

JOINT​ ​INSTITUTE​ ​FOR​ ​NUCLEAR​ ​RESEARCH

Laboratory​ ​of​ ​Information​ ​Technologies

FINAL​ ​REPORT​ ​ON​ ​THE

SUMMER​ ​STUDENT​ ​PROGRAM

Improvements​ ​in​ ​cloud​ ​bursting
implementation​ ​for​ ​clouds​ ​integration

Supervisors:
Nikolay​ ​Kutovskiy
Nikita​ ​Balashov

Student:
Vadim​ ​Petrunin,​ ​Russia
Saint​ ​Petersburg​ ​State
University

Participation​ ​period:
July​ ​01​ ​-​ ​August​ ​26

Dubna,​ ​2017

Abstract 3

Introduction 3

OpenNebula 3

Methods​ ​of​ ​integration​ ​of​ ​cloud​ ​systems 4

Cloud​ ​Bursting​ ​driver 6

The​ ​purpose​ ​of​ ​the​ ​project 7

Description​ ​of​ ​the​ ​process​ ​of​ ​creating​ ​VM​ ​in​ ​cloud​ ​bursting 8

Used​ ​tools 8

The​ ​main​ ​problems​ ​of​ ​the​ ​current​ ​version​ ​of​ ​the​ ​driver​ ​and​ ​their​ ​solution 9
Handling​ ​exceptions​ ​associated​ ​with​ ​a​ ​driver​ ​configuration 9
Handling​ ​exceptions​ ​related​ ​to​ ​monitoring​ ​and​ ​interaction 11
Code​ ​refactoring 13

Conclusion 13

References 13

2

Abstract

Currently, one of the most important directions of cloud technologies in the scientific field is

to develop new methods for integrating cloud systems and to improve existing methods and

tools. Integration of the clouds - one of the solutions to the problem of lack of own resources

of organizations, including scientific organizations. This document describes the main

concepts one of the methods of integration of the clouds - Cloud Bursting and also describes

the details on the modification of integration driver in cloud-based systems, developed by a

team​ ​of​ ​JINR​ ​cloud​ ​service.

Introduction

Many research organizations have their own private clouds, however, due to the rapid growth

of computing needs, there are situations when the private cloud services have exhausted their

resources and are not able to handle peak computing loads. In case when such loads are only

temporary, purchasing new hardware to increase cloud resources may not be the best

solution, because most of the time new resources will be idle, and the cost of scaling is very

high. Many organizations solve this problem by integrating their private cloud with other

clouds, including the commercial ones, it might be a lot more profitable than the

self-expansion of the cloud system. There are several methods of integration of cloud

services, the most common of which are Federation ​[1] and Cloud Bursting, the last of which

is described in this document in more detail. This paper provides a description of the cloud

service used in Joint Institute for Nuclear Research (JINR) and based on OpenNebula ​[2]

cloud platform, which implements Infrastructure​as​​a​​Service​(IaaS)​​service​model as well

as a work done during Summer Student Practice 2017 on a driver improvements for clouds

integration​ ​following​ ​cloud​ ​bursting​ ​approach.

OpenNebula

OpenNebula is a cloud computing platform for managing heterogeneous distributed data

center infrastructures. The OpenNebula platform manages a data center's virtual

3

infrastructure to build private, public and hybrid implementations of infrastructure as a

service. OpenNebula is free and open-source software, subject to the requirements of the

Apache​ ​License​ ​version​ ​2​ ​​[3]​.

Figure​ ​1.​ ​Logo​ ​cloud​ ​service​ ​OpenNebula​ ​​[2]

OpenNebula orchestrates storage, network, virtualization, monitoring, and security

technologies to deploy multi-tier services (e.g. compute clusters) as virtual machines on

distributed infrastructures, combining both data center resources and remote cloud resources,

according​ ​to​ ​allocation​ ​policies.

The toolkit includes features for integration, management, scalability, security and

accounting. It also claims standardization, interoperability and portability, providing cloud

users and administrators with a choice of several cloud interfaces (Amazon EC2 Query ​[4]​,

OGF Open Cloud Computing Interface ​[5] and vCloud ​[6]​) and hypervisors (Xen ​[7]​, KVM

[8] and VMware ​[9]​), and can accommodate multiple hardware and software combinations in

a​ ​data​ ​center​ ​​[10]​.

