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Abstract

Pairing correlations in nuclei near
56

Fe are studied within the BCS theory. Pairing gap is
calculated in spherical atomic nuclei with valence nucleons located on 1f7/2 and 2p3/2 shells.
In systems consisting of odd number of nucleons, blocking effect is taken into account.

1 Introduction

Now it is well established that pairing correlations have a significant influence on nuclear
structure and various properties of nuclei, including their form, decay parameters, etc [1, 2]. Of
particular interest is the phenomenon taking place in systems with odd number of nucleons and
known as the blocking effect. The blocking effect appears to be of great importance, as it may allow
to account for the location of low-lying one- and two-quasiparticle states in heavy nuclei [3].

In this work, pairing correlations are studied for the set of sample nuclei, 51Sc, 52Ti, 53V, 54Cr,
55Mn, 56Fe, 57Fe, 57Co, and blocking effect is taken into account. It is assumed that all isotopes
considered in this work are spherical. The proton and neutron mean fields are approximated by
the Woods-Saxon potential. The BCS theory is applied to calculate the energy gap and to study
the blocking effect. The parameters of the Woods-Saxon potential and the strength of pairing
interaction are adjusted to reproduce nucleon separation energies.

2 Theoretical background

2.1 Model Hamiltonian

More than 50 years ago Bohr, Mottelson, Pines [4] and Belyaev [5] made a suggestion, ac-
cording to which the observed pairing interaction in atomic nuclei may share properties similar to
those in superconductors. First worked out by Bardeen, Cooper and Schrieffer [6], the theory of
superconductivity can be adjusted to describe the low-energy excited states of medium and heavy
nuclei.

To describe pairing correlations in atomic nuclei, we start from a simple Hamiltonian contain-
ing mean field for protons and neutrons and the pairing interaction:

H0 = Hav +Hpair =
∑
τ=n,p

∑
j,m

(Ej − λτ )a†jmajm −
∑
τ=n,p

Gτ
4

∑
j1,m1
j2,m2

a†
j1m1

a†
j1m1

a
j2m2

a
j2m2

, (1)

ajm = (−1)j−maj,−m. (2)

Here, Ej is the single particle energies, λτ stands for chemical potential, and Gτ is the strength of
pairing interactions.

In order to describe the mean field of spherical nuclei, Woods-Saxon potential is used. There
are two terms contributing to the Woods-Saxon potential:

1. the central term

V (r) = − V N,Z0

1 + exp[α(r −R0)]
(3)
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2. and the spin-orbital term

Vls = −κdV (r)

dr
(ls). (4)

Here, V N,Z0 stands for the depth of neutron and proton potential wells; α is the diffusion

parameter; κ is the constant of spin-orbital interaction; R0 = r0A
1/3 is the nuclear radius. For

protons, this potential should be further complemented with the term corresponding to Coulomb
interaction. For a uniformly charged sphere it reads as:

Vc =
(Z − 1)e2

r

{
(3/2)(r/R0)− (1/2)(r/R0)3, r 6 R0;

1, r > R0.
(5)

Parameters of the Woods-Saxon potential α, κ and r0 are chosen according to parametrization
suggested in [7]. The depth of the potential, V N,Z0 , is adjusted to reproduce the neutron and proton
separation energies (see the discussion below).

2.2 BCS method

To account for pairing correlations in the nuclear system described by the Hamiltonian (1) we apply
the method suggested by N.N. Bogoliubov and further developed by V.G. Soloviev. Namely, we
introduce quasiparticle creation and annihilation operators:

a†jm = u
j
α†
jm

+ v
j
α
jm
, (6)

ajm = u
j
α
jm

+ v
j
α†
jm
. (7)

Quasipartile creation and annihilation operators should satisfy the fermionic anticommutation re-
lations. Therefore, the following relations between real functions uj and vj should be valid:

ηj = u2j + v2j − 1 = 0. (8)

The vacuum of quasiparticles,

αjm|BCS〉 = 0, 〈BCS|α†jm = 0, (9)

is the ground state for a system with even number of particles.
To find the energy and the structure of Bogoliubov quasiparticles we should minimize the

expectation value of the pairing Hamiltonian with respect to the BCS vacuum state

