
JOINT INSTITUTE FOR NUCLEAR RESEARCH
Dzelepov Laboratory of Nuclear Problems

FINAL REPORT ON THE
SUMMER STUDENT PROGRAM

Investigation of Deep Learning methods for
the classification of events in the NOvA
experiment

Supervisor:
Chris Kullenberg
Oleg Samoylov

Student:
Denis Uzhva, Russia
Saint Petersburg State
University

Participation period:
July 01 – August 11

Dubna, 2018

Contents

1 Introduction 3
1.1 The history of the neutrino . 3
1.2 Neutrino oscillations . 4
1.3 Experimental investigation of the neutrino . 5

2 NOvA experiment 7
2.1 Introduction to the experiment . 7
2.2 The goals of NOvA . 8

3 Data analysis in NOvA 9
3.1 Data science and arti�cal neural networks . 9
3.2 Convolutional neural networks . 11
3.3 The task of classi�cation in the NOvA experiment 13

4 Improvements of the deep learning methods in NOvA 13
4.1 Motivation . 13
4.2 Ca�e framework and NVIDIA DIGITS . 14
4.3 Polar transformation of the datasets . 16
4.4 Python layers . 19
4.5 Simpli�cation of the NOvA's network . 19

5 Results 19
5.1 Application of polar transformation . 19
5.2 The main problem of python layers . 20

6 Conclusions 21

7 Acknowledgements 21

8 Bibliography 21

9 Appendix 23
9.1 Figures . 23
9.2 Tables . 27
9.3 Listings with code . 28

2

Abstract

With the rise of questions concerning the problems of the theory behind the phenomenon

of neutrino oscillations, more and more neutrino experiments are under development and

underway. One such experiment, NOvA, is supposed to tell the scienti�c comunity more

about νµ → νe (as well as ν̄µ → ν̄e) oscillations, νµ and ν̄µ disappearance channels, to

determine the order of neutrino masses, CP-violation phase in the lepton sector, and to

measure precisely mixing angles, as well as ∆m2 (squared mass di�erences). A brand new

approach of using convolutional neural networks has been applied in order to improve the

quality of NOvA's data analysis, bypassing the standard event reconstruction procedures.

The idea of combining the reconstruction with Convolutional Neural Networks (CNN) is

interesting, as it may help with increasing the degree of precision and perfomance speed.

Since the data is generally composed of particle tracks, emitted from an interaction point, we

have attempted to train NOvA CNN on images that have had a polar transformation applied

to each event, with the transformation origin located at the event's interaction vertex. In

this way tracks emitted from the vertex will be represented by a horisontal line, perhaps

presenting an easier data set for the network to learn from. We have shown that such a

dataset decreases the overtraining of the network, though, slightly reducing the validation

accuracy. Therefore, the future development of this method may be fruitful. Moreover, after

removing parallel inception layers, a simpli�ed version of the original NOvA network has been

shown to be much faster with little cost in accuracy. Therefore, simpler networks should also

be investigated further.

1 Introduction

1.1 The history of the neutrino

The premises for the introduction of neutrinos arised from the problem of beta decay, which
was the focus of such great physicists of the XX century as Wolfgang Pauli and Niels Bohr. Among
the three types of radioactivity: gamma, alpha and beta, the latter produced the most mysteries
because of its nature; being based only on the weak interaction [1].

During the investigations around the phenomenon of beta decay Lise Meitner, Otto Hahn,
Wilson and von Baeyer, and James Chadwick showed in 1914 that, contrary to expectations, the
particles of beta radiation emitted by 210Bi have a continuous spectrum. This observation seemed
to contradict one of the fundamental postulates in physics � the law of conservation of energy,
which is the basis of all the theories about our universe: from classical to quantum mechanics,
electromagnetics, relativistic theories � all of them submit this absolute rule of invariability of
energy [2]. By the way, not only did the conservation of energy seem to be broken: the conservation
of momentum appeared to not be satis�ed also. The results were so surprising and extraordinary
that even N. Bohr dared to propose rejecting or modifying the fundamental laws mentioned
above [3].

However, Bohr's bold idea, fortunately or not, did not eventually acquire as much preferences
of the scienti�c community as the hypothesis of Pauli, which postulated a new particle called a
�neutron�. It is necessary to mention that Pauli's �neutron� and the �actual� neutron, a part of
atomic nuclei, are not the same particle. The thing is, the �actual� neutron was proposed a little
later than the neutrino � and the name �neutrino� was given afterwards to Pauli's �neutron� by
adding the �-ino� ending in order to emphasize its smallness.

The one who named the new particle as �neutrino� was Enrico Fermi himself [2]. In 1933 he
developed the �rst theory of beta decay based on second quantization, similar to that used earlier
to describe the emission and absorbtion of photons. Fermi treated beta decay as a transition,
that was dependant upon the strength of coupling between the initial and �nal states of a particle
system, and the main result of his investigation is a relationship, which is now referred to as
Fermi's Golden Rule [4]:

3

λij =
2π

~
|Mij|2ρj,

where i and j are the initial and the �nal states respectively, λij is the transition probability,
Mij is the matrix element for the interaction, and ρj is the density of �nal states. In fact, the
Golden Rule says that the transition rate is proportional to the strength of the coupling between
the initial and �nal states, factored by the density of �nal states available to the system. Despite
the success of Fermi's theory, the nature of the interaction which led to beta decay would remain
unknown for about 20 years until a more advanced theory was developed.

As it was mentioned previously, beta decay occurs due to the weak interaction. This fact leads
to the idea that the neutrino is the most abundant particle in the entire universe, since it interacts
so rarely with matter and is produced in such large amounts in solar nuclear interactions. By the
way, beta decay is the process which has made it possible for life to exist on on Earth: in the
synthesis of four nucleons into one nucleus of helium, two electrons and two neutrinos inside the
Sun release 27 MeV of energy, which allows the Earth to be warm enough to harbor life [5].

1.2 Neutrino oscillations

The neutrino is associated with many mysteries of modern physics. One of the most puzzling
phenomenon is the existence of neutrino oscillations, or the ability of these particles to �transform�
into each other by change of their lepton �avor (i.e. a neutrino created with a speci�c �avor can
be measured as a neutrino with some di�erent �avor).

The history of the investigation of neutrino oscillations originated with the �solar neutrino
problem�. In 1946 italian-soviet physicist Bruno Pontecorvo proposed a method for detecting
neutrinos using chlorine atoms [6]. Although this method of experimental investigation had been
developed in the 40s, the �rst detector based on Pontecorvo's principle was constructed only in
1966 by Raymond Davis [2]. Having been situated at the Homestake mine is South Dakota, this
system was supposed to detect solar neutrinos, as the Sun is the best local natural source of
these particles (several billions of them penetrate through each squared centimeter of Earth per
second � here we can imagine how rarely they interact with matter as we cannot feel how they
a�ect us). After all the required measurements were perfomed, Davis compared the experimental
data of interaction rate with theoretical expectations. The result, however, was surprising: the
experimental rate was 2.5 times less than the one suggested by the theory � such a discrepancy
shocked the scienti�c community, which strongly believed in the success of their predictions.

According to the Standard Model, there are three �avors of the neutrinos: electron (νe), muon
(νµ) and tau (ντ) neutrinos. In 1957 Pontecorvo suggested the idea of neutrino oscillations [7]
� before any other neutrino particles, besides νe, were discovered. Although his �rst mode of
thinking was directed towards neutrino-antineutrino oscillations, just like it appears to occur for
K-mesons, he soon changed his mind in favor of the oscillations of �avor (the same year as Sakata,
Nakagawa and Maki came to the same hypotesis) [2] � the idea today we still believe in. The
hypothesis (afterwards a theory) of neutrino oscillations, by the way, was proposed when, besides
νe, no other neutrinos were discovered yet, which makes this theory a quite strong one by the fact
it predicts the solar neutrino puzzle.

The idea of neutrino oscillations allowed scientists to explain the solar neutrino problem de-
scribed above: the remaining 2/3 of all the sun's neutrinos simply were not registered as they
were muon and tau neutrinos. Moreover, the oscillation hypothesis gives neutrinos nonzero mass
� and this contradicted to the Standard Model at the time, according to which those particles
were massless.

A special 3x3 unitary matrix was named after the mentioned three japanese scientists and
Pontecorvo (Pontecorvo-Maki-Nakagawa-Sakata or just PMNS matrix) � this matrix can be often
found in papers about the subject � it contains information on the mismatch of quantum states
of neutrinos when they either propagate freely or take part in weak interactions (sometimes this

4

matrix is refered to as �neutrino mixing matrix�) [8]. The PMNS matrix, in fact, connects masses
and �avors of three active massive neutrinos, and is usually parameterized by so-called �mixing
angles� θ12, θ23, θ13, a CP-violating phase parameter δCP (it is worth remembering that in terms
of weak interaction there is no CP-symetry), and additional parameters representing the squared-
mass di�erences ∆m2

ji = m2
j − m2

i , where mi is the mass of i-th eigenstate of neutrino mass.
The models utilizing Pontecorvo-Maki-Nakagawa-Sakata paradigm are successfully con�rmed by
the experimental progress; furthermore, at present, nearly all the mixing parameters have been
measured. Nevertheless, there are still unknowns remaining: mass hierarchy (�gure 1 shows some
of the possible situations), absolute mass, phase parameter, θ23 octant, existence of other neutrino
types, and thus, there are many subjects of investigation. The neutrino masses and mixing angles
are supposed to be fundamental constants, therefore measuring their values is a very important
task for physics.

