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Abstract

In this paper, we will review the basic concepts of convolutional neural
networks (CNN) and how CNNs are used to classify events in the NOvA
experiment. We will review neutrinos in the standard model, and how the
detection of such particles is necessary for the better understanding of the
interaction between fundamental particles. We have investigated methods
of improving NOvA’s CNN classification. Our main focus has been the
addition of event reconstruction variables to the network input. This has
shown to improve categorization accuracy for small data samples, and a
reduction in network over training in large data samples (with negligible
improvement in accuracy).

Keywords: Convolutional neural Network; NOvA experiment; neutrino

classification.
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1 Introduction

In the mid-1990s, Wilhelm Conrad Roentgen, working on cathode ray exper-
iments, discovered that a plate with barium platinum-cyanide becomes fluores-
cent when near a Crookes tube where the cathode rays strike. Roentgen found
that this new form of radiation appeared to propagate in a straight line, activated
photographic plates, and had great penetration power. Becquerel later found that
uranium crystals, even in the absence of sunlight, activated photographic plates.
Thus, spontaneous radioactivity was discovered'.

Marie (Sklodowska) Curie (1867-1934), together with her husband, proposed
to investigate the nature of Becquerel’s rays. She discovered the atoms of radium
and polonium. Later, Rutherford classified three types of radiation: « rays,
rays, and 7 rays. In 1914 Chadwick showed that the observed [-ray spectrum
is continuous, and with this discovery the conservation of energy was called into
question. This means, in the rest frame, the electron and the daughter nucleus do
not carry the total initial energy. Many different hypotheses were made by the
scientific community at the time.

Gamow: “This would mean that the idea of energy and its
conservation fails in dealing with processes involving the emis-
sion or capture of nuclear electrons. This does not sound im-
possible if we remember all that has been said about peculiar
impossible properties of electrons in the nucleus”.

To solve this problem, Pauli proposed a nucleus constituent called a "neu-
tron" which interacts very weakly with matter and is a fermion with no electric
charge. Later, because the neutron was discovered, Fermi called Pauli’s particle
"neutrino"?.

Until 1950, neutrinos remained a hypothetical particle whose existence was
proposed just to rescue the conservation laws, and subsequently model weak de-
cays. Experimental evidence was necessary. For that, several experiments were
developed at the Savannah River nuclear reactor in south Carolina. Finally, Cowan
and Reines had success when, in a tank of water with cadmium chloride, they cap-
tured the positron produced in an inverse beta decay process, which they were able
to interpret unambiguously as the presence of neutrino interactions.’.

After the eletroweak theory was developed by Glashow, Weinberg, and Salam
we know that neutrinos are fermions with no electric charge and carry three dif-

ferent flavours. However, massive neutrinos were incompatible with the Standard

Do 4tomo grego ao dtomo de Bohr [13].
2A introduction to elementary particle physics [9].
3indroduction to elementary particles [12].



Model during much of the neutrino’s history. Though we now know that they have
mass, we still do not know which neutrino type is the heaviest. Furthermore, it is
unknown if neutrinos are their own antiparticles or not.

To probe these issues we have modern neutrino detectors developed for differ-
ent and specific proposes. For example, the NOvA experiment is a tracking style
of detector, able track the path made by charged particles produced in neutrino
interactions. Many studies can be performed using such detectors, like the mass
hierarchy problem, leptonic number violation, among others. Therefore, for the
sake of measuring neutrino oscillation parameters, which are tightly linked with
some of the major puzzles related to neutrinos, we need very accurate measure-
ments, and must be able to reliably classify events as having originated from one
of the three neutrino flavors.

This report is organized as follows: in the first two chapters we see the gen-
eral ideas of the standard model and specifically about neutrinos, as well as how
CNNs works. Next, we discuss the NOVA experiment and the tools developed to
obtain accurate measurements. We will discuss some technical issues related to
to training CNN:ss to classify neutrino event types, and in section 5 we show some
results. Finally, in section 6 we summarize our work.