〈BCS|H0|BCS〉 ≡ 〈H0〉. (10)

To compute 〈H0〉 we need to know the matrix elements 〈a†jmajm〉 and 〈a†
j1m1

a†
j1m1

a
j2m2

a
j2m2
〉. For

〈a†jmajm〉 we have

〈a†jmajm〉 = 〈v
j
α
jm
v
j
α†
jm
〉 = v2j .
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To compute 〈a†
j1m1

a†
j1m1

a
j2m2

a
j2m2
〉 we apply Wick’s theorem. As a result we get

〈a†
j1m1

a†
j1m1

a
j2m2

a
j2m2
〉 = 〈a†

j1m1
a†
j1m1
〉〈a

j2m2
a
j2m2
〉

− 〈a†
j1m1

a
j2m2
〉〈a†

j1m1
a
j2m2
〉

+ 〈a†
j1m1

a
j2m2
〉〈a†

j1m1
a
j2m2
〉

= uj1uj2vj1vj2 + (δm1m2
− δm1−m2

)δj1j2v
2
j1
v2j2(−1)j1+j2−m1−m2 .

Then, taking into account the (2j + 1)-degeneracy of the spherical nuclei levels, we obtain the
following expression for 〈H0〉:

〈H0〉 =
∑
τj

v2j (2j + 1)[Ej − λτ ]−
∑
τ

Gτ
4

∑
j

ujvj(2j + 1)

2

. (11)

To minimize 〈H0〉 we vary it with respect to unknown uj and vj functions. Since these
functions are not independent and Eq. (8) should be satisfied, we introduce additional Lagrange
multipliers µj . Then, variations δuj and δvj can be treated as independent, and the extremum
condition takes the form:

δ
{
〈BCS|H0|BCS〉+

∑
j

µjηj

}
= 0. (12)

This condition can be applied to the proton and neutron systems separately. As a result, we get
the following system of equations:

2(2j + 1)(Ej − λτ )vj −
Gτ
2
uj(2j + 1)

∑
j
′

uj′vj′(2j
′ + 1) + 2µjvj = 0,

−Gτ
2
vj(2j + 1)

∑
j
′

uj′vj′(2j
′ + 1) + 2µjvj = 0.

(13)

By excluding µj we obtain:

2(2j + 1)vjuj(Ej − λτ )− Gτ
2

(2j + 1)(u2j − v
2
j )
∑
j
′

uj′vj′(2j
′ + 1) = 0. (14)

Now, we introduce the so-called correlation function (also referred to as the pairing gap):

∆τ =
Gτ
2

∑
j

ujvj(2j + 1). (15)

With the help of the correlation function Eq. (14) can be rewritten as:

2(2j + 1)vjuj(Ej − λτ )− Gτ
2

(2j + 1)(u2j − v
2
j )∆τ = 0. (16)

This equation should be supplemented by the particle number equation:

N =
∑
j

(2j + 1)v2j , (17)
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where the value (2j + 1)v2j stands for particle density on the j shell.
The non-trivial solution of Egs. (16) and (17) is given by:

u2j =
1

2

(
1 +

Ej − λτ
εj

)
, (18)

v2j =
1

2

(
1−

Ej − λτ
εj

)
, (19)

where εj =
√

(Ej − λτ )2 + ∆2
τ is the quasiparticle energy. By means of straightforward derivations,

we can show that:

ujvj =
1

2

∆τ

εj
. (20)

This equation along with (15) gives:

1 =
Gτ
4

∑
j

2j + 1√
(Ej − λτ )2 + ∆2

τ

. (21)

At the same time, from (17) and (19) we obtain:

N =
1

2

∑
j

(2j + 1)

(
1−

Ej − λτ
εj

)
. (22)

Equations (21) and (22) are well known BCS equations for spherical nuclei. The solution of these
equations describes superfluid properties of the nuclear system with the Hamiltonian (1).