Figure 1: Neutrino mass hierarchy models

1.3 Experimental investigation of the neutrino

All the theories about the nature of the neutrino would have been nothing more than �ction
without appropriate experimental veri�cation. As described above, the �rst neutrino detector
was constructed by Raymond Davis in 1966 according to Pontecorvo's idea about using chlorine
atoms. The objectives of Davis' detector were relatively simple � simply count the rate of neutrino
current from the Sun. However, the results of this experiment allowed the scienti�c community
to accept the hypothesis about neutrino oscillations suggested by the italian physicist.

Further experiments are basically aimed at much more rigorous tests of the oscillation theory:
the parameters of the PMNS matrix are of particular interest. More and more results con�rm the
original intuition of Bruno Pontecorvo: discoveries of atmospheric and solar neutrino oscillations by
the Super-Kamioka Neutrino Detection Experiment (Super-Kamiokande) [9], Sudbury Neutrino
Observatory (SNO) [10], Kamioka Liquid Scintillator Antineutrino Detector (KamLAND) [11]
experiment between 1998 and 2002 have been recognized by the 2015 Nobel Prize in Physics
awarded to Arthur Mc Donald and Takaaki Kajita.

However, not only naturally acquired neutrino �uxes are in use for experiments: there are
several detectors exposed to arti�cally produced beams. One of those detectors is NOMAD [12],
belonging to CERN, � for this experiment the νµ current from SPS ring was used; NOMAD
obtained very precise data comparable with that gained out of bubble chambers, which gave an
opportunity for accurate reconstruction. Another facility is JUNO � a spherical detector externally
similar to KamLAND � this experiment uses a neutrino �ux from Yangjiang and Taishan Nuclear
Power Plants. Daya Bay, RENO and Double Chooz are also exposed to neutrinos produced by
nuclear stations. Finally, the NOvA experiment exploits the NuMI beam (which is also used
by MINOS, MINERvA, ICARUS, SBNE and DUNE experiments) produced by Fermilab � this
experiment is described in the second section of this paper.

5

(a) Scheme of NOMAD experiment (b) Scheme of JUNO experiment

Figure 3: Detectors exposed to arti�cally produced beams

Although the main aim of modern neutrino physics is the investigation of neutrino oscillations,
there exists a number of practical implementations of neutrinos. One of them deifnetly worth
mentioning is neutrino astronomy. In this �eld of study physicists were highly pleased during
the summer of 2018: the collaboration of the IceCube detector, localed in South Pole, have
published results of observations of a high-energy neutrino event from an extragalactic object.
This result shows desirable prospects for the use of neutrinos from distant astronomical objects
for observations.

(a) Inside the Sudbury Neutrino Observatory (b) Inside the Kamioka Liquid Scintillator An-
tineutrino Detector

(c) Inside the Super-Kamiokande (this room is usually �lled with water)

Figure 2: Atmospheric and solar neutrino detectors

6

Another experiment worth mentioning is Baikal Deep Underwater Neutrino Telescope, one of
the world's largest neutrino detectors. It was constructed to study high-energy muon and neutrino
�uxes and search for new types of elernentary particles: magnetic monopoles, WIMPs (massive
particles which can be considered as candidates to �dark� matter), and others.

2 NOvA experiment

2.1 Introduction to the experiment

The name NOvA stands for �NuMI O�-Axis νe Appearance�. This experiment is designed
in such a way that the detectors are penetrated by a directed arti�cally-created neutrino �ux �
the main bene�ts of the choice of using a human-made beam instead of cosmic radiation is its
controllability and the fact that `physicists have information about the kind of particles being
produced as well as their direction and energy.

NuMI (Neutrinos at the Main Injector) presently provides the most powerful arti�cal neutrino
current for many experiments [13]. Among them MINOS, MINERvA, ArgoNeuT, MINOS+,
MiniBooNE and, of course, NOvA. In order to produce the beam of neutrinos the protons from
Fermilab's Main Injector are used: they strike a target made of carbon, which causes the produc-
tion of mesons, kaons and pions, primarily. Then, with the help of magnetic horns, the mesons
are focused toward the beam axis, and eventually they decay into muons and muon neutrinos
with corresponding antiparticles during a travel in a long (almost 700 meters) pipe. At the end of
NuMI muons are stopped by layers of rock, which leaves us a nearly pure νµ �ux aimed slightly
downward at 3.3◦ in order not to let neutrinos �y into space.

Figure 4: Scheme of Neutrinos at the Main Injector

Figure 5: A photo of a NuMI horn

After the neutrino beam is created it travels 735 kilometers under the surface of Earth due to
its curvature, where it meets MINOS' detector. However, the further the beam propagates, the

7

wider it becomes � this fact allows us to use not only the stright moving neutrinos, but the ones
deviating by small angles. NOvA has two detectors � �near� and �far� � both of them use slightly
o�-axis (by 14 milliradians o� of the main beam line) part of the NuMI �ux, and while the near
detector is placed under the ground, the far detector is situated on the surface at the end of the
beam, so that the distance between the start point of neutrinos and the far detector appears to
be 810 km (see �gure 6). As the energy of protons being injected is 120 GeV and as the NOvA
detectors are exposed by the 14 mrad o�-axis part of the beam, the energy of neutrinos registered
by NOvA reach 2 GeV, which optimizes oscillation analysis in the �rst oscillation maximum.

Figure 6: Propagation of NuMI beam towards MINOS and NOvA research objects

Each of the two detectors of the NOvA experiment are, in fact, plastic parallelepipeds �lled
with liquid scintillator. While the near detector is not very large and heavy � only 300 metric-ton
� the far detector is huge: it is a 14 metric-kiloton structure, the size of which is comparable with
the size of an airbus � and, by the way, the far detector is the largest manmade free-standing
plastic structure in the world. Both detectors are constructed using highly re�ective plastic PVC
cells. Charged particles born in a neutrino collision event inside a cell produce light. With the
help of wavelengt-shifting �ber, the light then is collected by photo-detectors, thus the scientists
of the NOvA collaboration can reconstruct events as pictures [14]. Besides the di�erence between
the sizes of the detectors, there are some technical distinctions: being placed under the surface,
the near detector is less exposed to cosmic background noise than the far detector; it is also
worth mentioning that the relatively small size of the near detector costs the resolution of picture,
representing the data, as this detector simply has fewer cells.

Figure 7: A comparison of the NOvA far and near detectors (and the NDOS test detector) with
the size of an Airbus A380 and with an average human

2.2 The goals of NOvA

The NOvA experiment was organized primarily in order to investigate experimental evidence
in favor of the theory behind neutrino oscillations. The measurements of the mixing angles of
the PMNS matrix is of particular interest: non-zero value of θ13 allows NOvA to see νe oscilla-
tion events and determine precisely neutrino mass mixing parameters. Initially the NuMI beam
consisted mainly of muon neutrino particles, therefore detection of νe with certain energy and
direction implies νµ → νe oscillation (the same is true for antiparticles also), and θ13 itself helps
de�ne the frequency for this kind of oscillation. By the way, comparing νµ → νe with ν̄µ → ν̄e is
only sensitive to specify δCP , because it modi�es the probabilities of oscillation in opposite ways

8

for neutrinos and anti-neutrinos. In turn, measuring the δCP parameter will help us understand
the nature of the matter-antimatter antisymmetry

Another useful result is expected during investigation of the mass hierarchy. Nowadays scien-
tists are not sure if the ordering of neutrino masses follow the same pattern as the other particles:
generally, with an increase of generation a mass of a particle also increases.

Aside from the main tasks, there are several minor goals of the NOvA experiment. One of
them is measuring neutrino interaction cross sections. The investigations of sterile neutrinos, su-
pernova neutrinos, magnetic monopoles and non-standard neutrino interacions are also of interest
to physicists.

3 Data analysis in NOvA

3.1 Data science and arti�cal neural networks

Machine learning, the most popular branch of computer science today, is spread in a great
many areas of life. Aside from the purposes for consumers, there are plenty of ways of exploiting
machine learning methods in fundamental sciences, and it has found its role in particle physics
as well [15]. However, in order to explain how to apply the developments of computer science to
physics, it is necessary to understand the basic primary concepts of machine learning.