2 Standard Model

Standard Model of Elementary Particles

three generations of matter
(fermions)

255 | =2.2 Mevje =1.28 GeV/c? =173.1 GeVic?
273 213 23

cha t“‘ n u & fo » t " % Z H

2125.09 GeV/c?

up charm top gluon Higgs

=4.7 Mev/ =96 Mev/ =4.18 GeV/c? 0
"1 lr® | @

down strange bottom photon
=0.511 MeV/c* =105.66 MeV/Z =1.7768 GeV/c* =91.19 Gev/c*
- @Il @@ | @

electron muon tau Z boson l
<2.2eV/c? <1.7 MeV/c* <15.5 MeV/c* 280.39 GeV/c*
- @-® (- ® | @

electron muon tau Wb
neutrino neutrino neutrino

Currently, the four main forces are understood as resulting from the inter-
actions between elementary particles. The most well-understood and successful
theory is quantum eletrodynamics. It describes the interaction between electrons



mediated by a gauge boson. In QED, this boson is a photon. The other force in-
cluded in the Standard Model is the strong force describing the exchange of gluons
by quarks. We call this theory quantum chromodynamics due to the color charge
carried by the quarks. Finally, the last category is the weak theory that describes
the exchange of the gauge bosons generating the weak force. The gravitational
force is not included in the standard model so we are not going to consider it in
this report.

We can see in figure 2 a table of elementary particles classified according to
spin and charge. The fermions have fractional spin and the boson have whole-
number spin. The fermions are classified according to the charge they carry, the
leptons being those with electric charge and the quarks with flavor charge. Some
bosons can carry charge, like the W™ and the W™ that carry electric charge or the
gluons which carry color charge.

2.1 Neutrinos

Neutrinos are leptons with spin 1/2 and they can be of three different flavors:
electron neutrino, muon neutrino and tau neutrino, each one from their respective
leptons.

The main method to probe weak interactions is with neutrinos. While weak
interactions occur among standard charged particle interactions, the electromag-
netic interactions occur so much more frequently that they drown out any chance
of studying the weak force in detail. Because neutrinos have no electric or color
charge, and only interact weakly, they are by far the best method to study the
weak force. They are produced artificially in proton accelerators, and naturally in
the fission reaction in stars, supernova explosions, and in interactions of charged
particles with our atmosphere. The cosmos can produce neutrinos in other ways
(like relic neutrinos from the big bang), and also contains other unknown sources
of high energy neutrinos.

Neutrinos are involved in two process of weak interactions: leptonic process
and semileptonic process.

2.1.1 Leptonic Process

When we say charged current (CC) this means that the charges of the fermions
in the initial and final process differ by one unit. The boson exchanged in such a
process is a W*. On the other hand, if the boson exchanged is a Z boson, this
means the charged in the initial and final process is the same. We call this process
"neutral current” (NC).



Figure 1: The diagrams are read from the left to the right. The first is a muon decay pro-
cess and the other two show electron-neutrino scattering with charge and neutral current,
respectively.

2.1.2 Semileptonic Process

Semileptonic processes are those where both leptons and hadrons are involved.

Figure 2: Beta decay and inverse beta decay, respectively. Read the diagrams from the
bottom to the top.

Beyond the beta decay, neutrinos participate in quark-neutrino scattering, as
we see in figure 2.1.2, where the first diagram is NC and the second CC. In weak
interactions there is a third classification for non-leptonic processes, but the neu-
trinos don’t participate so we will not discuss it in this report.

Another important classification necessary for our discuss is the range of en-
ergies involved in the scattering processes. These can be elastic, quasi-elastic,
resonance, or deep inelastic scattering.

Under about 1 GeV we have elastic and quasi-inelastic scattering. For the
former, no particles in the system change and a boson Z is exchanged carrying
four-momentum. In the latter, the neutrino interacts with a nucleon and transforms
into its charged counterpart through the exchange of a W'/~ as we see in the
process:

v+n,p—et+pn (D)

As we move higher in energies, up to about 2 GeV, we begin to produce extra
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Figure 3: Quark-neutrino scattering.

resonant particles in the interaction that quickly decay, such as 7. At even
higher energies, above 2 GeV, we begin to form any number of particles that are
allowable for the given energy, in deep inelastic scattering (DIS) processes. An
example of a DIS interaction is shown in figure 2.1.2.

Figure 4: Deep inelastic scattering. Read from the left to the right.

