

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Bogoliubov Laboratory of Theoretical Physics

FINAL REPORT ON THE SUMMER STUDENT PROGRAM

On pairing correlations and blocking effect in nuclei within the BCS theory

Supervisor: Dr. Alan Alexandrovich Dzhioev

Semyon Sidorov, Russia Lomonosov Moscow State University

> Participation period: July 5 – August 25

Dubna 2016

Contents

1	Introduction	1
2	Theoretical background 2.1 Model Hamiltonian 2.2 BCS method 2.3 Blocking effect	
3	Results	5
4	Summary	7
5	Acknowledgements	8

Abstract

Pairing correlations in nuclei near ⁵⁶Fe are studied within the BCS theory. Pairing gap is calculated in spherical atomic nuclei with valence nucleons located on $1f_{7/2}$ and $2p_{3/2}$ shells. In systems consisting of odd number of nucleons, blocking effect is taken into account.

1 Introduction

Now it is well established that pairing correlations have a significant influence on nuclear structure and various properties of nuclei, including their form, decay parameters, etc [1, 2]. Of particular interest is the phenomenon taking place in systems with odd number of nucleons and known as the blocking effect. The blocking effect appears to be of great importance, as it may allow to account for the location of low-lying one- and two-quasiparticle states in heavy nuclei [3].

to account for the location of low-lying one- and two-quasiparticle states in heavy nuclei [3]. In this work, pairing correlations are studied for the set of sample nuclei, ⁵¹Sc, ⁵²Ti, ⁵³V, ⁵⁴Cr, ⁵⁵Mn, ⁵⁶Fe, ⁵⁷Fe, ⁵⁷Co, and blocking effect is taken into account. It is assumed that all isotopes considered in this work are spherical. The proton and neutron mean fields are approximated by the Woods-Saxon potential. The BCS theory is applied to calculate the energy gap and to study the blocking effect. The parameters of the Woods-Saxon potential and the strength of pairing interaction are adjusted to reproduce nucleon separation energies.

2 Theoretical background

2.1 Model Hamiltonian

More than 50 years ago Bohr, Mottelson, Pines [4] and Belyaev [5] made a suggestion, according to which the observed pairing interaction in atomic nuclei may share properties similar to those in superconductors. First worked out by Bardeen, Cooper and Schrieffer [6], the theory of superconductivity can be adjusted to describe the low-energy excited states of medium and heavy nuclei.

To describe pairing correlations in atomic nuclei, we start from a simple Hamiltonian containing mean field for protons and neutrons and the pairing interaction:

$$H_{0} = H_{av} + H_{pair} = \sum_{\tau=n,p} \sum_{j,m} (E_{j} - \lambda_{\tau}) a_{jm}^{\dagger} a_{jm} - \sum_{\tau=n,p} \frac{G_{\tau}}{4} \sum_{\substack{j_{1},m_{1} \\ j_{2},m_{2}}} a_{j_{1}m_{1}}^{\dagger} a_{\overline{j_{1}m_{1}}}^{\dagger} a_{\overline{j_{2}m_{2}}}^{\dagger} a_{j_{2}m_{2}}, \quad (1)$$

$$a_{\overline{jm}} = (-1)^{j-m} a_{j,-m}.$$
(2)

Here, E_j is the single particle energies, λ_{τ} stands for chemical potential, and G_{τ} is the strength of pairing interactions.

In order to describe the mean field of spherical nuclei, Woods-Saxon potential is used. There are two terms contributing to the Woods-Saxon potential:

1. the central term

$$V(r) = -\frac{V_0^{N,Z}}{1 + \exp[\alpha(r - R_0)]}$$
(3)

2. and the spin-orbital term

$$V_{ls} = -\varkappa \frac{\mathrm{d}V(r)}{\mathrm{d}r} (\mathbf{ls}). \tag{4}$$

Here, $V_0^{N,Z}$ stands for the depth of neutron and proton potential wells; α is the diffusion parameter; \varkappa is the constant of spin-orbital interaction; $R_0 = r_0 A^{1/3}$ is the nuclear radius. For protons, this potential should be further complemented with the term corresponding to Coulomb interaction. For a uniformly charged sphere it reads as:

$$V_c = \frac{(Z-1)e^2}{r} \begin{cases} (3/2)(r/R_0) - (1/2)(r/R_0)^3, & r \le R_0; \\ 1, & r > R_0. \end{cases}$$
(5)

Parameters of the Woods-Saxon potential α , \varkappa and r_0 are chosen according to parametrization suggested in [7]. The depth of the potential, $V_0^{N,Z}$, is adjusted to reproduce the neutron and proton separation energies (see the discussion below).