The idea of machine learning is usually associated with arti�cal intelligence, because, in this
paradigm, computers gain the ability to �learn� how to solve certain tasks rather than solving
them with clear, precise programmed instructions. The learning itself is supposed to be similar to
what we are used to understand as learning: a machine repeatedly guess an answer to a certain
question, and if the answer is wrong, we tell the machine it is wrong � then the computer adjust its
internal state in order to be more correct the next time we ask a question. It is supposed that there
is some dependency between questions and answers, which is not known initially, but which is the
goal of the computer to discover. The most strict de�nition of a machine that learns was provided
by Tom Michael Mitchell, a computer scientist of the second half of the XX century, and now this
de�nition is considered as a formal one: �A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P if its performance at tasks
in T, as measured by P, improves with experience E�. There one can feel the di�erence between
understanding the learning of a computer as a cognitive process and as an algorithmic operation,
however, totally dependent on data and less intuitively understandable. This reasoning may lead
one to thoughts about perception and consciousness of arti�cal intelligence, though computer
scientists tend to distinguish biological methods of thinking and their computer models: in Alan
Turing's paper �Computing, Machinery and Intelligence� the question �Can machines think?� is
replaced with the question �Can machines do what we (as thinking entities) can do?� [16].

A biological brain works according to the following principle: a brain is composed of so-called

Figure 8: A model of a biological neuron. Signals are received by dendrites, �process� inside the
cell body and then transport along the axon to the axon terminals, connected to other cells

9

neurons � they are cells, the purpose of wich is to receive an input signal and generate an output
based on everything that was sent to the input. These cells are connected with each other in
a certain way in order to receive and send signals from and to each other and other cells of an
organism. For example, when we hear musical sounds, the vibration of air forces the tympanic
membrane to vibrate also, then the vibrations, through the �exile system of tiny bones, are
transmitted to the cochlea where the signal is being converted into neural impulses. Dozens of
such impulses after the special treatment inside neurons eventually add up in our brains to what
we perceive as music. Technically, a similar principle produces consciousness: the information
from the world outside us as well as our own �inner voice�, passing signals from the inside to the
inside of the brain, allows us not only think, but observe, imagine, and create.

In order to provide computers the ability to learn, we generally use models of real biological
brains � they are called arti�cal neural networks (ANN or just NN). The neurons of an ordinary
ANN are usually some functions of several variables, called �activation functions�, and the den-
drites, called �weights�, are numbers. It turns out that in a neural network the inputs of a function
is either somehow combined outputs of another functions or the input data (like the perception
cells in out eyes); in turn, this function produces an output that is used by other functions, or to
check the response of the network to the data.

Usually neural networks are constructed with the layer architecture. Three types of layers
can be identi�ed: input (to where the data is fed), output (from where we receive the answers
of certain network) and hidden (the layers between the previous two) layers. The input data is
usually represented as a set of vectors or matrices, elements of which pass as arguments of the
functions in the input layer. Let's suppose we have only one hidden layer, for simplicity. The
outputs of the functions of the input layer are summed with some weight, and then fed into the
functions of the hidden layer. It is important to notice, that for each function of the hidden layer a
unique set of weights is supposed. The same procedure is performed when the signals pass further
to the output layer. A good visual representation of such a model can be seen on �gure 9, where
the network is supposed to guess the result of the forthcoming exams according to how much the
student slept and studied.

Figure 9: A model of an arti�cal network. X here is an input matrix of data; W
(k)
ij is a set of

weights from the i-th previous neuron to the j-th next neuron, k is a number of the weight matrix
Wij between layers k and k+1; Σ means summation of the weights; z(k) and a(k) are the arguments
and the values respectively of the activation functions f of the k-th layer; ŷ is the output answer
of the network

The main task of machine learning can be formulated as follows: for each given input the

10

network should give an answer, as correct as possible. This may be understood as the task of
approximating a function F (X), where X is a set of inputs and F are the correct answers to a
question. The learning process, technically, is the operation of adjusting the weights of a given
network � not the activation functions. The reason learnig is performed in this way is that it
imitates the real brain: all the activation functions are the same, like the biological neurons, and
the values of the weights can be compared with the strength of connections between certain brain
neurons. There are several methods of learning and ways of their realization, however, the most
e�ective and popular today is backpropogation: by comparing the output answer of the network
and the correct answer the so-called error funtion is determined, then the weights are adjusted in
such a way that the error function will be minimized (it is called gradient descent).

The weights are usually applied by multiplying them by the corresponding outputs of the
previous layer. This mechanism may lead to the understanding of neural networks as models
based on linear algebra with simple matrix and vector operations. However, quite often F (X)
is not simple enough to be approximated by a linear regression. Here activation functions may
provide assistance: the functions such as the logistic function or tanh, so-called sigmoid functions,
bring the desired nonlinearity � they simply squeeze extremely high or low values.

In fact, the considered case is extremely simple in comparison to the modern networks that
are used in, for example, computer vision, cybersecurity, speech recognition and, of course, data
analysis in physics. These ANNs have lots of hidden layers (so-called deep neural networks), and
the principles of the propagation of data through some networks are di�erent from those described
above. In the next subsection one of such modern networks will be considered in detail.

3.2 Convolutional neural networks

In the framework of the computer vision problem a method was developed for the viewing
of images by machines with an �understanding� of what is contained within, as humans do, �
convolutional neural networks (CNN). The main distinctive feature of this kind of network is
their dimensionality: as we deal with, for example, 2D images with one grayscale color layer, the
input data is supposed to be a matrix. The main idea of convolutional networks is to extract the
desired features using convolutional layers, reducing the data �owing into the NN. In these layers
a picture from the dataset is being convolved with a set of kernels � matrices of smaller size than
the picture. The convolution in this sense is element-wise multiplication of a certain part of the
image (of the kernel size) with a kernel, then the summation of the results of multiplication gives
the inputs for the activation functions. Generally, a kernel is placed on some corner of the given
picture, and during the data processing the kernel strides on the picture with certain step in that
way it eventually is convolved with each part of the picture. Visually this process is shown on the
�gure 10. The purpose of each kernel is to contain a certain feature (either a part of a line, or a
whole, for example, picture of a number), their abstractness increases as we move from the input
to the output, as the network is required to provide a relatively simple answer based on a complex
data like photos. By the way, the values in kernels are the only parameters being adjusted in the
convolutional portion of the network while learning.

ReLU (Recti�ed Linear Units) are used as an activation function instead of sigmoids. The
formula of ReLU is f(x) = max(0, x), and although it does not provide that much nonlinearity
as, for instance, tanh, it still works well. The main pros of ReLU are its computational simplicity,
which allows for the creation of deeper, better, but at the same time fast training networks; and
it is a solution to the vanishing gradient problem: with sigmoids, the very deep layers are trained
very slowly because of exponential decay of the gradient as the error function is minimized.

Besides the described convolution and ReLU layers, there exist several methods of data en-
hancement. For example, pooling layers allow the network to get rid of unnecessary data after a
convolution or ReLU are applied: the output of convolution is divided into segments, and in each
segment the maximum or an average number are taken, so as to reduce the size of the matrix,
while retaining important activation informationfrom the pattern recognition (kernel convolution)

11

process (see �gure 11). Another interesting kind of layer is the dropout layer. Sometimes the
problem of over�tting occurs in the network: this is the situation when the network has learned
the speci�c features of the training data too well, and it is unable to properly process any new
data set. In order to provide more robust training, dropout layers are exploited: while taining
they randomly set some of the weights to zero (this is illustrated on the �gure 12). This will tend
to produce a network that is more redundant, and better able to generalize to new data sets.

Figure 11: A pooling layer, which passes max number in a segment, reducing then the size of the
matrix

Figure 12: Dropout in a simple network

(a) A convolution with a step equal to 1 (b) A convolution with a step equal to 2

Figure 10: Schemes of convolutions with kernels

12

3.3 The task of classi�cation in the NOvA experiment

Convolutional neural networks are widely implemented in solving the task of classi�cation.
The goal of classi�cation is for each picture provided, the network should be able to determine the
category it belongs to: for example, determine if there is cat or dog on a picture from the dataset.
The same problem is arisen in the NOvA experiment.

The NOvA collaboration has already created a CNN [17]. It is able to classify neutrino events
based on the overall event topology by converting 12-bit energy readings from the detector cells
into unsigned 8-bit integers, and then processing these grayscale images through the network. As
the data from the detectors is represented by X-Z and Y-Z plane views, one data sample is a
�picture� with two layers for X and Y plane each, and the resolution of 100x80 (one of the samples
is shown on the �gure 13, one layer only). As there are 2 layers, the data sample initially is
separated in the network on two branches, then it is merged, as the answer is given with respect
to both of the layers. The diagram of NOvA's network is shown on �gure 25 in the appendix.
For our studies we will be using a CNN to classify neutrino events into 5 categories: νe CC, νµ
CC, ντ CC, NC (+other), cosmic background. Because the emergent lepton escapes the detector
without leaving a trace in neutral current interactions, it is not generally possible to separate
interaction types, and so all NC interactions will be lumped together. But for both CC and NC
the simulation samples for each neutrino �avor have comparable proportions. This is to allow the
network to learn features of each event type, regardless of their proportions in the data sample.