2.1.3 Lepton Universality

There are many of unsolved problems involving neutrinos. They are a good
way to probe some yet to be understood problems in the particle physics. One of
then is the lepton universality.

Lepton universality means that one type of lepton should be produced as often
as another. That is, the charged weak interaction is universal.

Let us look at an example of the tau decay:

T = u U+ 2)
T e +U.+ v, 3)
These two interaction modes should have the same probability to occur. With
very high accuracy we can measure these two cross sections:
Nt~ = pw o) g,
Lt — e v,) g2

“4)
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Where g is the weak charge. The result is [9]:

Ie — 1.001 4+ 0.004 (5)

Ge

2.1.4 CP Violation

Another big question involving neutrinos is their oscillation between different
types, and how this can help the study about CP violation.

Charge-Parity violation has been observed with mesons K and B°. But this
is not enough to understand why there is much more matter than antimatter in the
universe, for example.

Once we have experimental evidence that the neutrinos have mass, we can de-
scribe the mass eigenstate as linear combination of three different flavours. This
means the neutrinos can oscillate type, as Bruno Pontecorvo predicted. The uni-
tary transform matrix is:

C12€13 F12C13 S13€ 1 ] ]
—812023 — €12523813€™ Cl2¢23 — 812823813 523013 0 &« 0
$12823 — I:‘]EC]_‘;.'!']_‘;E‘J“ — 12823 — .'!']]CE_‘;.'!I']_';E'JH Ca3Cy3 ] ]

Figure 5: The Pontecorvo-Maki—Nakagawa—Sakata matrix.

where ¢ and s are sine and cosine of the mixing angle, respectively. 9 is the
CP phase violation.

CP violation continues to be a mystery, and there is much to discover. Neutri-
nos could be a good tool for this propose.

3 The NOvA Experiment

As we discussed, until 1950 the neutrinos were just a mathematical tool to
preserve the conservation laws, though Fermi’s development of Weak theory had
thoroughly convinced theorists that the neutrino must exist. However, neutrinos
interact very weakly with matter and are difficult to detect. The first success was
obtained with a tank full of water and Cadmium chloride. They expected the
inverse beta reaction:

Ue+p—n+et (6)

The positron signal was used as a trigger in coincidence with delayed signal from
the neutrons absorbed by a cadmium nucleus.
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Since the neutrino’s first detection, many different detectors have been con-
structed for different proposes. As we saw, one of the actual challenges is to
understand neutrino oscillations. The NOVA detector was developed for this main
propose: to measure the electron-neutrino appearance and the muon-neutrino dis-
appearance from Fermilab’s NuMI neutrino beam.

The method used for the detection of neutrino interactions is a liquid scin-
tillator. The photos emitted are captured along a wavelength-shifting fiber and
directed to a photodetector, which transform the light into an electrical signal.

For accomplishing the main goal of the NOvVA experiment is important not just
detect the occurrence of neutrino events, but to measure tracks within the detector.
This is possible through a sophisticated structure made of hundreds of rectangular
PVC cells filled with liquid scintillator. The figure 3 shows a schematic of a single
cell [7].

A
fibers 1 X D
to 1 APD \
pixel f
\ w

typical charged
particle path

Figure 6: Schematic illustration of a PVC cell of dimensions WxDxL containing liquid
scintillator and a wavelength-shifting fiber (green). A charged particle incident on the cell
produces scintillation photons (blue line) that bounce off the cell walls until absorbed by
the fiber or lost.

The neutrino beam is formed in Fermilab, USA. The experiment consist of a
300-ton near detector and a 14000-ton far detector located in the Ash River, 810
km to the North of Fermilab, in Minnesota. The initial neutrino content of the
beam is measured at the near detector, and interactions at the far detector allow us
to measure the proportion of neutrinos that have oscillated into another flavor.