Within the BCS theory the Hamiltonian (1) describes the system of non-interacting Bogoli-
ubov quasiparticles

H0 ≈
∑
τ

∑
jm

εjmα
†
jmαjm. (23)

Elementary excitations in such a system are given by two-quasiparticle states built on the top of the
BCS vacuum, i.e., α†j1m1

α†j2m2
|BCS〉. The energy of these states is separated from the ground-state

energy by the energy gap

εj1 + εj2 ≥ 2∆. (24)

2.3 Blocking effect

Equations (21) and (22) hold only for even systems. If we place an odd particle on a given
single-particle level, this level becomes partially blocked due to Pauli principle. So it is clear that
odd particle should affect the superfluid properties of the system.

Within the BCS theory the system containing odd number of nucleons is described as a
one-quasiparticle state αjm|BCS〉. To describe pairing correlations in such a system we should
minimize the expectation value of the Hamiltonian (1) with respect to one-quasiparticle state. For
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the expectation value we have

〈α
j
′
m

′Hτα
†
j
′
m

′〉 = Ej′ − λτ + (2j′ − 1)

[
Ej′ − λτ −

Gτ
2
v2j′

]
v2j′

+
∑
j 6=j′

v2j (2j + 1)

[
Ej − λτ −

Gτv
2
j

2

]
−Gτ

∑
j 6=j′

(j +
1

2
)ujvj + (j′ − 1

2
)uj′vj′

2

. (25)

Here, j′ stands for the single-particle level containing the quasiparticle. To minimize (25), we apply
the method described in the previous section. Then, after some algebra we derive:

2(2j+1)vjuj(Ej−λτ )− Gτ
2

(2j+1)(u2j −v
2
j )

∑
j
′′ 6=j′

(2j′′ + 1)uj′′vj′′ + (2j′ − 1)uj′vj′


2

= 0. (26)

For the odd system the correlation function (i.e., the pairing gap) is defined as:

∆τ (j′) =
Gτ
2

∑
j 6=j′

(2j + 1)ujvj + (2j′ − 1)uj′vj′

 . (27)

Then the BCS equations for the odd system take the form:

1 =
Gτ
4

∑
j 6=j′

2j + 1

ε(j|j′)
+

2j′ − 1

ε(j′|j′)

 , (28)

N =
∑
j 6=j′

(2j + 1)v2j (j′) + (2j′ − 1)v2j′(j
′) + 1, (29)

where

ε(j|j′) =

√
(Ej − λτ (j′))2 + ∆2

τ (j′),

v2j (j′) =
1

2

(
1−

Ej − λτ (j′)

ε(j|j′)

)
, u2j (j

′) = 1− v2j (j′).

For the odd system, the ground state correspond to one-quasiparticle configuration with min-
imal energy. Then, the energies of excited one-quasiparticle configurations are

εj2 − ε
min
j1

. (30)

So, it is seen that in the odd systems there is no an energy gap between the ground and excited
states.

3 Results

To obtain the single-particle level scheme the parameters of Woods-Saxon potential are fitted
for 56Fe according to parametrizion from Ref. [7]. The numerical solution of the Schroedinger
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Figure 1: Neutron (to the left) and proton (to the right) single-particle energies in 56Fe

equation is performed with the help of Fortran code described in Ref. [8]. The depth of the potential
and the strength of pairing interaction are adjusted to reproduce experimental nucleon separation
energies and odd-even mass difference:

Sτ = ∆τ − λτ , (τ = n, p), (31)

∆p =
1

4

{
3M(Z − 1, N) +M(Z + 1, N)− 3M(Z,N)−M(Z − 2, N)}, (32)

∆n =
1

4

{
3M(Z,N − 1) +M(Z,N + 1)− 3M(Z,N)−M(Z,N − 2)}. (33)

For 56Fe we have Sn = 11.197 MeV, Sp = 10.183 MeV, ∆n = 1.36 MeV, ∆p = 1.57 MeV. The

resulting values for V N,Z0 and Gn,p are: V N0 = 51.90 MeV, V Z0 = 57.19 MeV, Gn = 0.303 MeV,
Gp = 0.335 MeV. The obtained single-particle level scheme for protons and neutrons is shown in
Fig. 1.

To solve the BCS equations with and without blocking effect the Fortran code was created
(see Appendix). The code solves the nonlinear BSC equations by applying the Newton method.
As an output, the code provides the pairing energy gaps ∆n,s, the chemical potentials λn,p, the
coefficients uj , vj of the Bogoliubov transformation, and the energies εj for proton and neutron
quasiparticles.