Figure 13: A simulated muon neutrino charged current event in the far detector

4 Improvements of the deep learning methods in NOvA

4.1 Motivation

Despite the fact that NOvA's network copes with its task quite well, there are still many
prospets for the improvement of classi�cation. This convolutional neural network was modeled
after GoogLeNet [18] � the deep CNN of Google made for the purpose of image classi�cation � by
its simpli�cation and adoptation to the 2 layer samples of the datasets.

GoogLeNet has proved to be an excellent image classi�er: it has been tested on the ImageNet
dataset [19]. In order to gain that degree of precision it was decided to construct this CNN using
mini-networks as modules of the GoogLeNet � so-called inseption layers; this architectue utilizes
network-in-network layers, or simply, NIN [20]. This approach, basically, allows for the reduction
of the dimensionality while still augmenting the learning capacity. The inception modules are, in
fact, complete conventional convolutional neural networks, each of them is supposed to recognize
some complex features. By the way, in order to reduce the risks of being stuck in a local mini-
mum, GoogLeNet uses a method called local response normalization (LRN), which normilizes the
responce of a cell in a kernel map accoring to the activity of adjacent kernel maps.

13

Figure 14: Diagram of the GoogLeNet, the inception layers are circled. The input is in the left
side. The network has three sofrmax outputs (three right white blocks)

The main simpli�cation of GoogLeNet for the purpose of neutrino event calssi�cation in NOvA
is the reduction of the number of the inception layers (see 25). However, this is not necessarily
the �nal version of NOvA's network. In order to provide training data Monte-Carlo simulations
are used. And in order to provide better training, huge datasets are required. However, the
enlargement of the datasets leads to enormous training times: for example, in order to train the
NOvA's network on a dataset of 300000 data samples for 30 epochs (full training cycles) it takes
approximately 8 hours on a single Tesla K40 GPU. For the best quality of training the network
needs datasets of several millions of pictures, but then the training time would increase up to
several days. Therefore, the investigation of methods of optimization and further simpli�cation
are of interest.

4.2 Ca�e framework and NVIDIA DIGITS

As neural networks are computer models, they are created with the help of special frameworks,
which support fast and convenient programming languages such as C++ or python. The most
popular neural network platforms are Tensor�ow, PyTorch, MXNet and, of course, Ca�e � the
one which has been implemented for developing NOvA's CNN.

In order to create a network in Ca�e, one should de�ne the layers as a kind of structured
data using protocol bu�ers (.prototxt �les) � an alternative solution of Google to replace the less
compact and slower XML format. Some examples of layers de�ned using protocol bu�ers can be
seen in the listing 1 in the appendix.

There are several parameters which are required to set up the learning process. As the back-
propagation proceeds, the error function is being minimized, and at each training iteration the
rate of minimization, namely, weight adjustment, is de�ned by the corresponding parameter of
the �base learning rate�. The word �base� here means that the learning rate is actually decreas-
ing during the training process in order not to leap around the minimum point. The methods
of decreasing learning rate are, for example, step decrease (the learning rate discretely drops by
a constant value at a set frequency during training), smooth exponential decrease, polynomial
decrease etc.

Suppose the error function is E, then its negative gradient is ∂E/∂wi, where wi is the value of
a weight on the i-th learning iteration. Then the process of updating a weight can be represented
by the following formula:

wi+1 = wi − η
∂E

∂wi
= wi − θi, (1)

14

where η is the learning rate and θi is a name for the partial derivative times the rate. A good
solution in order to prevent over�tting is to penalize very large weights, which is done by adding
a parameter of the weight decay λ, which works as follows:

wi+1 = wi − η
(
∂E

∂wi
+ λwi

)
. (2)

The λ is usually a relatively small number, however, if wi is large, the penalty will be signi�cant.
This formula is received by the di�erentiation of the regularization of the function E:

Ẽ(www) = E +
λ

2
www2.

Another learning enhancement is derived with including the momentum. Suppose θ1 is the �rst
update of the weighs, then the second one would be θ2. However, with the momentum parameter
µ it becomes θ2 + µθ1 � this means that if the speed of the gradient was fast on step 1 then, even
if the minimum is reached, the speed will still be pretty high, like if there is a descending object
having some mass. The momentum is introduced with a simple purpose: if we descend towards a
local minimum, we will probably overcome it as we came there with some initial speed, but if the
minimum is global, then the continuation of our way will be too steep even for such a speed.

There are some other special parameters of the network such as the snapshot rate � if the
network is learning too long or if the dataset is of bad quality, we are able to choose one of the
previous states of the network, as it was snapshoted during learning. Another parameter is the
rate of testing the network upon training: during a testing process the network does not learn,
but it is being tested by passing another, usually smaller, dataset through it in order to check how
accurate the network predicts answers on a certain step of the training. The maximum number
of training iterations is also de�ned as one of the parameters.

After the network is de�ned, the next step is to specify the path to the training and testing
datasets. The training supposes passing a certain amount of data samples � a �batch�, the size of
which is predetermined. Whilst the data is being processed, the wrong decisions of the network
are being accumulated. Then, with respect to those errors, the adjusting of weights is performed.
Generally, the whole training dataset, named �epoch�, passes the network several times during
learning. Eventually we obtain a trained CNN, which is capable of solving our initial task with
certain accuracy.

The Ca�e framework supports parallel GPU computation as well as CUDA. NVIDIA provides
the Deep Learning GPU Training System, or DIGITS, which exploits the Ca�e framework, has
a graphical interface, supports prototxt and is capable of showing real-time plots of the training
process, as well as pictures of kernels while testing on a single data sample. DIGITS was chosen
for realization of the ideas concerning enhancement of the classi�cation.

In order to present the capabilities of DIGITS, a simple default network called LeNet was
trained on the MNIST database, composed of 28x28 grayscale images with handwritten digits
from 0 to 9. The architecture of LeNet is presented on �gure 15, and the learning plot can be seen
on �gure 16. On �gure 17 the visual representation of some layers of LeNet during a one-sample
testing is shown.

Figure 15: Architecture of LeNet

15

Figure 16: The result of training of the LeNet on the MNIST database

Figure 17: Some of the layers of the LeNet during a one-sample testing (for a handwritten �5�)

4.3 Polar transformation of the datasets

The purpose of NOvA's CNN is to classify neutrino events without resorting to track recon-
struction. However, it is interesting to test a hybrid model: apply certain enhancements to the
initial data in order to improve the training accuracy and time. One such enhancement could

16

be the polar transformation of NOvA's data samples � this idea has come form the fact that the
pictures of the events are, roughly speaking, lines, outspreading from a certain point � a point
of an interaction of the neutrino with the matter of the scintillator. These lines and a point
from where they range along are called tracks and a vertex respectively. As the initial pictures
require the network to persue rotational invariance of the pictures relative to the vertex point,
the transformation of the dataset into the polar coordinates also replaces the rotations with the
translations along the angle axis. The hypothesis is, the CNN should adopt to the slight shifts of
an image along one axis better than to the indi�erence to the rotations.

In order to perform the polar transformation, one, foremost, needs to �nd the vertex point.
To catch it, it was decided to �rst reconstruct one track, or just a line that leads to that point.
The �rst step was to consider a picture as a cartesian plane and the points as values of yi = f(xi).
In order to test the simplest least square method of linear approximation of a set of points the
averages of yi, if there were several of them for a single xi, were taken. The approximation
equation is given by k ∗x+ b, and everywhere below the variables k and b mean the coe�cients of
this equation. Apart from the basic method the robust solution was also tested: after the initial
�simple� linear �t, the algorithm determined the points that are too far and considered them as
a noise, then, throwing away those points, another �simple� linear �t occured. As a result, more
precise approximation was developed (see �gure 18).

(a) �Original�: k = -0.4405, b = 51.04; far points excluded: k = -0.3468, b =
48.33; MATLAB bisquare robust: k = -0.3056, b = 46.93

(b) �Original�: k = 0.3089, b = 35.58; far points excluded: k = 0.3732, b = 31.81;
MATLAB bisquare robust: k = 0.3327, b = 34.36

Figure 18: Linear approximations of two events (1 layer). There are three kinds of �tting used:
�original� least square method � the red line; a method of cutting the outliers that are farther than
a certain multiple of the standard deviation of the �tting � the green line; default MATLAB's
method of robust �tting (same as the previous, but the outlying points are being chosen with the
bisquare method) � the blue line

17

However, the solution of taking the averages of yi appeared less e�ective than �tting the points
as they are (�gure 19).

(a) Using averages: k = 0.3327, b = 34.36 (b) Using initial points: k = 1.721, b = 20.93

Figure 19: Comparison between uning and not using average points of the vertical axis, MATLAB's
robust �tting with the bisquare penalty

This algorythm was eventually rewritten as a python script. In order to �t points, the function
�least_squares� of the package scipy was exploited with the value of �loss� set as �cauchy�, which
provides the strongest penalty to the outliers. Another step of obtaining better �ts was the 2-
iteration �tting: after the �rst robust �t, some of the outliers are being cut, then the same second
robust �tting is applied. It is worth mentioning, that the approximations were performed for
the pictures with their right half being cut: sometimes the secondary interactions appear farther,
therefore some of the tracks can be curved or even broken.