2.2 BCS method

To account for pairing correlations in the nuclear system described by the Hamiltonian (1) we apply the method suggested by N.N. Bogoliubov and further developed by V.G. Soloviev. Namely, we introduce quasiparticle creation and annihilation operators:

$$a_{jm}^{\dagger} = u_j \alpha_{jm}^{\dagger} + v_j \alpha_{\overline{jm}},\tag{6}$$

$$a_{jm} = u_j \alpha_{jm} + v_j \alpha_{jm}^{\dagger}.$$
(7)

Quasipartile creation and annihilation operators should satisfy the fermionic anticommutation relations. Therefore, the following relations between real functions u_i and v_j should be valid:

$$\eta_j = u_j^2 + v_j^2 - 1 = 0.$$
(8)

The vacuum of quasiparticles,

$$\alpha_{im}|BCS\rangle = 0, \langle BCS|\alpha_{im}^{\dagger} = 0, \tag{9}$$

is the ground state for a system with even number of particles.

To find the energy and the structure of Bogoliubov quasiparticles we should minimize the expectation value of the pairing Hamiltonian with respect to the BCS vacuum state

$$\langle BCS|H_0|BCS\rangle \equiv \langle H_0\rangle. \tag{10}$$

To compute $\langle H_0 \rangle$ we need to know the matrix elements $\langle a_{jm}^{\dagger} a_{jm} \rangle$ and $\langle a_{j_1m_1}^{\dagger} a_{\overline{j_1m_1}}^{\dagger} a_{\overline{j_2m_2}} a_{j_2m_2} \rangle$. For $\langle a_{jm}^{\dagger} a_{jm} \rangle$ we have

$$\langle a_{jm}^{\dagger}a_{jm}\rangle = \langle v_{j}\alpha_{\overline{jm}}v_{j}\alpha_{\overline{jm}}^{\dagger}\rangle = v_{j}^{2}.$$

To compute $\langle a_{j_1m_1}^{\dagger}a_{\overline{j_1m_1}}^{\dagger}a_{\overline{j_2m_2}}a_{j_2m_2}\rangle$ we apply Wick's theorem. As a result we get

$$\begin{split} \langle a_{j_1m_1}^{\dagger} a_{\overline{j_1m_1}}^{\dagger} a_{\overline{j_2m_2}} a_{j_2m_2} \rangle &= \langle a_{j_1m_1}^{\dagger} a_{\overline{j_1m_1}}^{\dagger} \rangle \langle a_{\overline{j_2m_2}} a_{j_2m_2} \rangle \\ &- \langle a_{j_1m_1}^{\dagger} a_{\overline{j_2m_2}} \rangle \langle a_{\overline{j_1m_1}}^{\dagger} a_{j_2m_2} \rangle \\ &+ \langle a_{j_1m_1}^{\dagger} a_{j_2m_2} \rangle \langle a_{\overline{j_1m_1}}^{\dagger} a_{\overline{j_2m_2}} \rangle \\ &= u_{j_1}u_{j_2}v_{j_1}v_{j_2} + (\delta_{m_1m_2} - \delta_{m_1-m_2})\delta_{j_1j_2}v_{j_1}^2v_{j_2}^2 (-1)^{j_1+j_2-m_1-m_2}. \end{split}$$

Then, taking into account the (2j + 1)-degeneracy of the spherical nuclei levels, we obtain the following expression for $\langle H_0 \rangle$:

$$\langle H_0 \rangle = \sum_{\tau j} v_j^2 (2j+1) [E_j - \lambda_\tau] - \sum_\tau \frac{G_\tau}{4} \left[\sum_j u_j v_j (2j+1) \right]^2.$$
(11)

To minimize $\langle H_0 \rangle$ we vary it with respect to unknown u_j and v_j functions. Since these functions are not independent and Eq. (8) should be satisfied, we introduce additional Lagrange multipliers μ_j . Then, variations δu_j and δv_j can be treated as independent, and the extremum condition takes the form:

$$\delta \left\{ \langle BCS | H_0 | BCS \rangle + \sum_j \mu_j \eta_j \right\} = 0.$$
⁽¹²⁾