3.1 NuMI Beam (Neutrinos at the Main Injector)

The Fermilab accelerator is capable of delivering 700 Kilowatts of power to
the NuMI beam. Protons are accelerated and hit a graphite target. A strong magnet
focuses the beam of charged particles, like pions, which decay into muons and
muon neutrinos. The beam starts out 150 feet below ground at Fermilab and
is directed at a 3,3° downward angle. The muons are stopped with thick walls
of rock, and the beam of neutrinos continues its journey unhindered through the
earth until passing through the detectors.
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3.2 Near and Far Detectors

The Near Detector is located approximately 500 m downstream of the neutrino
production target. They are made of blocks of 16-cell PVC extrusions. We can
see schematic these structures in the figure 3.2. The Far Detector has a total of

Figure 7: (a) Close-up photos of one 16-cell PVC extrusion, 15 ¢cm long. (b) Two full-
size 16-cell extrusions 15.5 m long placed side-by side form the basis for an extrusion
module.

344,064 PVC cells, each cell measures 3.9 cm wide, 6.0 cm deep and 15.5 meters
long. Both detectors are located 14 milliradians to the west of the central axis of
the NuMI beam. In this way, it is expected that the neutrino energy spectrum will
be around 2 GeV. In the figure 3.2 we show a picture of the detectors’ size [6].

l
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Figure 8: The far and near detector. The far detector is the largest free-standing man-
made plastic structure in the world.

With this construction is possible reconstruct the tracks of the charged parti-
cles passing through the detectors. For this goal, it is necessary to develop sophis-
ticated computational tools for reconstruction and classification, as we will see
next.
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4 Convolutional Neural Networks

Convolutional neural networks (CNN) have been used for a long time in image
recognition and analysis. With the track images as input, it’s possible develop
a specific CNN capable of classifying neutrino event types. Let us take a very
simple example to see how this works.

Suppose we want an algorithm to recognize handwritten numbers [3]. For
humans is an easy task, but we need to find a way which the machine is capable to
learn. We can build filters to look for patterns and calibrate the machine learning
with a known result.

In practice, the input images are pixel arrays. The filters, sometimes called
kernels, are used to search for patterns within parts of the image. This kernel
can learn to recognize patterns such as lines, curves, or generally whatever is
necessary to recognize our number. The network contains weights combined in
various ways, that together approximate a function that should give us the desired
output. The network will ’learn’ by modifying these weights until the function’s
output approaches the correct solution.
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Figure 9: An example of inputs to training the network. Each image will pass through
the network, along with its correct category label.
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If the network is capable of learning well, then at the end of our training we
should obtain, as we see in example of the figure 4, the first number classified as
a zero.

Mathematically speaking, the network evaluates the weights with a loss func-
tion, which estimates the error in the answers produced by the network. The first
weights are randomly chosen. After evaluating the loss function we use a method
known as Gradient Descent, which basically attempts to minimized the loss func-
tion by modifying the values of the weights. In the figure 4, we can see the general
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structure of a CNN.

hidden layers

output layer

input layer

Figure 10: The general structure of a CNN with four layers.

Let us present some standard layers of a CNN.

4.1

Convolution: The main goal of the convolution operator is to extract fea-
tures from the input image. A feature map is produced by multiplying sec-
tions of the input image by the kernels. We see a pictogram in figure 4
representing this operation. The particular kernels are learned by the net-
work, rather than programmed explicitly.

Pooling: The pooling layer is used to reduce the size of the array, as we
see in the figure 4. Passing too much data through the network can produce
unreasonable training times.

ReLLU: The ReLLU operator introduces non-linearity to the CNN. The nega-
tive pixel values in the feature map are replaced by zero [8].

Fully Connected: This is a traditional neural network. The previous con-
volution steps are used to extract useful patterns from the images, keeping
important information, while reducing the data flowing into the final neural
network.

Caffe

Caffe is a deep learning framework made with expression, speed, and modu-
larity in mind [4]. Let’s look in the main structure of caffe.

Nets, Layers and Blobs: the blob is the standard array and unified memory
interface for the framework [4]. It is a basic a N-dimensional array stored

13
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Figure 11: A diagram showing the convolution of a portion of an image with a kernel
that searches for vertical lines.

Figure 12: A schematic of a pooling layer.

with usually four standard dimensions [N, channel k, height h, width w]
where N is the batch size of the data. The channel can be the RGB images,
or for us will be the X and Y views of the detector.

e Forward / Backward: Given an input from the bottom the forward opera-
tion the forward step computes the output and sends it to the top layer. The
backward step calculates the gradient to the input and sends it to the bottom
layer.

e Loss: The goal is to find a value for the weights that minimizes the loss
function. A standard choice of loss function is SoftmaxWithLoss, which
scales the outputs so that they represent a kind of probability.