In the case of NOvA's training images, the tracks on the pictures are usually begin on the
leftmost part of the image, so that there is no need to �t a second track (which, in fact, does
not even always exist) in order to �nd the intersection of the lines. The algorithm of picking a
vertex point is the following: for the function of an approximation t(x) the points closer than
some small value are being found, and the search is being conducted from the very leftmost part
of the picture; then the leftmost nearby point, x0, is put into the approximation function; �nally,
the rounded value of t(x0) is considered as y0, so that the pair (x0, y0) are the coordinates of the
vertex point.

Ca�e networks use high-perfomance Lightning Memory-Mapped Databases (LMDB). The data
stored in a .lmdb database can be easily obtained with the help of the pyCa�e package for python,
and it is represented as arrays with their labels (labeled pictures). In order to perform the polar
transformation with visualization the corresponding training and testing datasets were extracted

(a) Non-transformed (b) Transformed

Figure 20: Two samples from a standard and a transformed datasets. Two X and Y layers
represented as two PNG color layers

18

as PNGs. Then, after the modi�cation, the pictures were converted back to a new dataset. Two of
the datasamples, one from a standard and one from a transformed database, are shown on �gure
20. The python polar transformation function can be examined in the listing 2 in the appendix.

4.4 Python layers

There is a possibility of using the polar transformation on-the-�y: it is feasible to convert the
function, which takes a NOvA data sample and outputs a polar transformed version of it, into
a new layer inside the CNN. In DIGITS these python layers can be simply implemented. The
python layers are kept in one python script as classes, each containing functions, wherein all of
them are used in a certain part of the training. There are several required functions to be de�ned
in a layer class: forward() and backward() � the former determines how to process data in the
layer, while the latter reacts to the gradient descent and is supposed to be used in learning.

4.5 Simpli�cation of the NOvA's network

Alongside with the methods of combining very basic reconstruction with CNN, the network
itself can be modi�ed into a simpler version and then compared to the original by their learning
capabilities. This is particularly interesting, as such simpli�cation could reduce the learning
time. It is also interesting to compare how the original and a simple networks react to the polar
transformation of the datasets: how this modi�cation of the images a�ects the accuracy and
stability.

The �rst simpli�cation of NOvA's CNN was the removal of the parallel inception modules.
The resulting diagram of the network can be seen on �gure 26 in the appendix. The other ways
of simplifying the CNN have not been performed yet.

5 Results

5.1 Application of polar transformation

In order to compare the behaviour of NOvA's network with the transformed and non-
transformed datasets, the corresponding train-test operations were performed in DIGITS. In fact,
there were three kinds of non-transformed databases: small � with 2,000 samples, medium � where
their count equals 20,000, and large, or �full�, � 291,962 samples. For each of these datasets their
transformed analogs were prepared. The purpose of the smallest dataset was primarily to test
new features, while the full LMDB was used as the main dataset for serious trainings.

For the �rst stage, the default NOvA CNN was tested, the correspondong plots are presented
below (�gure 23 in the appendix). It can be seen, that polar transformation appears to reduce the
risk of overtraining, while only slightly reducing the overall accuracy. We can compare the two
plots with the most signi�cant di�erence (see �gure 21) and calculate the corresponding di�erences
of accuracies (∆a) and testing losses (∆lval) at the �nal iteration of the training (the numbers
are from table 2). The quoted relative di�erences will simply be the di�erence between values,
divided by the average. The relative di�erence between the test and train loss (∆ltt) for each plot
will give some measure of the network's over training.

The next step was to test the diminished CNN, without the inception modules. The result
is shown on �gure 24 in the appendix. According to the plots, the polar transformation helps
the simpler CNN in the same way as it augments the data for the standatd network (see �gure
22, where the most qualitative example is shown), however, not that signi�cantly. This data
modi�cation again slightly reduces the overall training accuracy. We can also see, that when the
standard network is simpli�ed, the relative drop in accuracy is very small, especially for the largest
datasets: ∆a = 1.0%.

19

(a) Standard CNN trained on the medium
LMDB. Training time 31 minutes, 57 seconds.
∆ltt = 183.5%

(b) Standard CNN trained on the medium
transformed LMDB. Training time 32 min-
utes, 4 seconds. ∆ltt = 25.8%

Figure 21: Improvement of the validation loss with polar transformation (standard CNN). Relative
di�erences between standard and transformed datasets: ∆a = 0.4%, ∆lval = 36.6%

(a) Simpli�ed CNN trained on the medium
LMDB. Training time 22 minutes, 8 seconds.
∆ltt = 116.0%

(b) Simpli�ed CNN trained on the medium
transformed LMDB. Training time 22 min-
utes, 41 seconds. ∆ltt = 87.0%

Figure 22: Improvement of the validation loss with polar transformation (simpli�ed CNN). Rela-
tive di�erences between standard and transformed datasets: ∆a = 1.5%, ∆lval = 8.2%

The reason the accuracy reduction happens could be the data loss while the polar modi�cation
is processed: some of the points far from the vertex, even if they are visually separated from each
other, can have the same rounded polar angle. At the same time, two pixels close to each other
and also to the vertex may di�er on relatively large angles, so that on the polar transformed image
of these pixels appear to be rather far apart. Also, it is necessary to mention that the decision to
dispose of the incepton modules did not dramatically a�ect the accuracy and the validation loss.

5.2 The main problem of python layers

While the implementation of the python layers seems to be a great solution, there is one major
problem: these layers causes bottlenecks, because now it is not possible to process those layers
using the high perfomance GPU. Instead, the python layers tend to prefer CPU. Thus, despite the
attractiveness of this approach, it appears to be unworkable. However, this problem is, no doubt,
solvable (by using PyCUDA, for example).

20

6 Conclusions

We have applied a polar transformation to the NOvA training MC, in the hopes of creating
a dataset that will allow the network to learn more quickly, or in a more robust manner. The
hypothesis is that the translational symmetry of such a dataset will provide simpler patterns for
the network to learn than the rotationally symmetric raw event data. We have showed that this
modi�cation to the data reduces the risk of over training the network, making it more robust,
and better able to generalize when given new data. However, this modi�cation does slightly
reduce the overall accuracy of the network, but only by a marginal amount (<2%). A simple
vertexing method was developed in order to perform the polar transformation of the events. It
would be interesting to investigate improvements in the vertexing, as well as improvements to the
transformation method (for example, rescaling the transformed data samples to higher resolutions
in order to avoid the loss of data when mapping pixels to polar coordinates).

We also attempted to simplify NOvA's CNN structure. Removing parallel layers in the network
a�ected the accuracy by a very small amount, while reducing the training time by a factor of 1.5
or more. Such modi�cations would be useful for the NOvA collaboration to investigate, as one of
the main issues with trying new CNN methods is the training time required for each test.

Another interesting possibility is the implementation of python layers in the network that
exploit the GPU, allowing for on-the-�y calculations or modi�cation of the data (raw or within
the network). Currently our Python layers produce a bottleneck due to their reliance on the CPU
for calculation. Additionally, the datasets themselves could be augmented with an additional
third layer, which could be �lled with basic reconstruction information that may help the network
to learn more quickly or more robustly (track fuzziness, number of tracks, or hits per track, for
example).

7 Acknowledgements

A very special gratitude goes out to Chris Kullenberg, a member of the NOvA team, for his
expert advice and encouragement during this project, as well as to Oleg Borisovich Samoylov, also
a member of NOvA, for accepting and inviting to the JINR Summer Student Program. Also, I
would like to thank the JINR organizing committee for providing the opportunity to participate
in SSP. In addition, I wish to give thanks to JINR for providing the facilities and funding.