This condition can be applied to the proton and neutron systems separately. As a result, we get the following system of equations:

$$\begin{cases} 2(2j+1)(E_j - \lambda_\tau)v_j - \frac{G_\tau}{2}u_j(2j+1)\sum_{j'}u_{j'}v_{j'}(2j'+1) + 2\mu_jv_j = 0, \\ -\frac{G_\tau}{2}v_j(2j+1)\sum_{j'}u_{j'}v_{j'}(2j'+1) + 2\mu_jv_j = 0. \end{cases}$$
(13)

By excluding μ_j we obtain:

$$2(2j+1)v_ju_j(E_j - \lambda_\tau) - \frac{G_\tau}{2}(2j+1)(u_j^2 - v_j^2)\sum_{j'}u_{j'}v_{j'}(2j'+1) = 0.$$
(14)

Now, we introduce the so-called correlation function (also referred to as the pairing gap):

$$\Delta_{\tau} = \frac{G_{\tau}}{2} \sum_{j} u_j v_j (2j+1). \tag{15}$$

With the help of the correlation function Eq. (14) can be rewritten as:

$$2(2j+1)v_j u_j (E_j - \lambda_\tau) - \frac{G_\tau}{2}(2j+1)(u_j^2 - v_j^2)\Delta_\tau = 0.$$
(16)

This equation should be supplemented by the particle number equation:

$$N = \sum_{j} (2j+1)v_j^2,$$
(17)

where the value $(2j + 1)v_j^2$ stands for particle density on the *j* shell. The non-trivial solution of Eqs. (16) and (17) is given by:

$$u_j^2 = \frac{1}{2} \left(1 + \frac{E_j - \lambda_\tau}{\varepsilon_j} \right),\tag{18}$$

$$v_j^2 = \frac{1}{2} \left(1 - \frac{E_j - \lambda_\tau}{\varepsilon_j} \right),\tag{19}$$

where $\varepsilon_j = \sqrt{(E_j - \lambda_\tau)^2 + \Delta_\tau^2}$ is the quasiparticle energy. By means of straightforward derivations, we can show that:

$$u_j v_j = \frac{1}{2} \frac{\Delta_\tau}{\varepsilon_j}.$$
(20)

This equation along with (15) gives:

$$1 = \frac{G_{\tau}}{4} \sum_{j} \frac{2j+1}{\sqrt{(E_j - \lambda_{\tau})^2 + \Delta_{\tau}^2}}.$$
 (21)

At the same time, from (17) and (19) we obtain:

$$N = \frac{1}{2} \sum_{j} (2j+1) \left(1 - \frac{E_j - \lambda_\tau}{\varepsilon_j} \right).$$
⁽²²⁾

Equations (21) and (22) are well known BCS equations for spherical nuclei. The solution of these equations describes superfluid properties of the nuclear system with the Hamiltonian (1).

Within the BCS theory the Hamiltonian (1) describes the system of non-interacting Bogoliubov quasiparticles

$$H_0 \approx \sum_{\tau} \sum_{jm} \varepsilon_{jm} \alpha_{jm}^{\dagger} \alpha_{jm}.$$
 (23)

Elementary excitations in such a system are given by two-quasiparticle states built on the top of the BCS vacuum, i.e., $\alpha_{j_1m_1}^{\dagger}\alpha_{j_2m_2}^{\dagger}|BCS\rangle$. The energy of these states is separated from the ground-state energy by the energy gap

$$\varepsilon_{j_1} + \varepsilon_{j_2} \ge 2\Delta. \tag{24}$$

$\mathbf{2.3}$ **Blocking effect**

Equations (21) and (22) hold only for even systems. If we place an odd particle on a given single-particle level, this level becomes partially blocked due to Pauli principle. So it is clear that odd particle should affect the superfluid properties of the system.

Within the BCS theory the system containing odd number of nucleons is described as a one-quasiparticle state $\alpha_{im}|BCS\rangle$. To describe pairing correlations in such a system we should minimize the expectation value of the Hamiltonian (1) with respect to one-quasiparticle state. For

the expectation value we have

$$\langle \alpha_{j'm'} H_{\tau} \alpha_{j'm'}^{\dagger} \rangle = E_{j'} - \lambda_{\tau} + (2j' - 1) \left[E_{j'} - \lambda_{\tau} - \frac{G_{\tau}}{2} v_{j'}^2 \right] v_{j'}^2 + \sum_{j \neq j'} v_j^2 (2j + 1) \left[E_j - \lambda_{\tau} - \frac{G_{\tau} v_j^2}{2} \right] - G_{\tau} \left[\sum_{j \neq j'} (j + \frac{1}{2}) u_j v_j + (j' - \frac{1}{2}) u_{j'} v_{j'} \right]^2.$$
(25)