14
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Figure 13: Basic structure of a CNN.

layer {
name: "loss”
type: "SoftmaxWithlLoss"
bottom: "pred”
bottom: "label"
top: "loss”

Figure 14: Network definition of the loss function.

e Solver: Coordenates the network’s forward inference and backward gradi-
ents to form parameter updates that attempt to improve the loss [4].

Each iteration does the following:

1 Calls network forward to compute the output and loss.

2 Calls network backward to compute the gradients.

3 Incorporates the gradients into parameter updates according to the

solver method.

4 Updates the solver state according to learning rate, history and method
to take the weights all the way from initialization to learn model.

4.2 Training on Neutrino Data

Our goal is to obtain correct classifications for the different types of neutrino

interactions. We need a CNN capable of distinguishing between electron-neutrino
(ve), muon-neutrino (v,), tau-neutrino (v, ), and the background (cosmic neutri-

nos, for example).
For training we use Monte Carlo simulation events from a data set generated

by the NOvVA group at Fermilab. As we saw, we use the Caffe framework to
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develop our CNN. This packaged is originally configured with GoogLeNet, which
we can use to learn the features of Caffe.
4.2.1 GooglLeNet

GoogLeNet is an improvement over the pioneer LeNet-5 (1998). It was ca-
pable of recognizing digits and hand-written numbers, but now the numbers of
parameters was drastically reduced with very small convolutions.
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Figure 15: Lenet and GoogLenet CNN.
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For our research, we used a customized network. We can see a result of a
training using an LMDB dataset in the figure 16
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Figure 16: loss and accuracy

The data used for network training comes from Monte Carlo simulations of
neutrino interactions in the NOvVA detector. A separate sample is used for valida-
tion, to test the network’s generality when applying it to data that it has not seen
before. While the loss decreases, the accuracy increases accordingly. This can
tell us how well our network is training. The loss function is calculated for both
the training set, and the testing/validation set, though accuracy is calculated only
from the test dataset. If the training loss continues to go down, while the testing
loss goes up, it means that the network is losing its generality, and is being ’over
trained’, or is learning the specific features of the training sample too well. In
figure 16 one can see an example of over training when comparing the blue (train)
and green (test) loss functions.

We can also choose how the learning rate changes over time. In the beginning,
we need more variance in the rate to search for a region containing in the weight
space that contains a minimum loss value. As learning continues we need to
decrease the rate at which we modify the weights, so that we do not jump back-
and-forth around the actual minimum. Figure 17 is schematically showing a step
decrease rate, though one can use any number of decreasing functions, such as an
exponential.
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Figure 17: A step-down learning rate decrease

4.3 Input Improvements

In order to improve the network, one of our possibility is to append the input
with extra information in the hopes of training faster and more efficiently. The
way we choose to do that is by adding a third layer in addition the standard two,
containing the X and Y views.

This allows us pass the 3-layer.png files through the network as a test. Then,
we can add simple reconstruction information for each event, for example, energy,
angles, and vertex position.

4.3.1 Reconstruction Variables

The hypothesis is that adding some reconstruction information directly into
the input of the final fully-connected network can help the training. The idea
being that this additional preprocessing information might aid the network in event
identification. We can reconstruct the vertex position from the event image, for
example. Additionally, we can fit the tracks with lines, and associate each point
with a track. We can see some examples of our simple reconstruction figure 18.
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Figure 18: Some examples of simple track and vertex position reconstruction.

The third layer needs to have the same format of the two standard layers,
containing the X and Y view images. In order to save disk space, NOvVA has
chosen to store these training images as 8-bit unsigned integers, with a range of
0-255. Therefore, when adding the values of the new variables to the third layer
we must rescale into this range as well.

