginning of a packet

log: Trig @ 2016/07/18 10:56:30 (0:0:0.2 clapsed) #2 [

Type [Aies Name T . =T . o . 25 . = o o 7 D B e
32| chrol:chrols[0].chrolring_buffer ring_buffer|rstb_10
32| chrol:chrols[0].chroljring_buffer ring_buffer|rstb_32
2 Icoreri_: |ck32 5y oy S e Y o Yy Y s S Y s ey Y ey o Y o Y Y s Sy
& leoresi clk10 1 [1 | 1 | 1 | 1 | 1 | 1 | 1 —
lcore:i_s l:chrols[0] chroljring_buffering_bufferfw I
revi s chrols[0].chrol|ring_buffer:ring_bufferjflag
hrol|ring_buffer:ring_t s 149..0]
alchrol hrolring_buffer:ring_t] 336h g 1380 M o1En ¥ ooFh X 1EAn ¥ 857h _ 008h ¥ ooBh
Ilring_buffer-ring_t /2048 _out[9.0] 005h ¥ _ooBh
B2 ols[0].chrol|ring_bufferring_bt [
E2 Jchrol! hrol|ring_buffer:ring_bufferjh_empty
E3 Jchrol hrol|ring_buffer:ring_bufferjh_wr_en [
B3 Jchrol hrol|ring_buffer:ring_buffer|h_rd_en |
hrok chrollring_buffer:ring_buffer|h_rd_pt[7..0] FAR FBh FCh_¥_FDh_}_FEN FFh
hrok chrollring_buffer:ring_buffer|h_wr_pt[7..0] FAN ¥Bn FCch FDh FER FEh
Jchrol hroljring_buffer:ring_buffer|d_rd_en
hrol[ring_buffer:ring_buffer|DR
0132:chrol32|chrol: chrols[0].chrol|ring_buffer:ring_buffer|h_wr_mux[9..0] 356h 1330 O1ER [z 1EAN 357h
.chrol32:chrol32|chrol:chrols[0].chrolfring_buffer:ring_buffer/data_truncated
sampalchrol32:chrol32|chrol:chrols[0].chrol|ring_buffer:ring_t
Figure 11c The end of the time window. Formation of header
log: Trig @ 2016/07/18 10:56:30 (0:0:0.2 elapsed) #2 |
Type | Alias — I BIus,))) T30S) s) oS,) 336us) TS) AU |
2 sampajchrolaz:chrola2|chrol: chrols[0].chroljring_buffer:ring_buffer]rsto_10
* sampalchrol32:chrol32|chral: chrols[0].chroljring_buffer:ring_bufferjrstb_32
i Icore:i_sampajchrol32:chrol32|cik2 Iy s s Sy Y Y e Yy Y Y o Y Y Y e s Y sy s Oy Iy
g lcore:i : [1 [1 [1 [1 [1 [1 [1 [L
* Icore:i : chrols[0].chrolfring_buffer:ring_bufferjtw
* is chrols[0].chrol|ring_buffer:ring_buffer|flag
hrol;)_buffer:ring_t s 0]
ajchrol: chrols[0].chrol|ring_buffer:ring_t 0] 1330 f{_OLEn ¥ 00Fh ¥ 1FAn j¥ 35vn X 003n ¥ 00Bh K_00Dh OOFh X ODER X 00D % 00Ch ¥ _00Bh X OOAR ¥ 008) O66n X OOFh j 337h
liring_bufferring_t /_2048x 1_out(9..0] 008h ¥ 00Bh_¥_00Dh {_0OFh ¥_ODEn _00Dh f 00Ch X¥_00Bh ¥ O0Ah j 009h ____§ O66n }_OOFh } 00Ch
ing_buffer:ring_t /_256x10: _out[o..0] 133 {{_OLEn ¥ 00Fn f{_1EAh ¥ 357n) S
fol.chiols[0].chrolfring_buffer-ring_t 0 Oh X h ¥ on 5h Y 6h X oh
¥ 32|chrol:chrols[0].chrolring_buffer:ring_t i I
* ampachrol32:chrol32]chrol:chrois[0].chrolring_buffer:ring_bufferjn_empty I
. ampalchrol32:chrol32]chrol:chrols[0].chrol|ring_buffer:ring_bufferjn_wr_en 1
*. ampalchrol32:chrol32|chrol:chrols[0].chrol|ring_buffer:ring_buffer|n_rd_en [L
hrol: chrol|ring_buffer:ring_bufferjh_rd_pt(7..0] FAh FBh FCh_J_FDh ¥ FEh FFh
hro: chrollring_buffer:ring_bufferjh_wr_pt[7..0] ___Fbh FER Frh
* :chr hroljring_buffer:ring_buffer|d_wr_en
* :chr hroljring_buffer:ring_buffer|d_rd_en
i chrols[0].chrolring_buffer:ring_buffer|d_wr_pt[10..0] 306h
B ‘chrols[0].chrolring_buffer:ring_buffer|d_rd_ptf10..0] 2FTh 2Foh_}_2roh X 2FAh j 2FBh } 2FCh } 2FDh) 2FEh X 2FFh)} 800h } 301h) 30?h X 303h }_504h } 505h 306h
* chrols[0].chroljring_buffer:ring_buffer|DR
* i chrols[0].chroljring_buffer:ring_buffer|d_full
E ol chrols[0].chrollring_buffer:ring_bufierjnum 10bif9..0] 00Fn X Goth
B ‘0l32:chrol3zchrol:chrols[0].chroljring_buffer:ring_buffer|n_wr_mux[9..0] _ 16An), T
* i_s chrols[0].chroljring_buffer:ring_buffer|n_full
. chrol chrols[0].chrol|ring_buffer:ring_bufferjdata_truncated
*. 32|chrol:chrols[0].chrollring_buffer:ring_t