Here, j' stands for the single-particle level containing the quasiparticle. To minimize (25), we apply the method described in the previous section. Then, after some algebra we derive:

$$2(2j+1)v_{j}u_{j}(E_{j}-\lambda_{\tau}) - \frac{G_{\tau}}{2}(2j+1)(u_{j}^{2}-v_{j}^{2})\left\{\sum_{j''\neq j'}(2j''+1)u_{j''}v_{j''} + (2j'-1)u_{j'}v_{j'}\right\}^{2} = 0.$$
(26)

For the odd system the correlation function (i.e., the pairing gap) is defined as:

$$\Delta_{\tau}(j') = \frac{G_{\tau}}{2} \left\{ \sum_{j \neq j'} (2j+1)u_j v_j + (2j'-1)u_{j'} v_{j'} \right\}.$$
(27)

Then the BCS equations for the odd system take the form:

$$1 = \frac{G_{\tau}}{4} \left\{ \sum_{j \neq j'} \frac{2j+1}{\varepsilon(j|j')} + \frac{2j'-1}{\varepsilon(j'|j')} \right\},$$
(28)

$$N = \sum_{j \neq j'} (2j+1)v_j^2(j') + (2j'-1)v_{j'}^2(j') + 1,$$
(29)

where

$$\varepsilon(j|j') = \sqrt{(E_j - \lambda_\tau(j'))^2 + \Delta_\tau^2(j')},$$
$$v_j^2(j') = \frac{1}{2} \left(1 - \frac{E_j - \lambda_\tau(j')}{\varepsilon(j|j')} \right), \ u_j^2(j') = 1 - v_j^2(j').$$

For the odd system, the ground state correspond to one-quasiparticle configuration with minimal energy. Then, the energies of excited one-quasiparticle configurations are

$$\varepsilon_{j_2} - \varepsilon_{j_1}^{min}.$$
 (30)

So, it is seen that in the odd systems there is no an energy gap between the ground and excited states.

3 Results

To obtain the single-particle level scheme the parameters of Woods-Saxon potential are fitted for 56 Fe according to parametrizion from Ref. [7]. The numerical solution of the Schroedinger

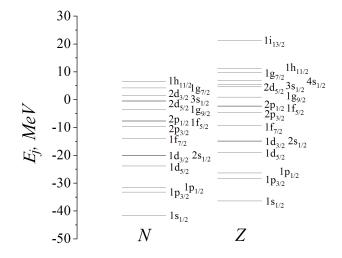


Figure 1: Neutron (to the left) and proton (to the right) single-particle energies in 56 Fe

equation is performed with the help of Fortran code described in Ref. [8]. The depth of the potential and the strength of pairing interaction are adjusted to reproduce experimental nucleon separation energies and odd-even mass difference:

$$S_{\tau} = \Delta_{\tau} - \lambda_{\tau}, \quad (\tau = n, \ p), \tag{31}$$

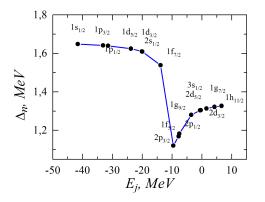
$$\Delta_p = \frac{1}{4} \{ 3M(Z-1,N) + M(Z+1,N) - 3M(Z,N) - M(Z-2,N) \},$$
(32)

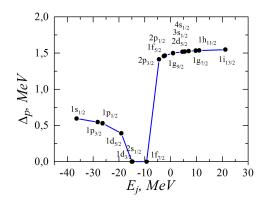
$$\Delta_n = \frac{1}{4} \{ 3M(Z, N-1) + M(Z, N+1) - 3M(Z, N) - M(Z, N-2) \}.$$
(33)

For ⁵⁶Fe we have $S_n = 11.197$ MeV, $S_p = 10.183$ MeV, $\Delta_n = 1.36$ MeV, $\Delta_p = 1.57$ MeV. The resulting values for $V_0^{N,Z}$ and $G_{n,p}$ are: $V_0^N = 51.90$ MeV, $V_0^Z = 57.19$ MeV, $G_n = 0.303$ MeV, $G_p = 0.335$ MeV. The obtained single-particle level scheme for protons and neutrons is shown in Fig. 1.