For 57Fe and 57Co we study the effect of unpaired odd particle on pairing correlations. To this
aim we place an unpaired particle on different single-particle levels and solve the BCS equations
taking into account the blocking effect. Note, that in the ground state of 57Fe the odd neutron is
located on 2p3/2 orbit, while in 57Co the odd proton is located on 1f7/2 orbit. In Figs. 2 and 3
we show the value of pairing gap as a function of odd particle quantum numbers. As we can see,
for considered nuclei the pairing gaps reaches their minimal values in the nuclear ground states.
When we put an unpaired particle on single-particle levels far from the Fermi level, the pairing
correlations gain strength and the pairing gap monotonically increases.
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Figure 2: Energy gap in 57Fe as a function of
odd neutron single-particle energy.

Figure 3: Energy gap in 57Co as a function of
odd proton single-particle energy.

Of particular interest is the behaviour of the proton energy gap in 57Co. In the ground state
of 57Co, the proton pairing correlations completely vanish due to blocking effect. This is also true
if we put an odd proton on 2s1/2 and 1d3/2 levels, both of which are quite close to Fermi level.
However, the blocking effect diminishes with moving away from the Fermi level and, therefore,
pairing correlations appear. This effect demonstrates that pairing correlations in nuclear excited
states can differ significantly from those in the nuclear ground state.

We also study the proton pairing correlations in isotones with N = 30. In Fig. 4 we show the
pairing gap as a function of the proton number Z. As seen from the figure, pairing correlations
completely vanish for Z = 20 This corresponds to completely empty 1f7/2 orbit. Pairing correlations
are most pronounced when the 1f7/2 level is half-filled. From the figure we also observe that the
pairing gap in the odd systems is lesser than that in the neighbouring even systems. This clearly
demonstrates the blocking effect.

4 Summary

Pairing gap behaviour and blocking effect in even-even and odd-A nuclei near 56Fe were
studied. It is shown that taking into account the blocking effect allows us to explain the reduction
or vanishing of pairing correlations in the considered odd nuclei.

In the course of this work, I was aimed to study the BCS model describing pairing correlations
responsible for superfluidity in atomic nuclei. Toward this end I learned the theoretical methods
of nuclear many-body problem. Namely, the method of second quantization, the method of u, v
Bogoliubov transformation, and the concept of quasiparticle. I derived BCS equations for even and
odd nuclear systems. In the latter case, the blocking effect was taken into account. To perform
numerical calculations, I improved my skills and abilities in writing Fortran codes. To solve the
non-linear BCS equations, I got familiar with Newton’s method.

During my summer practice I got acquainted with many scientists working in theoretical
nuclear physics. Discussions with them broadened my scientific background and let me learn about
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Figure 4: ∆p as a function of Z in isotones with N = 30

actual problems of modern nuclear physics.
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[2] F.Šimkovic, Ch.C. Moustakidis, L. Pacearescu, Amand Faessler // Proton-neutron pairing in
the deformed BCS approach

[3] V. G. Soloviev // Theory of Complex Nuclei (Publishing house ”Science”, Home edition of
Physical and Mathematical Literature, Moscow, 1976) [in Russian]

[4] A. Bohr, B.R. Mottelson, D. Pines // Phys. Rev. 110, 936 (1958)

[5] S.T. Belyaev // Mat. Fys. Medd. Dan. Vid. Selsk. 31, no 11, 1 (1957)

[6] J. Bardeen, L.N. Cooper, J.R. Schrieffer // Phys. Rev. 108, 1175 (1957)

[7] V.A. Chepurnov // Nuclear Physics, Vol. 5, 955 (1967)

[8] M.H. Gizatkulov, I.V. Puzynin, R.M. Yamaleev // JINR P11 - 10029 (1976) [in Russian]

[9] A. Bohr, B.R. Mottelson // Nuclear Structure. Vol. 1. N. Y., (1969)

9



*

Fortran program for numerical solution of BCS equations

The following program was used in order to solve the BCS equations.