8 Bibliography

References

[1] T. D. Lee (1987). History of the weak interactions. CERN Courier, January/February 1987,
pp. 7-12

[2] C. Kullenberg (2018). History of Neutrino Physics. http://astronu.jinr.ru/wiki/index.
php/File:Ckullenberg-phil-essay.pdf

[3] D. Verkindt (1999). Neutrino history. https://lappweb.in2p3.fr/neutrinos/anhistory.
html

[4] K. S. Krane (1955). Introductory Nuclear Physics. ISBN-13: 978-0471805533. ISBN-10:
047180553X

[5] G. Rajasekaran (2014). Fermi and the Theory of Weak Interactions. Resonance (Indian
Academy of Sciences, Bangalore), vol 19, No 1., pp. 18-44 arXiv:1403.3309

21

http://astronu.jinr.ru/wiki/index.php/File:Ckullenberg-phil-essay.pdf
http://astronu.jinr.ru/wiki/index.php/File:Ckullenberg-phil-essay.pdf
https://lappweb.in2p3.fr/neutrinos/anhistory.html
https://lappweb.in2p3.fr/neutrinos/anhistory.html
https://arxiv.org/abs/1403.3309v1

[6] M. Blennow (2007). Theoretical and Phenomenological Studies of Neutrino Physics. ISBN 978-
91-7178-646-3

[7] B. Pontecorvo (1967). Neutrino Experiments and the Problem of Conservation of Leptonic
Charge. Sov. Phys. JETP 26 984-988, Zh. Eksp. Teor. Fiz. 53 1717-1725 http://inspirehep.

net/record/51319

[8] C Giganti, S Lavignac, M Zito (2017). Neutrino oscillations: the rise of the PMNS paradigm.
Prog. Part. Nucl. Phys. 98, pp. 1-54 arXiv:1710.00715

[9] Y. Fukuda et al. (1998). Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett.,
vol. 81, pp. 1562�1567 arXiv:hep-ex/9807003

[10] Q. Ahmad et al. (2002). Direct Evidence for Neutrino Flavor Transformation from Neutral-
Current Interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett., vol. 89, p. 011301
arXiv:nucl-ex/0204008

[11] K. Eguchi et al. (2003). First results from KamLAND: evidence for reactor anti-neutrino
disappearance. Phys. Rev. Lett, vol. 90, p. 093004 arXiv:hep-ex/0212021

[12] F. Vannucci (2014). The NOMAD Experiment at CERN. http://dx.doi.org/10.1155/

2014/129694

[13] P. Adamson et al. (2015). The NuMI Neutrino Beam. Nucl. Instrum. Methods Phys. Res. A,
vol 806, pp. 279-306 arXiv:1507.06690

[14] B. Behera, G. Davies, F. Psihas (2017). Event Reconstruction in the NOvA Experiment.
FERMILAB-CONF-17-513-E arXiv:1710.03772

[15] L. Teodorescu (2008). Arti�cial neural networks in high-energy physics. C06-03-06.2, p.13-22.
C05-02-23.1, p.13-22 http://cds.cern.ch/record/1100521/files/

[16] S. Harnad (2006). The Annotation Game: On Turing (1950) on Computing, Machinery, and
Intelligence. Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for
the Thinking Computer. Evolving Consciousness Springer, pp. 23-66

[17] A. Aurisano et al. (2016). A Convolutional Neural Network Neutrino Event Classi�er. JINST
11, no. 09, p. 09001 arXiv:1604.01444

[18] C. Szegedy et al. (2014). Going Deeper with Convolutions. 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) arXiv:1409.4842

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma et al. (2015). ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV) 115, pp.
211�252

[20] Min Lin, Qiang Chen, Shuicheng Yan (2014). Network In Network. arXiv:1312.4400

22

http://inspirehep.net/record/51319
http://inspirehep.net/record/51319
https://arxiv.org/abs/1710.00715
https://arxiv.org/abs/hep-ex/9807003
https://arxiv.org/abs/nucl-ex/0204008
https://arxiv.org/abs/hep-ex/0212021
http://dx.doi.org/10.1155/2014/129694
http://dx.doi.org/10.1155/2014/129694
https://arxiv.org/abs/1507.06690
https://arxiv.org/abs/1710.03772
http://cds.cern.ch/record/1100521/files/
https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1312.4400

9 Appendix

9.1 Figures

(a) Standard CNN trained on the small LMDB. Train-
ing time 11 minutes, 35 seconds

(b) Standard CNN trained on the small transformed
LMDB. Training time 21 minutes, 7 seconds

(c) Standard CNN trained on the medium LMDB.
Training time 31 minutes, 57 seconds

(d) Standard CNN trained on the medium transformed
LMDB. Training time 32 minutes, 4 seconds

(e) Standard CNN trained on the full LMDB. Training
time 7 hours, 2 minutes

(f) Standard CNN trained on the full transformed
LMDB. Training time 7 hours, 0 minutes

Figure 23: The results of training operations on the standard NOvA's CNN

23

(a) Simpli�ed CNN trained on the small LMDB. Train-
ing time 2 minutes, 23 seconds)

(b) Simpli�ed CNN trained on the small transformed
LMDB. Training time 8 minutes, 49 seconds

(c) Simpli�ed CNN trained on the medium LMDB.
Training time 22 minutes, 8 seconds

(d) Simpli�ed CNN trained on the medium transformed
LMDB. Training time 22 minutes, 41 seconds

(e) Simpli�ed CNN trained on the full LMDB. Training
time 4 hours, 40 minutes

(f) Simpli�ed CNN trained on the full transformed
LMDB. Training time 4 hours, 41 minutes

Figure 24: The results of training operations on the NOvA's CNN without the inception layers

24

Figure 25: Diagram of NOvA CNN, obtained with NVIDIA DIGITS

25

Figure 26: Diagram of simpli�ed NOvA CNN with the inception modules removed, obtained with
NVIDIA DIGITS 26

9.2 Tables

NumIters accuracy loss
0 0.063 2.654
352 0.968 0.101
704 0.978 0.068
1056 0.983 0.057
1408 0.982 0.062
1760 0.984 0.052
2112 0.983 0.060
2464 0.987 0.050
2816 0.987 0.049
3168 0.984 0.058
3520 0.985 0.054
3872 0.987 0.050
4224 0.988 0.046
4576 0.988 0.045
4928 0.989 0.045
5280 0.989 0.044
5632 0.989 0.044
5984 0.989 0.044
6336 0.989 0.044
6688 0.989 0.044
7040 0.989 0.044

Table 1: The results of the validation testing procedures during training the LeNet on the MNIST
dataset. �NumIters� is the number of the training iterations, �accuracy� and �loss� stand for the
validation accuracy and loss

stdSmall stdSmallT stdMed

Epoch accuracy loss (v) loss (t) NumIters accuracy loss (v) loss (t) NumIters accuracy loss (v) loss (t)

0 0.275 1.402 1.399 0 0.389 1.350 1.394 0 0.631 0.963 1.080
1 0.549 1.169 1.205 1 0.442 1.183 1.202 1 0.732 0.716 0.799
2 0.556 1.087 1.160 2 0.468 1.184 1.196 2 0.730 0.705 0.608
3 0.523 1.077 1.006 3 0.503 1.103 0.938 3 0.753 0.666 0.627
4 0.581 1.014 1.043 4 0.484 1.147 1.135 4 0.746 0.668 0.694
5 0.530 1.060 1.100 5 0.641 0.930 1.108 5 0.760 0.634 0.697
6 0.578 1.010 0.958 6 0.667 0.901 0.944 6 0.756 0.650 0.502
7 0.637 0.912 0.979 7 0.569 1.011 1.015 7 0.756 0.655 0.559
8 0.632 0.929 0.850 8 0.670 0.893 0.842 8 0.757 0.663 0.486
9 0.545 1.075 1.022 9 0.556 1.156 0.824 9 0.763 0.641 0.481
10 0.623 0.913 0.872 10 0.703 0.795 0.779 10 0.766 0.633 0.461
11 0.627 0.942 0.615 11 0.708 0.793 0.579 11 0.765 0.647 0.301
12 0.620 0.955 0.656 12 0.710 0.791 0.573 12 0.762 0.670 0.384
13 0.627 0.967 0.546 13 0.710 0.794 0.726 13 0.759 0.706 0.410
14 0.635 0.979 0.475 14 0.709 0.798 0.631 14 0.755 0.746 0.266
15 0.642 1.013 0.414 15 0.711 0.799 0.458 15 0.753 0.795 0.371
16 0.623 1.029 0.495 16 0.711 0.808 0.554 16 0.749 0.873 0.287
17 0.645 1.067 0.417 17 0.714 0.800 0.584 17 0.741 0.963 0.201
18 0.627 1.125 0.382 18 0.708 0.811 0.527 18 0.743 1.056 0.144
19 0.623 1.177 0.384 19 0.711 0.830 0.686 19 0.736 1.195 0.104
20 0.640 1.162 0.296 20 0.714 0.820 0.541 20 0.740 1.188 0.105
21 0.637 1.171 0.305 21 0.716 0.820 0.487 21 0.738 1.213 0.065
22 0.643 1.176 0.419 22 0.716 0.822 0.670 22 0.738 1.235 0.115
23 0.633 1.181 0.239 23 0.715 0.822 0.456 23 0.736 1.265 0.126
24 0.645 1.177 0.264 24 0.716 0.821 0.463 24 0.736 1.291 0.065
25 0.640 1.208 0.267 25 0.716 0.822 0.610 25 0.735 1.309 0.071
26 0.639 1.212 0.226 26 0.717 0.825 0.538 26 0.736 1.339 0.035
27 0.628 1.233 0.177 27 0.716 0.825 0.387 27 0.736 1.356 0.024
28 0.629 1.234 0.274 28 0.715 0.828 0.496 28 0.734 1.386 0.065
29 0.646 1.284 0.229 29 0.715 0.833 0.506 29 0.733 1.382 0.060

stdMedT stdFull stdFullT

Epoch accuracy loss (v) loss (t) NumIters accuracy loss (v) loss (t) NumIters accuracy loss (v) loss (t)