Figure 11d The end of the time window. Showed packet of data

Waveforms for serialoutO module given in Figure 12.

log: Trig @ 201607418 11:0354 (00:0.1 elapsed) #1 |
Type] Al = [ol T30 Fa TEE T2h Toe o7 T o T B g EZm ThiE B
% Icorei_) 32| i
¥ =y , 320] ;
i Icore:i_:]
Icore:i_s 0
< r : louto|dataTypeMux[9..0] 1550 I 155 | 1550 | I 1550
B2 Icorei_s T T T
P [1 N 1
¥ Icore:i s
¥ Icore:i s
2 1 | il
¥
p 1
ol Tocn Tl T N | Toon TN Teen
alchro i a
9.0
Jchrol 0]
p Icorer s
Jenror 0] P
pajchrol 1013..0) |
pajchrol e
K 0] U

o il © 2150713 10954 (000 1 speed 11 |

Figure 12a serialoutO waveform test

e = - Zew - =T - o - = - £ - = - £ - EED
g Icore:i_ Ofrsto_32
3 el O'serialouDjrstb_320
¥ leore L1 rr i1 e e e 1 r1 T rer
i leore:i_s chrol32jck10 | 1 [1 [1 [1 [1 [1 [1 [1
E T 0:serialouto)] 0 155h 033h X} _o1en oo ¥ 06An i 1eFn XX oooh " 008nh Y 00Dh) 00Fh Y 00ER X 00Dh X_00Ch) 00Bh X 0DAR 00%h A_086h %{_00Fh X 155h
% Icore:,_ 0PR
B2 Icore:i_s 0jdrC. [
¥ Icore:i OjaHB
¥ Icore:i OjdN
B -
¥
o -
0[din0[9..0] 5o O1ER ¥_ooFn)_0eAn ¥{_18Fn [O06n _¥_00Dn _o0En 0D Y_o0Ch 4{_008h X_00An o0h O66h _)_00En Toen
alchrot o
i 19.0]
ampalchrol32:chrol a
% Icore:i_ Ofstart
Jchro: OlcountStan(2..0] an
palchrol32:col B e T R
B pajchrol32:chrol
B

Figure 12b Getting data from the ring_buffer module. Copying data in register

dataTypeMux

log: Trig @ 2016/07/18 11:03:54 (0:0:0.1 elapsed) #1 |
Type | Allas Name Jozees EZ - T - o - 2 - g - 20 - e - g2
x Icoreri_ |serialout0:serialoutjrstb_32
2 el s Ofrstb_320
! lcorei_s |clk3: 1
2 Icorei_s [
< PEMUX(S..0] SoDh Gorn {T= ouDn
2 Icore:t (0:serialouto|DR
g Icore:t ; 0:serialoutojd
B Icore:t ; ©:serialoutOdrHB
E2 lcorei (O:serialouto]drN
? K
¥ i i
2 E
0/din0[9..0] 000k 00Fn O0ER 00Dh
o] T5n
Jchrol finHB[0..0] IR
ampalchrol 0 0000
¥ Icorert_ |serialoutd:serialoutDjstart
B Jchrol ' OlcountStan(2.0] -
palchror3z chro 3,01 (8 /(00)(_h (2)(3h X 4h (5)_h X h (8 X_8h X 0h (3 X 20 X 3h 3 an X Bh 6 X _Th X Bn) sh O X h (7 X S @) s X e) s (e on)
pajchrol 0] Z000h {_006h 3{_003n {001 000 007 { 0030){_001n 000N G07h ¥_003h_{_001h 000n 006
% i3 910 e e

Figure 12c Sending data through serial interface

Waveforms for heartbeat module given in Figure 13.

log: Trig @ 2016/07/18 11:10:46 (0:0:0.0 elapsec)

Type [Alias Name
% Icore:i_ 0
% core:i_
E core:i_ chroi32/ck10

. chrol atlbCrossCount[19..0]