To solve the BCS equations with and without blocking effect the Fortran code was created (see Appendix). The code solves the nonlinear BSC equations by applying the Newton method. As an output, the code provides the pairing energy gaps $\Delta_{n,s}$, the chemical potentials $\lambda_{n,p}$, the coefficients u_j , v_j of the Bogoliubov transformation, and the energies ε_j for proton and neutron quasiparticles.

For ⁵⁷Fe and ⁵⁷Co we study the effect of unpaired odd particle on pairing correlations. To this aim we place an unpaired particle on different single-particle levels and solve the BCS equations taking into account the blocking effect. Note, that in the ground state of ⁵⁷Fe the odd neutron is located on $2p_{3/2}$ orbit, while in ⁵⁷Co the odd proton is located on $1f_{7/2}$ orbit. In Figs. 2 and 3 we show the value of pairing gap as a function of odd particle quantum numbers. As we can see, for considered nuclei the pairing gaps reaches their minimal values in the nuclear ground states. When we put an unpaired particle on single-particle levels far from the Fermi level, the pairing correlations gain strength and the pairing gap monotonically increases.





odd neutron single-particle energy.

Figure 2: Energy gap in ⁵⁷Fe as a function of Figure 3: Energy gap in ⁵⁷Co as a function of odd proton single-particle energy.

Of particular interest is the behaviour of the proton energy gap in ⁵⁷Co. In the ground state of ⁵⁷Co, the proton pairing correlations completely vanish due to blocking effect. This is also true if we put an odd proton on $2s_{1/2}$ and $1d_{3/2}$ levels, both of which are quite close to Fermi level. However, the blocking effect diminishes with moving away from the Fermi level and, therefore, pairing correlations appear. This effect demonstrates that pairing correlations in nuclear excited states can differ significantly from those in the nuclear ground state.

We also study the proton pairing correlations in isotones with N = 30. In Fig. 4 we show the pairing gap as a function of the proton number Z. As seen from the figure, pairing correlations completely vanish for Z = 20 This corresponds to completely empty $1f_{7/2}$ orbit. Pairing correlations are most pronounced when the $1f_{7/2}$ level is half-filled. From the figure we also observe that the pairing gap in the odd systems is lesser than that in the neighbouring even systems. This clearly demonstrates the blocking effect.

4 Summary

Pairing gap behaviour and blocking effect in even-even and odd-A nuclei near ⁵⁶Fe were studied. It is shown that taking into account the blocking effect allows us to explain the reduction or vanishing of pairing correlations in the considered odd nuclei.

In the course of this work, I was aimed to study the BCS model describing pairing correlations responsible for superfluidity in atomic nuclei. Toward this end I learned the theoretical methods of nuclear many-body problem. Namely, the method of second quantization, the method of u, vBogoliubov transformation, and the concept of quasiparticle. I derived BCS equations for even and odd nuclear systems. In the latter case, the blocking effect was taken into account. To perform numerical calculations, I improved my skills and abilities in writing Fortran codes. To solve the non-linear BCS equations, I got familiar with Newton's method.

During my summer practice I got acquainted with many scientists working in theoretical nuclear physics. Discussions with them broadened my scientific background and let me learn about

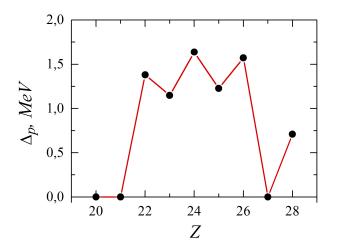


Figure 4: Δ_p as a function of Z in isotones with N = 30

actual problems of modern nuclear physics.

5 Acknowledgements

I would like to thank my supervisor Dr. Alan A. Dzhioev for the patient guidance, encouragement and advice he has provided throughout my time as his student. I also must express my gratitude to Prof. Andrej I. Vdovin and Dr. Tatiana Ju. Tretiakova for valuable discussions and comments on my work.

Finally, I would like to thank JINR University Centre for providing the financial support during my summer practice.