IMPLICIT REAL*8 (A-H,O-Z)

COMMON/EINDE/E(100),INDE(100)

COMMON/EPSUV/EPS(100),U(100),V(100)

dimension rj(100)

integer odd_n, odd_p

logical flag_n, flag_p

6017 FORMAT(/20X,’EVEN-EVEN NUCLEUS Z =’,I3,’ A =’,I3

*/1X,’GR. STATE N =’,I4,5X,’GR. STATE Z =’,I4,5X,’GN =’,F10.3

*,5X,’GP =’,F10.3/1X,’CN =’,F10.5,5X,’CP =’,F10.5,5X,’LAMN =’,

*F10.5,5X,’LAMP =’,F10.5)

6019 FORMAT(/9X,’I’,’ INDE’,9X,’E’,7X,’EPS’,9X,’U’,9X,’V’)

6020 FORMAT(I10,I5,4F10.5,e12.3)

6028 FORMAT(/2X,’*****INCORRECT GROUND STATE N =’,I4,5X,’Z =’,I4)

6029 FORMAT(/2X,’*****INCORRECT ODD NEUTRON OR ODD PROTON STATE’)

OPEN(15,FILE=’bcs.inp’,FORM=’FORMATTED’,STATUS=’OLD’)

OPEN(16,FILE=’bcs.out’,FORM=’FORMATTED’,STATUS=’unknown’)

C.....READ AND PRINT ENERGIES

OPEN(71,FILE=’sp.n’,FORM=’FORMATTED’,STATUS=’OLD’)

read(71,*)nen

do i=1,nen

read(71,*)inde(i),e(i)

enddo

close(71)

OPEN(71,FILE=’sp.z’,FORM=’FORMATTED’,STATUS=’OLD’)

read(71,*)nep

do i=1,nep

read(71,*)inde(i+nen),e(i+nen)

enddo

close(71)

MIN=NEN+1

10



MAX=NEN+NEP

READ(15,*) IZ,IA ! Z and A

READ(15,*) GN,GP

read(15,*) odd_n

read(15,*) odd_p

IGRN=0

IGRP=0

flag_n=.FALSE.

flag_p=.FALSE.

DO 501 I=1,NEN ! finding the

J=INDE(I)-(INDE(I)/10)*10 ! last neutron

IGRN=IGRN+2*(J+1) ! occupied level

IF(IGRN.LT.IA-IZ) GO TO 501

IGRSTN=I

IGRN=INDE(I)

RLAMN = E(I)

GO TO 502

501 CONTINUE

502 CONTINUE

DO 511 I=MIN,MAX ! finding the

J=INDE(I)-(INDE(I)/10)*10 ! last proton

IGRP=IGRP+2*(J+1) ! occupied level

IF(IGRP.LT.IZ) GO TO 511

IGRSTP=I

IGRP=INDE(I)

RLAMP = E(I)

GO TO 512

511 CONTINUE

512 CONTINUE

IF (odd_n.EQ.0) THEN ! looking for

flag_n=.TRUE. ! the odd neutron

ELSE ! level

DO 513 I=1,NEN

IF (odd_n.EQ.INDE(I)) THEN

flag_n=.TRUE.

odd_n = I
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GO TO 514

END IF

513 CONTINUE

END IF

514 CONTINUE

IF (odd_p.EQ.0) THEN ! looking for

flag_p=.TRUE. ! the odd proton

ELSE ! level

DO 515 I=MIN,MAX

IF (odd_p.EQ.INDE(I)) THEN

flag_p=.TRUE.

odd_p = I

GO TO 516

END IF

515 CONTINUE

END IF

516 CONTINUE

144 IF(IGRSTN.NE.0.AND.IGRSTP.NE.0) GO TO 146

WRITE(*, 6028)IGRN, IGRP

stop

146 CONTINUE

IF(flag_n.AND.flag_p) GO TO 147

WRITE(*, 6029)

stop

147 CONTINUE

c>>>>>>>>>>>>>>>>>>>>>>>>>>>> BEGIN BCS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

! gap and lambda for neutrons

CN = 0.0d0

CALL CLAM(1,NEN, IA-IZ+0.d0,GN,0,0,CN,RLAMN,EGRN,odd_n)

! gap and lambda for protons

CP = 0.0d0

CALL CLAM(NEN+1,NEN+NEP,IZ+0.D0,GP,0,0,CP,RLAMP,EGRP,odd_p)