0 0.699 0.840 1.095 0 0.776 0.595 0.717 0 0.768 0.624 0.728
1 0.741 0.702 0.727 1 0.785 0.578 0.611 1 0.777 0.602 0.630
2 0.720 0.811 0.581 2 0.791 0.565 0.609 2 0.778 0.597 0.629
3 0.747 0.705 0.681 3 0.794 0.552 0.589 3 0.782 0.587 0.649
4 0.749 0.702 0.687 4 0.794 0.554 0.524 4 0.783 0.585 0.579
5 0.752 0.703 0.697 5 0.795 0.551 0.541 5 0.784 0.584 0.572
6 0.748 0.726 0.516 6 0.798 0.544 0.549 6 0.782 0.588 0.571
7 0.759 0.698 0.643 7 0.794 0.551 0.493 7 0.786 0.580 0.551
8 0.740 0.750 0.491 8 0.797 0.544 0.468 8 0.784 0.584 0.546
9 0.759 0.663 0.593 9 0.808 0.516 0.517 9 0.791 0.565 0.567
10 0.763 0.655 0.519 10 0.812 0.508 0.437 10 0.794 0.560 0.496
11 0.763 0.660 0.394 11 0.813 0.510 0.462 11 0.793 0.562 0.517
12 0.762 0.669 0.412 12 0.812 0.516 0.454 12 0.792 0.566 0.515
13 0.759 0.681 0.439 13 0.810 0.524 0.435 13 0.791 0.572 0.477
14 0.757 0.703 0.403 14 0.808 0.532 0.378 14 0.789 0.581 0.495
15 0.758 0.719 0.461 15 0.806 0.545 0.396 15 0.787 0.591 0.473
16 0.753 0.754 0.393 16 0.805 0.558 0.386 16 0.784 0.604 0.442
17 0.748 0.790 0.288 17 0.801 0.580 0.347 17 0.782 0.622 0.437
18 0.746 0.820 0.233 18 0.799 0.605 0.350 18 0.779 0.649 0.433
19 0.746 0.842 0.189 19 0.800 0.605 0.320 19 0.781 0.628 0.407
20 0.743 0.855 0.254 20 0.799 0.620 0.268 20 0.779 0.641 0.383

27

21 0.743 0.869 0.199 21 0.797 0.634 0.274 21 0.778 0.651 0.338
22 0.743 0.876 0.185 22 0.796 0.645 0.276 22 0.776 0.659 0.382
23 0.742 0.888 0.204 23 0.796 0.658 0.276 23 0.775 0.669 0.363
24 0.742 0.899 0.216 24 0.795 0.672 0.263 24 0.774 0.677 0.337
25 0.741 0.906 0.280 25 0.793 0.683 0.245 25 0.773 0.686 0.345
26 0.740 0.923 0.154 26 0.792 0.699 0.256 26 0.772 0.695 0.313
27 0.741 0.930 0.139 27 0.791 0.714 0.259 27 0.772 0.706 0.330
28 0.739 0.938 0.150 28 0.790 0.729 0.237 28 0.771 0.715 0.336
29 0.736 0.954 0.176 29 0.790 0.750 0.214 29 0.772 0.712 0.317

simSmall simSmallT simMed

Epoch accuracy loss (v) loss (t) NumIters accuracy loss (v) loss (t) NumIters accuracy loss (v) loss (t)

0 0.371 1.452 1.458 0 0.313 1.522 1.518 0 0.579 1.055 1.255
1 0.467 1.253 1.378 1 0.460 1.363 1.388 1 0.649 0.898 0.870
2 0.481 1.166 1.281 2 0.423 1.253 1.339 2 0.668 0.873 0.764
3 0.524 1.079 1.125 3 0.338 1.408 1.149 3 0.699 0.796 0.856
4 0.577 1.033 1.159 4 0.393 1.240 1.214 4 0.708 0.771 0.850
5 0.550 1.051 1.128 5 0.429 1.196 1.199 5 0.733 0.735 0.851
6 0.565 1.003 1.052 6 0.434 1.158 1.137 6 0.735 0.712 0.562
7 0.590 1.015 1.030 7 0.473 1.117 1.160 7 0.743 0.696 0.728
8 0.569 1.152 0.963 8 0.481 1.140 1.168 8 0.737 0.728 0.622
9 0.515 1.195 1.064 9 0.240 1.862 1.162 9 0.752 0.676 0.693
10 0.618 0.961 0.923 10 0.545 1.070 1.032 10 0.757 0.662 0.567
11 0.599 0.975 0.667 11 0.551 1.069 0.826 11 0.757 0.666 0.415
12 0.618 0.968 0.818 12 0.570 1.051 0.817 12 0.755 0.672 0.435
13 0.609 0.968 0.748 13 0.576 1.046 0.949 13 0.757 0.682 0.447
14 0.621 0.964 0.693 14 0.586 1.038 0.906 14 0.755 0.691 0.494
15 0.604 1.009 0.604 15 0.592 1.040 0.796 15 0.753 0.704 0.480
16 0.613 0.982 0.736 16 0.607 1.017 0.883 16 0.753 0.718 0.417
17 0.612 0.989 0.736 17 0.618 1.012 0.844 17 0.751 0.735 0.347
18 0.606 1.012 0.643 18 0.608 1.014 0.874 18 0.748 0.758 0.327
19 0.638 0.981 0.714 19 0.623 1.023 0.957 19 0.747 0.804 0.293
20 0.632 0.977 0.659 20 0.627 0.999 0.916 20 0.748 0.807 0.431
21 0.635 0.982 0.651 21 0.629 0.998 0.785 21 0.746 0.815 0.241
22 0.627 0.990 0.728 22 0.629 0.997 0.951 22 0.746 0.821 0.244
23 0.627 0.987 0.534 23 0.628 0.997 0.746 23 0.745 0.827 0.315
24 0.629 0.989 0.608 24 0.629 0.995 0.723 24 0.746 0.829 0.207
25 0.630 0.989 0.631 25 0.629 0.995 0.849 25 0.745 0.833 0.175
26 0.628 1.004 0.624 26 0.629 0.995 0.795 26 0.744 0.845 0.264
27 0.623 1.018 0.524 27 0.630 0.995 0.671 27 0.745 0.849 0.159
28 0.620 1.012 0.711 28 0.631 0.995 0.863 28 0.745 0.859 0.134
29 0.624 1.008 0.683 29 0.640 1.009 0.792 29 0.744 0.884 0.235

simMedT simFull simFullT

Epoch accuracy loss (v) loss (t) NumIters accuracy loss (v) loss (t) NumIters accuracy loss (v) loss (t)

0 0.610 1.008 1.234 0 0.765 0.626 0.800 0 0.758 0.662 0.870
1 0.715 0.794 0.784 1 0.777 0.599 0.682 1 0.766 0.635 0.713
2 0.694 0.862 0.644 2 0.774 0.611 0.651 2 0.768 0.632 0.700
3 0.726 0.790 0.725 3 0.777 0.599 0.641 3 0.770 0.623 0.683
4 0.726 0.800 0.777 4 0.782 0.587 0.568 4 0.770 0.621 0.636
5 0.731 0.785 0.806 5 0.780 0.586 0.580 5 0.771 0.617 0.616
6 0.732 0.766 0.613 6 0.782 0.591 0.589 6 0.774 0.615 0.619
7 0.739 0.740 0.694 7 0.786 0.576 0.539 7 0.773 0.614 0.590
8 0.731 0.808 0.582 8 0.787 0.577 0.517 8 0.773 0.615 0.568
9 0.746 0.687 0.687 9 0.799 0.540 0.540 9 0.780 0.596 0.611
10 0.748 0.683 0.608 10 0.804 0.530 0.486 10 0.783 0.586 0.539
11 0.745 0.685 0.495 11 0.803 0.531 0.508 11 0.783 0.586 0.566
12 0.744 0.692 0.492 12 0.802 0.535 0.505 12 0.783 0.586 0.599
13 0.746 0.700 0.504 13 0.802 0.540 0.476 13 0.783 0.589 0.558
14 0.742 0.706 0.452 14 0.800 0.547 0.429 14 0.782 0.591 0.565
15 0.740 0.719 0.506 15 0.798 0.555 0.437 15 0.781 0.596 0.561
16 0.738 0.727 0.492 16 0.797 0.566 0.446 16 0.780 0.601 0.514
17 0.738 0.738 0.339 17 0.794 0.581 0.424 17 0.779 0.606 0.520
18 0.734 0.752 0.402 18 0.790 0.603 0.399 18 0.777 0.613 0.495
19 0.735 0.777 0.366 19 0.791 0.598 0.376 19 0.778 0.612 0.502
20 0.735 0.777 0.462 20 0.791 0.608 0.340 20 0.777 0.616 0.456
21 0.735 0.781 0.363 21 0.790 0.617 0.332 21 0.776 0.620 0.424
22 0.735 0.783 0.351 22 0.789 0.627 0.361 22 0.775 0.624 0.474
23 0.734 0.787 0.407 23 0.788 0.634 0.328 23 0.775 0.628 0.424
24 0.735 0.789 0.309 24 0.788 0.644 0.306 24 0.775 0.631 0.398
25 0.734 0.796 0.350 25 0.786 0.652 0.294 25 0.774 0.635 0.395
26 0.734 0.799 0.282 26 0.785 0.660 0.337 26 0.774 0.637 0.431
27 0.734 0.800 0.263 27 0.785 0.670 0.319 27 0.773 0.642 0.435
28 0.732 0.804 0.309 28 0.784 0.680 0.291 28 0.772 0.647 0.408
29 0.733 0.814 0.321 29 0.782 0.690 0.274 29 0.771 0.652 0.405