References

- [1] S. Frauendorf, A.O. Macchiavelli // Progress in Particle and Nuclear Physics 78 (2014) 2490
- [2] F.Šimkovic, Ch.C. Moustakidis, L. Pacearescu, Amand Faessler // Proton-neutron pairing in the deformed BCS approach
- [3] V. G. Soloviev // Theory of Complex Nuclei (Publishing house "Science", Home edition of Physical and Mathematical Literature, Moscow, 1976) [in Russian]
- [4] A. Bohr, B.R. Mottelson, D. Pines // Phys. Rev. 110, 936 (1958)
- [5] S.T. Belyaev // Mat. Fys. Medd. Dan. Vid. Selsk. 31, no 11, 1 (1957)
- [6] J. Bardeen, L.N. Cooper, J.R. Schrieffer // Phys. Rev. 108, 1175 (1957)
- [7] V.A. Chepurnov // Nuclear Physics, Vol. 5, 955 (1967)
- [8] M.H. Gizatkulov, I.V. Puzynin, R.M. Yamaleev // JINR P11 10029 (1976) [in Russian]
- [9] A. Bohr, B.R. Mottelson // Nuclear Structure. Vol. 1. N. Y., (1969)

Fortran program for numerical solution of BCS equations

The following program was used in order to solve the BCS equations.

```
IMPLICIT REAL*8 (A-H,O-Z)
      COMMON/EINDE/E(100), INDE(100)
      COMMON/EPSUV/EPS(100),U(100),V(100)
      dimension rj(100)
      integer odd_n, odd_p
      logical flag_n, flag_p
6017 FORMAT(/20X, 'EVEN-EVEN NUCLEUS Z =', I3, ' A =', I3
     */1X,'GR. STATE N =',14,5X,'GR. STATE Z =',14,5X,'GN =',F10.3
     *,5X,'GP =',F10.3/1X,'CN =',F10.5,5X,'CP =',F10.5,5X,'LAMN =',
    *F10.5,5X,'LAMP =',F10.5)
6019 FORMAT(/9X,'I',' INDE',9X,'E',7X,'EPS',9X,'U',9X,'V')
6020 FORMAT(I10, I5, 4F10.5, e12.3)
6028 FORMAT(/2X, '*****INCORRECT GROUND STATE N =', I4, 5X, 'Z =', I4)
6029 FORMAT(/2X, '*****INCORRECT ODD NEUTRON OR ODD PROTON STATE')
      OPEN(15,FILE='bcs.inp',FORM='FORMATTED',STATUS='OLD')
      OPEN(16,FILE='bcs.out',FORM='FORMATTED',STATUS='unknown')
C....READ AND PRINT ENERGIES
      OPEN(71,FILE='sp.n',FORM='FORMATTED',STATUS='OLD')
     read(71,*)nen
      do i=1,nen
      read(71,*)inde(i),e(i)
      enddo
      close(71)
      OPEN(71,FILE='sp.z',FORM='FORMATTED',STATUS='OLD')
      read(71,*)nep
      do i=1,nep
      read(71,*)inde(i+nen),e(i+nen)
      enddo
      close(71)
     MIN=NEN+1
```

*

MAX=NEN+NEP

READ(15,*) IZ,IA READ(15,*) GN,GP read(15,*) odd_n read(15,*) odd_p IGRN=0 IGRP=0 flag_n=.FALSE. flag_p=.FALSE. DO 501 I=1,NEN J=INDE(I)-(INDE(I)/10)*10IGRN=IGRN+2*(J+1) IF(IGRN.LT.IA-IZ) GO TO 501 IGRSTN=I IGRN=INDE(I) RLAMN = E(I)GO TO 502 501 CONTINUE 502 CONTINUE DO 511 I=MIN,MAX J=INDE(I)-(INDE(I)/10)*10 IGRP=IGRP+2*(J+1) IF(IGRP.LT.IZ) GO TO 511 IGRSTP=I IGRP=INDE(I) RLAMP = E(I)GO TO 512 511 CONTINUE 512 CONTINUE IF (odd_n.EQ.0) THEN flag_n=.TRUE. ELSE DO 513 I=1,NEN IF (odd_n.EQ.INDE(I)) THEN flag_n=.TRUE. $odd_n = I$

! finding the ! last neutron

! Z and A

! occupied level

! finding the
! last proton
! occupied level

! looking for
! the odd neutron

! level

GO TO 514 END IF 513 CONTINUE END IF 514 CONTINUE IF (odd_p.EQ.0) THEN ! looking for flag_p=.TRUE. ! the odd proton ELSE ! level DO 515 I=MIN,MAX IF (odd_p.EQ.INDE(I)) THEN flag_p=.TRUE. $odd_p = I$ GO TO 516 END IF 515 CONTINUE END IF 516 CONTINUE 144 IF(IGRSTN.NE.O.AND.IGRSTP.NE.O) GO TO 146 WRITE(*, 6028)IGRN, IGRP stop 146 CONTINUE IF(flag_n.AND.flag_p) GO TO 147 WRITE(*, 6029) stop 147 CONTINUE ! gap and lambda for neutrons CN = 0.0d0CALL CLAM(1,NEN, IA-IZ+0.d0,GN,0,0,CN,RLAMN,EGRN,odd_n) ! gap and lambda for protons CP = 0.0d0CALL CLAM(NEN+1,NEN+NEP,IZ+0.D0,GP,0,0,CP,RLAMP,EGRP,odd_p) ! eps, u, v CALL EPSUVS(CN,CP,RLAMN,RLAMP,NEN,NEP)