! eps, u, v

CALL EPSUVS(CN,CP,RLAMN,RLAMP,NEN,NEP)

c>>>>>>>>>>>>>>>>>>>>>>>>>>>> END BCS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

c ***************** start printing BCS results *************************
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write(*,’(1x)’)

write(*,’(A4,I3,A7,I3)’)’ A =’,IA,’ Z =’,IZ

write(*,’(1x)’)

write(*,’(A11,F6.3,A4,A11,F6.3,A4)’)’ G_n =’,GN, ’ MeV’,

* ’ G_p =’,GP, ’ MeV’

write(*,’(1x)’)

write(*,’(A8,F5.2,A4,A12,F7.3,A4)’)’ C_n =’,CN, ’ MeV’,

* ’ Lambda_n =’,rlamn, ’ MeV’

write(*,’(A8,F5.2,A4,A12,F7.3,A4)’)’ C_p =’,CP, ’ MeV’,

* ’ Lambda_p =’,rlamp, ’ MeV’

write(*,’(1x)’)

WRITE(16, 6017)IZ,IA,IGRN,IGRP,GN,GP,CN,CP,RLAMN,RLAMP

WRITE(16, 6019)

write(16,’(1x)’)

Zn=0.d0

WRITE(16, ’(A25)’)’ N E U T R O N S’

DO 3 I=1,NEN ! control N

RJ(i)=INDE(i)-(INDE(i)/10)*10+1.0D0

RJ(i)=RJ(i)*0.5

Zn=Zn+2.0*rj(i)*(1-(E(i)-rlamn)/eps(i))

3 WRITE(16, 6020)I,INDE(I),E(I),EPS(I),U(I),V(I)

IF (odd_n.NE.0) Zn=Zn-(1-(E(odd_n)-rlamn)/eps(odd_n))+1

print*,’Nn=’,zn

write(16,’(1x)’)

WRITE(16,’(A23)’)’ P R O T O N S’

Zp=0.d0

DO 4 I=MIN,MAX

RJ(i)=INDE(i)-(INDE(i)/10)*10+1.0D0

RJ(i)=RJ(i)*0.5

Zp=Zp+2.0*rj(i)*(1-(E(i)-rlamp)/eps(i)) ! control P

4 WRITE(16, 6020)I,INDE(I),E(I),EPS(I),U(I),V(I)

IF (odd_p.NE.0) Zp=Zp-(1-(E(odd_p)-rlamp)/eps(odd_p))+1

print*,’Np=’,zp

c *************************end printing BCS *************************

CLOSE(15)
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CLOSE(16)

pause

END

C***********************************************************************

SUBROUTINE CLAM(MIN,MAX,RN,G,IQP1,IQP2,C,RLAM,ENBCS,ODD)

IMPLICIT REAL*8 (A-H,O-Z)

COMMON/EINDE/E(100),INDE(100)

CHARACTER IZZZ*1

INTEGER ODD

6000 FORMAT(5X,13H*****INITIAL ,A1,

* 36H VALUE FOR GROUND STATE IS NOT FOUND)

6001 FORMAT(5X,32H*****C AND LAM ARE NOT FOUND C =,E15.6,10X,5HLAM =,

*E15.6)

CINIT=C

RLINIT=RLAM

200 C1=0

C2=0

DO 1 J=MIN,MAX

RJI=INDE(J)-(INDE(J)/10)*10+0.5D0

C2=C2+(2.D0*RJI+1.D0)

1 CONTINUE

C2=C2*G/4.D0

IF(ODD.EQ.0) THEN

DO 3 IT=1,30

C=(C1+C2)/2.D0

IF(DABS(C1-C2).LE.0.1D0)GOTO100

101 F=-4.D0/G

CP2=C*C

DO 2 J=MIN,MAX

IF(J.EQ.IQP1.OR.J.EQ.IQP2)GOTO2

150 CALL CLAMH(J,C,RLAM,RJI,EPSJ,EL,VJ2)

F=F+(2.D0*RJI+1.D0)/EPSJ

2 CONTINUE

160 IF(F)102,102,103

102 C2=C

GO TO 3

103 C1=C
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3 CONTINUE

ELSE

DO 203 IT=1,30

C=(C1+C2)/2.D0

IF(DABS(C1-C2).LE.0.1D0)GOTO100

301 F=-4.D0/G

CP2=C*C

DO 202 J=MIN,MAX

IF(J.EQ.IQP1.OR.J.EQ.IQP2)GOTO202

350 CALL CLAMH(J,C,RLAM,RJI,EPSJ,EL,VJ2)

F=F+(2.D0*RJI+1.D0)/EPSJ

202 CONTINUE

CALL CLAMH(ODD,C,RLAM,RJI,EPSJ,EL,VJ2)