Table 2: The results of the validation procedures during training, shown on the plots 23 and 24.
�std� stands for �standard NOvA's CNN�, �sim� stands for �simpli�ed NOvA's CNN�; �T� stands
for �transformed dataset�; �Small�, �Med� and �Full� mean the small, medium and full datasets.
�Epoch� is the number of the epochs passed during iterations, �accuracy� and �loss� stand for the
validation accuracy and loss: (v) is testing and (t) is training loss

9.3 Listings with code

Listing 1. Three layers of a neural network: convolution, ReLU and pooling

l a y e r {
name : "conv1/7x7_s2_x"
type : "Convolution "
bottom : "data_x"
top : "conv1/7x7_s2_x"
param {

name : "conv1/7x7_s2_w"
lr_mult : 1

28

decay_mult : 1
}
param {

name : "conv1/7x7_s2_b"
lr_mult : 2
decay_mult : 0

}
convolution_param {

num_output : 64
pad : 3
ke rne l_s i z e : 7
s t r i d e : 2
w e i g h t_ f i l l e r { type : " xav i e r " }
b i a s_ f i l l e r {

type : " constant "
value : 0 . 2

}
}

}
l ay e r {
name : "conv1/relu_7x7_x"
type : "ReLU"
bottom : "conv1/7x7_s2_x"
top : "conv1/7x7_s2_x"

}
l ay e r {
name : " pool1 /3x3_s2_x"
type : "Pool ing "
bottom : "conv1/7x7_s2_x"
top : " pool1 /3x3_s2_x"
pooling_param {

pool : MAX
kerne l_s i z e : 3
s t r i d e : 2

}
}

Listing 2. The function of the polar transformation

de f polarTransformFunc (im_i) :

########################
Track Reconstruct ion
########################

I n i t i a l i z a t i o n

im = im_i

Get dimensions
width = im . shape [1]
he ight = im . shape [0]

Cut unnecessary f a r i n t e r a c t i o n s (t rack r e c on s t r u c t i on only)
im_tracking = np . d e l e t e (im , np . s_ [width /2 : width] , ax i s=1)

Find nonblack p i x e l s (nonzero e lements)
x_arr = np . nonzero (im_tracking) [1]
y_arr = np . nonzero (im_tracking) [0]

Def ine i n i t i a l parameters f o r f i t t i n g

29

x0 = np . array ([0 , he ight / 2])

Def ine f i t t i n g func t i on (l i n e a r func t i on k∗x+b)
de f fun (x , t , y) :

r e turn x [0] ∗ t + x [1] − y

Fi t t e r

de f f i tFunc (x_arr_i , y_arr_i , fun , x0 , mul) :

Use l ea s t_square s from sc ipy . opt imize with ' cauchy ' (l og) robus tne s s
f i t = sp . opt imize . l ea s t_square s (fun , x0 , l o s s ='cauchy ' , f_sca l e =1,

args=(x_arr_i , y_arr_i))

Get k and b (see de f func)
k = np . a s s c a l a r (f i t . x [0])
b = np . a s s c a l a r (f i t . x [1])

#k = 0 .1
#b = 0 .1

Get r e s i d u a l s and t h e i r standard dev
f_res = f i t . fun
sigma = np . std (f_res) # squared

Cut o u t l i e r s
x_arr_o = np . d e l e t e (x_arr_i , np . where (f_res > mul ∗ np . sq r t (sigma)))
y_arr_o = np . d e l e t e (y_arr_i , np . where (f_res > mul ∗ np . sq r t (sigma)))

Send k , b and image p i x e l s w/o o u t l i e r s
re turn [k , b , x_arr_o , y_arr_o]

Fit I t e r a t i o n s

mul = 1 # mu l t i p l i e r f o r mul∗ sigma cut
num_iters = 2 # number o f f i t t i n g i t e r a t i o n s
x_arr_pass = x_arr
y_arr_pass = y_arr

I t e r a t i o n s
f o r i t e r in range (0 , num_iters) :

[k , b , x_arr_pass , y_arr_pass] = f i tFunc (x_arr_pass , y_arr_pass ,
fun , x0 , mul)

###################
Find The Vertex
###################

Def in ing The Vertex

Sh i f t image i f b i s too big or too smal l (cosmic background events)
i f b > 79 :

deltaX = in t (round ((b−79)/k))
im = np . r o l l (im , deltaX , ax i s=1)
im [. . . , width+deltaX−1:width] = 0
b = 79

e l i f b < 0 :
deltaX = in t (round (b/k))
im = np . r o l l (im , deltaX , ax i s=1)

30

im [. . . , width+deltaX−1:width] = 0
b = 0

I n i t i a l i z e ver tex coords as (0 , b)
vertexX = 0
vertexY = in t (round (b))

p1 and p2 are some po in t s on the l i n e k∗x+b , p3 i s a p i x e l be ing measured
p1 = np . array ([0 , b])
p2 = np . array ([1 , k+b])
p3 = np . array ([0 , 0])

Sort ar rays o f p i x e l s with accord ing to x coord inate
x_arr_sorted = np . s o r t (x_arr)
y_arr_sorted = np . array ([x f o r _, x in so r t ed (z ip (x_arr , y_arr))])

Find norm d i s t an c e s from p3 to k∗x+b in order to d e f i n e the ver tex po int
i = 0
whi le i<l en (x_arr_sorted) :

Check only f i r s t 8 x p i x e l s
i f x_arr_sorted [i] >= 12 :

break

Pick the coo rd ina t e s o f the p i x e l
p3 [0] = x_arr_sorted [i]
p3 [1] = y_arr_sorted [i]

Check i f the p i x e l i s near enough to the l i n e
i f np . l i n a l g . norm(np . c r o s s (p2−p1 , p1−p3))/ np . l i n a l g . norm(p2−p1) < 0 . 5 :

vertexX = x_arr_sorted [i]
vertexY = in t (k∗x_arr_sorted [i] + b)
break

i += 1

########################
Polar Transformation
########################

In i t im_pol And Sca l i n g s

sw = 1 # 1 i f 180 , 2 i f 360

I f 180 i s chosen , x w i l l s t a r t running from the ver tex po int
i f sw == 1 :

x_start = vertexX
x_arr = np . d e l e t e (x_arr , np . where (x_arr <= x_start))

e l i f sw == 2 :
x_start = 0

Si z e o f the output image
width_pol = width
height_pol = he ight

Def ine max length o f a t rack to s c a l e to width_rad
maxradius = np . sq r t (width ∗∗2 + he ight ∗∗2)

I n i t i a l i z e a blank p i c
im_pol = np . z e r o s ((height_pol , width_pol))

Find s c a l i n g s

31

r s c a l e = f l o a t (width_pol) / maxradius
t s c a l e = f l o a t (height_pol) / (sw∗180 + 1)

Transformation

f o r y in y_arr :
dy = y − vertexY # ca l c u l a t e from the ver tex
f o r x in x_arr :

dx = x − vertexX # ca l c u l a t e from the ver tex
t = ((np . arctan2 (dy , dx)∗180)/np . p i) + sw∗90 # f i nd ang le
r = np . sq r t (dx∗∗2 + dy∗∗2) # f i nd rad iu s
t_sc = in t (np . f l o o r (t ∗ t s c a l e))
r_sc = in t (np . f l o o r (r ∗ r s c a l e))
im_pol [t_sc , r_sc] = im [y , x]

Return im_pol

im_pol = im_pol . astype (np . u int8)
re turn im_pol

32

	Introduction
	The history of the neutrino
	Neutrino oscillations
	Experimental investigation of the neutrino

	NOvA experiment
	Introduction to the experiment
	The goals of NOvA

	Data analysis in NOvA
	Data science and artifical neural networks
	Convolutional neural networks
	The task of classification in the NOvA experiment

	Improvements of the deep learning methods in NOvA
	Motivation
	Caffe framework and NVIDIA DIGITS
	Polar transformation of the datasets
	Python layers
	Simplification of the NOvA's network

	Results
	Application of polar transformation
	The main problem of python layers

	Conclusions
	Acknowledgements
	Bibliography
	Appendix
	Figures
	Tables
	Listings with code