c ***************** start printing BCS results **********************************

```
write(*,'(1x)')
write(*,'(A4,I3,A7,I3)')' A =',IA,' Z =',IZ
write(*,'(1x)')
     write(*,'(A11,F6.3,A4,A11,F6.3,A4)')'
                                        G_n =',GN, 'MeV',
                                            G_p = ', GP, 'MeV'
                                      ,
    *
     write(*,'(1x)')
write(*,'(A8,F5.2,A4,A12,F7.3,A4)')' C_n =',CN, 'MeV',
                                  ' Lambda_n =',rlamn, ' MeV'
write(*,'(A8,F5.2,A4,A12,F7.3,A4)')' C_p =',CP, 'MeV',
                                ' Lambda_p =',rlamp, ' MeV'
     write(*,'(1x)')
     WRITE(16, 6017)IZ, IA, IGRN, IGRP, GN, GP, CN, CP, RLAMN, RLAMP
     WRITE(16, 6019)
     write(16,'(1x)')
     Zn=0.d0
     WRITE(16, '(A25)')' N E U T R O N S'
     DO 3 I=1, NEN
                                                    ! control N
     RJ(i)=INDE(i)-(INDE(i)/10)*10+1.0D0
     RJ(i)=RJ(i)*0.5
Zn=Zn+2.0*rj(i)*(1-(E(i)-rlamn)/eps(i))
   3 WRITE(16, 6020)I, INDE(I), E(I), EPS(I), U(I), V(I)
     IF (odd_n.NE.0) Zn=Zn-(1-(E(odd_n)-rlamn)/eps(odd_n))+1
     print*,'Nn=',zn
     write(16,'(1x)')
     WRITE(16,'(A23)')'
                            PROTONS'
     Zp=0.d0
     DO 4 I=MIN,MAX
     RJ(i)=INDE(i)-(INDE(i)/10)*10+1.0D0
     RJ(i)=RJ(i)*0.5
Zp=Zp+2.0*rj(i)*(1-(E(i)-rlamp)/eps(i))
                                                  ! control P
   4 WRITE(16, 6020)I, INDE(I), E(I), EPS(I), U(I), V(I)
     IF (odd_p.NE.0) Zp=Zp-(1-(E(odd_p)-rlamp)/eps(odd_p))+1
     print*,'Np=',zp
      с
     CLOSE(15)
```

```
CLOSE(16)
     pause
     END
SUBROUTINE CLAM(MIN, MAX, RN, G, IQP1, IQP2, C, RLAM, ENBCS, ODD)
     IMPLICIT REAL*8 (A-H,O-Z)
     COMMON/EINDE/E(100), INDE(100)
     CHARACTER IZZZ*1
     INTEGER ODD
6000 FORMAT(5X,13H*****INITIAL ,A1,
    * 36H VALUE FOR GROUND STATE IS NOT FOUND)
6001 FORMAT(5X,32H*****C AND LAM ARE NOT FOUND C =,E15.6,10X,5HLAM =,
    *E15.6)
     CINIT=C
     RLINIT=RLAM
 200 C1=0
     C2=0
     DO 1 J=MIN,MAX
     RJI=INDE(J)-(INDE(J)/10)*10+0.5D0
     C2=C2+(2.D0*RJI+1.D0)
   1 CONTINUE
     C2=C2*G/4.D0
     IF(ODD.EQ.O) THEN
         DO 3 IT=1,30
         C = (C1+C2)/2.D0
         IF(DABS(C1-C2).LE.0.1D0)GOTO100
 101
         F=-4.DO/G
         CP2=C*C
         DO 2 J=MIN,MAX
         IF(J.EQ.IQP1.OR.J.EQ.IQP2)GOTO2
 150
         CALL CLAMH(J,C,RLAM,RJI,EPSJ,EL,VJ2)
         F=F+(2.D0*RJI+1.D0)/EPSJ
   2
         CONTINUE
         IF(F)102,102,103
 160
 102
         C2=C
         GO TO 3
 103
         C1=C
```