F=F-(2.D0*RJI+1.D0)/EPSJ+(2.D0*RJI-1.D0)/EPSJ

360 IF(F)302,302,303

302 C2=C

GO TO 203

303 C1=C

203 CONTINUE

ENDIF

IZZZ=’C’

165 WRITE(16,6000)IZZZ

ENBCS=7777.D0

GO TO 120

100 DO 4 IT=1,30

B1=-4.D0/G

B2=-RN

CP2=C*C

ENBCS=-CP2/G

A11T=0.D0

A12=0.D0

DO 5 J=MIN,MAX

IF(J.EQ.IQP1.OR.J.EQ.IQP2)GOTO5

105 CALL CLAMH(J,C,RLAM,RJI,EPSJ,EL,VJ2)

RJIS=2.D0*RJI+1.D0

B1=B1+RJIS/EPSJ

B2=B2+RJIS*VJ2

A11T=A11T+RJIS/EPSJ**3

A12=A12+RJIS*EL/EPSJ**3

ENBCS=ENBCS+RJIS*E(J)*VJ2

5 CONTINUE

IF(ODD.NE.0) THEN

CALL CLAMH(ODD,C,RLAM,RJI,EPSJ,EL,VJ2)
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B1=B1-2/EPSJ

B2=B2+1-2*VJ2

A11T=A11T-2/EPSJ**3

A12=A12-2*EL/EPSJ**3

ENDIF

106 DET1=CP2*A11T*A11T+A12*A12

DET=-0.5D0*C*DET1

B1=-B1

B2=-B2

IF(DABS(B1)+DABS(B2).LE.1.D-07)GOTO120

180 DELTAC=(0.5D0*CP2*B1*A11T-B2*A12)/DET

DELTAL=-C*(A11T*B2+0.5D0*A12*B1)/DET

C=C+DELTAC

RLAM=RLAM+DELTAL

IF(.NOT.(DABS(C).LE.0.001D0))GOTO4

181 C=0.D0

GO TO 120

4 CONTINUE

WRITE(16,6001)C,RLAM

ENBCS=0.D0

120 RETURN

END

C***********************************************************************

SUBROUTINE CLAMH(I,C,RLAM,RJI,EPSJ,EL,VJ2)

IMPLICIT REAL*8 (A-H,O-Z)

COMMON/EINDE/E(100),INDE(100)

RJI=INDE(I)-(INDE(I)/10)*10+0.5D0

EL=E(I)-RLAM

EPSJ=DSQRT(C*C+EL*EL)

VJ2=0.5D0*(1.D0-EL/EPSJ)

RETURN

END

C***********************************************************************

SUBROUTINE EPSUVS(CN,CP,RLAMN,RLAMP,KEN,KEP)

IMPLICIT REAL*8 (A-H,O-Z)

COMMON/EINDE/E(100),INDE(100)

COMMON/EPSUV/EPS(100),U(100),V(100)

DO 1 K=1,2

J=K-1
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C=CN*(1-J)+CP*J

RLAM=RLAMN*(1-J)+RLAMP*J

MIN=1+J*KEN

MAX=KEP*J+KEN

DO 1 I=MIN,MAX

EL=E(I)-RLAM

EPS(I)=DSQRT(C*C+EL*EL)

V(I)=DSQRT((1.D0-EL/EPS(I))/2.D0)

IF(.NOT.(V(I).LE.0.05D0))GOTO3

2 V(I)=0.D0

U(I)=1.0D0

GO TO 1

3 U(I)=DSQRT(1.D0-V(I)*V(I))

1 CONTINUE

RETURN

END
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