We can see in the figure 19 and 20, some other examples of reconstruction
variables we can put in the third layer. We can see with these plots how useful
the variables may be to the network. Each color shows a different interaction
type, all with plot area scaled to unity to compare shapes. The better the separa-
tion between colors then the better the variable will be for classifying the events.
For example, in figure 20 the maximum track is a good variable for identifying
background and muon-neutrinos events.
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Figure 19: Standard reconstruction variables about X and Y view.

X-View MaxTrkLen Y-View MaxTrkLen

Figure 20: Here we show the maximum track length of an event.

4.3.2 Python layer

We need a method to implement the third layer in the network. The Caffe
framework allows for Python code to be called in the network. In this way, the
python layer extracts the reconstruction information from the third layer, which is
then concatenated with the convolutional network output.

It is possible to calculate some reconstruction variables with a python layer at
same time as the training. However, by default Python will use the CPU for calcu-
lations, which causes a bottleneck in the network. To use on-the-fly calculations
Python must be implemented in a way that takes advantage of the GPU’s parallel
computation. What we have chosen to do, instead, is add the reconstruction vari-
ables to the dataset, and simply use a Python layer to pass the information further
down the network, which is a very computationally light task and does not affect
the speed of training.
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5 Results

There are a large number of possible reconstruction variables, but not all of
them improve the network’s performance. We found that the addition of some
variables may even reduce the total accuracy of the network, perhaps because
they simply do not distinguish between event types well enough to provide useful
information.

We have chosen a set of variables that maximized the improvement in training
(both in accuracy and in the reduction of over training).

Our results were obtained with the follow variables:

e X-view variance in hit positions in X/Y
e Y-view variance in hit positions in X/Y

X/Y view maximum track length (reconstruction variable)

e X/Y view average hits per track (reconstruction variable)

e X/Y view X-coordinate of average hit position

The results are:

—— Standard (Small) Standard vs Custom
- - Custom

Std  Custm
mu 56.3 63.7
25]e 51.5 61.2

— Accuracy
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Cosm 88.1 88.3
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Figure 21: Custom accuracy and loss for the small data sample. The plot is show-
ing comparation between standard network and the custom one with some recon-
struction variables.
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Figure 22: Custom accuracy and loss for the medium data sample. Unlike the
small sample, there is no much improvement with the custom network in compa-
ration with the standard one.

23



— Standard (Full) Standard vs Custom — Accuracy
- - Custom — Loss (test)

— Loss (train)
_ - {o.s
15}
{06
>
" @
u 1.0} 5
5 o
k=4
10.4
0.5 Std
mu 81.9
e 77.7
tau 26.9
NC 76.6
Cosm 91.7
0.0
0 5

Epoch

Figure 23: Custom accuracy and loss for the full data sample. We can see that
there is almost no difference between the standard and custom network.

As we see in the figure 21 the custom loss shows some improvements, mostly
for the muon-neutrino and electron-neutrino. This is a good result as these are
generally the more difficult categories to classify. Additionally we see an increase
in the total accuracy of the network with this small data sample, and we achieved
this increased accuracy much more quickly.

For the medium and large data sets we did not see the same improvement in
accuracy, as can be seen in figures 22 and 23 for the medium and full samples,
respectively. There is slight improvement in the total accuracy, but it is marginal.
The main improvement in the larger data sets is in the reduction of the over train-
ing of the network, where we can see the blue and green lines do not diverge quite
as much.

6 Conclusion

We attempted to improve the network by adding a third layer as input into the
network, in witch it is possible add simple reconstruction variables for each event.
The results are preliminary. We showed that this method generally reduced the
over training of the CNN, meaning that it learned more general features of the
events. However, we were surprised to see that the accuracy was not improved by
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much. For the small data set we did see an impressive jump in accuracy. But it
seems that for large data sets the network seems to learn to classify very well based
only on the images, without much improvement by adding extra information. But
this is only a first attempt, and there is still room for improvement in the methods.

7 Perspective

We used a very rudimentary method of calculating reconstruction variables.
The quality of the variables input into the network could greatly affect the results.
So our method may already see improvement by incorporating NOvA’s official
reconstruction calculations. Additionally, the choice of variables used and the
structure of the network should be studied more. We made a careful study of each
individual variable’s effect on the network’s results, but this is time consuming and
does not take into account possible useful correlations between variables. There
may be ways to improve such studies, both in quality and speed.
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