3	CONTINUE
	ELSE
	DO 203 IT=1,30
	C = (C1+C2)/2.D0
	IF(DABS(C1-C2).LE.0.1D0)GOTO100
301	F=-4.DO/G
	CP2=C*C
	DO 202 J=MIN,MAX
250	IF(J.EQ.IQP1.OR.J.EQ.IQP2)GOTO202
350	CALL CLAMH(J,C,RLAM,RJI,EPSJ,EL,VJ2) F=F+(2.D0*RJI+1.D0)/EPSJ
າດາ	CONTINUE
202	CALL CLAMH(ODD,C,RLAM,RJI,EPSJ,EL,VJ2)
	F=F-(2.D0*RJI+1.D0)/EPSJ+(2.D0*RJI-1.D0)/EPSJ
360	IF(F)302,302,303
302	C2=C
	GO TO 203
303	C1=C
203	CONTINUE
	ENDIF
	IZZZ='C'
165	WRITE(16,6000)IZZZ
	ENBCS=7777.D0
	GO TO 120
100	DO 4 IT=1,30
	B1=-4.D0/G
	B2=-RN
	CP2=C*C
	ENBCS=-CP2/G
	A11T=0.D0
	A12=0.D0
	DO 5 J=MIN,MAX
	IF(J.EQ.IQP1.OR.J.EQ.IQP2)GOTO5
105	CALL CLAMH(J,C,RLAM,RJI,EPSJ,EL,VJ2)
	RJIS=2.D0*RJI+1.D0
	B1=B1+RJIS/EPSJ
	B2=B2+RJIS*VJ2
	A11T=A11T+RJIS/EPSJ**3
	A12=A12+RJIS*EL/EPSJ**3 ENBCS=ENBCS+RJIS*E(J)*VJ2
F	CONTINUE
0	IF(ODD.NE.O) THEN
	CALL CLAMH(ODD,C,RLAM,RJI,EPSJ,EL,VJ2)

```
B1=B1-2/EPSJ
    B2=B2+1-2*VJ2
    A11T=A11T-2/EPSJ**3
    A12=A12-2*EL/EPSJ**3
    ENDIF
 106 DET1=CP2*A11T*A11T+A12*A12
    DET=-0.5D0*C*DET1
    B1=-B1
    B2=-B2
     IF(DABS(B1)+DABS(B2).LE.1.D-07)GOT0120
 180 DELTAC=(0.5D0*CP2*B1*A11T-B2*A12)/DET
    DELTAL=-C*(A11T*B2+0.5D0*A12*B1)/DET
    C=C+DELTAC
    RLAM=RLAM+DELTAL
    IF(.NOT.(DABS(C).LE.0.001D0))GOT04
 181 C=0.D0
    GO TO 120
   4 CONTINUE
    WRITE(16,6001)C,RLAM
    ENBCS=0.D0
 120 RETURN
    END
SUBROUTINE CLAMH(I,C,RLAM,RJI,EPSJ,EL,VJ2)
     IMPLICIT REAL*8 (A-H,O-Z)
    COMMON/EINDE/E(100), INDE(100)
    RJI=INDE(I)-(INDE(I)/10)*10+0.5D0
    EL=E(I)-RLAM
    EPSJ=DSQRT(C*C+EL*EL)
    VJ2=0.5D0*(1.D0-EL/EPSJ)
    RETURN
    END
SUBROUTINE EPSUVS(CN,CP,RLAMN,RLAMP,KEN,KEP)
    IMPLICIT REAL*8 (A-H,O-Z)
     COMMON/EINDE/E(100), INDE(100)
     COMMON/EPSUV/EPS(100),U(100),V(100)
    DO 1 K=1,2
     J=K−1
```

```
C=CN*(1-J)+CP*J
   RLAM=RLAMN*(1-J)+RLAMP*J
   MIN=1+J*KEN
   MAX=KEP*J+KEN
   DO 1 I=MIN,MAX
   EL=E(I)-RLAM
   EPS(I)=DSQRT(C*C+EL*EL)
   V(I)=DSQRT((1.DO-EL/EPS(I))/2.DO)
   IF(.NOT.(V(I).LE.0.05D0))GOTO3
2 V(I)=0.D0
   U(I)=1.0D0
   GO TO 1
3 U(I)=DSQRT(1.DO-V(I)*V(I))
1
  CONTINUE
   RETURN
   END
```