3 10ssCount[19..10]_0AIn
ol rossCount(9..0]__25en NEL DR
5-...0: rossCount_reg[19..0]
Count_reg[19..10] |__0A0r AN [
rossCount_reg[9..0] |__3AEn 2Deh TAEn

i i [9.0]_owm o1 30Fn_)_aAEn }_oaon o1

reii_ o o o1 30Fn)_aAen }_oaon ot
* hrol|ring_bufer:ring_bufferftw| 1
¥ core:i_sampalho_trg o 1
Icore:i_s toeat|DR 0 | 1
% Icore:i_ o 1
S alchrol TypeMux{9..0]— 1550 T56n O1Fh SDFh_)_GAEh J,_0AOR 155h
B 2.chroi32|chrol:chrols{O].chrolring_buffer-ring_t 0
g core:i_ erialout0DR T
¥ Icore:i_s 0 1
ol chois{0].chrollring_buffer:ring_bufferiDR |___0
3 coreri_ ojdrc o

Figure 13 Heartbeat waveform test

Operation of the ZSU module

Initial conditions:

frequency = 10 MHz;

1 sample = 1 period = 0,1 us;

ns_e (number of sample per event) = 300;

the width of the time window = ns_e * period = 300 * 100 = 30 us;
ns_s (number of sample per signal)= 8 ;

The width of the signal = ns_s * period =8 * 100 = 0,8 us;
Number of sample per header = 5;

Number of presamples® = 2;

Number of postsamples?® = 3;

Number of Number of Number of Number of sample | Number of sample
signals on | sample per input| sample per per packet when per packet when
top base line signals payload ZSU filter enabled | ZSU filter disabled
0 0 0 5 307
1 8 15 20 307
2 16 30 35 307
3 24 45 50 307
4 32 60 65 307

packet = payload + header;

payload = Presamles + ns_s + Postsamples + TC® +CS*;
payload 0 = 0 + 0 + 0 + 0 + 0
payload 1 = 2 + 8 + 3 + 1 + 1
payload 2 = 4 + 16 + 6 + 2 + 2
payload 3 = 6 + 24 + 9 + 3 + 3
payload 4 = 8 + 32 + 12 + 4 + 4

1. Presamples is samples before the actual pulse arrives.

2. Postsamples is samples after the actual pulse arrives.

3. Cluster size (CS): 10-bit field containing a 0 to 1023 value that represents the number of
10-bit words on the cluster. It includes itself and the TC, as the sum of all clusters.

4. Time count (TC): 10-bit field, which contains the time from 0 to 1023 of the first valid
sample, locating the cluster data in time, as the time information is lost due to Zero
Suppression.

Conclusions

The limited set of SAMPA chip is manufactured and available for
evaluation. The test platform including a processor is required for verification the
chip and for check the chip conformance to specification. Present work is based
on the chip HDL description (SAMPAemu) which targeted for design testing
procedures. A concept for the test platform was designed using FPGA — equipped
Altera development board. An Idea is to provide test platform with embedded
RISC processor (Nios) as a board controller. Nios generates test vectors,
configuring mode operation of the SAMPAemu and initialize data processing.

The processor provides opportunity for check the work of the SAMPAemu
for any input data, i.e Nios can model signals from ADC. As firmware Nios and
SAMPAemu both synthesized in FPGA test procedures flexibility are achieved.

Nios takes few FPGA resources and can be synthesized in the width range
Altera chips, for example Cyclone Ill or MAX 10.

While developing test platform firmware system level debugging tool
SignalTapll was used. The tool allows to examine signals that are going to occur
anywhere within a circuit implemented in an FPGA chip. Important feature of
SignalTapll is the fact that it doesn’t spoil parameters of measured signals. This is
the guarantee that waveforms given in above is correct.

Further project development assumes to control SAMPAemu state via 1°C
interface. Also it is important to study operation of DSP (including Base line
correction and tail cancellation filter). The work performed above is base for future
development.

At the present time the chip SAMPA is very perspective solution for TPC
readout system design.

References

[1] https://indico.cern.ch/event/357738/contributions/848776/

[2] http://nica.jinr.ru/physics.php

[3] http://folk.uib.no/ave082/SAMPA/heitor _graduation_project SAMPA.pdf

[4] http://www.terasic.com.tw/cqgi-
bin/page/archive.pl?Lanquage=English&CateqoryNo=205&N0=816&PartNo=4

[5]ftp://ftp.altera.com/up/pub/Altera_Material/16.0/Tutorials/VHDL/Debugging
Hardware.pdf

https://indico.cern.ch/event/357738/contributions/848776/
http://nica.jinr.ru/physics.php
http://folk.uib.no/ave082/SAMPA/heitor_graduation_project_SAMPA.pdf
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=816&PartNo=4
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=816&PartNo=4
ftp://ftp.altera.com/up/pub/Altera_Material/16.0/Tutorials/VHDL/Debugging_Hardware.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/16.0/Tutorials/VHDL/Debugging_Hardware.pdf