Methods​ ​of​ ​integration​ ​of​ ​cloud​ ​systems

There are two most common methods of integrating IaaS cloud services - Federation and

Cloud Bursting. Federation is centralized, it has a single point of entry, a single database user,

a single administrator. The domain of this technology becomes clear from its description -

technology is suitable for geographically remote branches of a single organization, and

cannot be applied in the case of not related organizations due to centralization. Cloud

Bursting​ ​doesn’t​ ​have​ ​this​ ​disadvantage​ ​and​ ​can​ ​be​ ​used​ ​for​ ​various​ ​organizations.

4

Cloud bursting is a model in which the local resources of a Private Cloud are combined with

resources from remote Cloud providers. The remote provider can be a commercial Cloud

service, such as Amazon EC2 or Microsoft Azure. Such support for cloud bursting enables

highly​ ​scalable​ ​hosting​ ​environments.

Figure​ ​2.​ ​OpenNebula​ ​integration​ ​scheme​ ​​[2]

OpenNebula’s approach to cloud bursting is based on the transparency to both end users and

cloud administrators to use and maintain the cloud bursting functionality. The transparency to

cloud administrators comes from the fact that a AWS EC2 region or an Azure location is

modeled as any other host (albeit of potentially a much bigger capacity), so the scheduler can

place​ ​VMs​ ​in​ ​the​ ​external​ ​cloud​ ​as​ ​it​ ​will​ ​do​ ​in​ ​any​ ​other​ ​local​ ​host.

On the other hand, the transparency to end users is offered through the hybrid template

functionality: the same VM template in OpenNebula can describe the VM if it is deployed

locally and also if it gets deployed in EC2 or Azure. Therefore users just have to instantiate

the template, and OpenNebula will transparently choose if that is executed locally or

remotely​ ​​[2]​.

OpenNebula natively supports cloud bursting, however, it is only implemented for a range of

commercial cloud services (Amazon EC2, IBM SoftLayer ​[11] and Microsoft Azure ​[12]​).

Since OpenNebula is open source it’s possible to expand its cloud bursting technology. The

team working on cloud services at JINR developed a driver (a set of scripts for managing

remote resources) using this technology. It joins the resources of their private cloud with the

5

resources from some organizations of JINR member States to solve common research

problems​ ​​[13]​.

Cloud​ ​Bursting​ ​driver

Developed by the JINR cloud team, the driver for integration with third-party cloud services

built on the platform OpenNebula, uses a combination of interfaces OCCI (or rather, its

implementation in the ruby language — rOCCI ​[14]​) and OpenNebula XML-RPC ​[15]​. The

use of two different interfaces in this implementation is due to several reasons: the interface

OCCI is supported not only by the OpenNebula platform but also by other platforms (e.g.,

OpenStack ​[16]​), while XML-RPC is OpenNebula specific and cannot be used for integration

with other platforms. On the other hand, the OCCI interface doesn't provide functionality for

monitoring the actual use of resources. Thus, the interface OCCI is used for resource

management,​ ​and​ ​XML-RPC​ ​is​ ​used​ ​as​ ​an​ ​interim​ ​solution​ ​for​ ​monitoring​ ​implementation.

A typical diagram of the driver shown in Figure 3 and can be described as below.

rOCCI-server converts XML-RPC requests to the OCCI requests and passes them through a

proxy web server (Apache or Nginx with Passenger). To use a proxy web server it’s highly

desirable to use a secure connection (https) as the XML-RPC Protocol is based on XML and

it lacks an encryption. OpenNebula and rOCCI-server can be installed on a single server or

on different servers depending on the load and security requirements. It needs also to create a

user account in the cloud service provider on behalf of which virtual machines (VMs) will be

run in an external cloud. A cloud service provider has to adjust a quota on the resources

available for cloud customer. Added external cloud looks like a host with the number of cores

and amount of RAM equal to the quotas set by remote provider. The administrator of the

local​ ​cloud​ ​can​ ​add​ ​such​ ​host​ ​to​ ​the​ ​one​​ ​of​​ ​​​ ​the​​ ​existing​​ ​clusters​​ ​or​​ ​create​​ ​a​​ ​new​ ​one​ ​​[13]​.

6

Figure​ ​3.​ ​Scheme​ ​of​ ​the​ ​cloud​ ​bursting​ ​driver​ ​​[13]

Developed​ ​driver​ ​integrating​ ​cloud​ ​systems​ ​expands​ ​the​ ​scope​ ​of​ ​OpenNebula​ ​cloud​ ​bursting,

adding the ability to integrate with other clouds based on OpenNebula as well as OpenStack

software.​ ​Development​ ​and​ ​maintenance​ ​of​ ​the​ ​driver​ ​are​ ​still​ ​ongoing.

Current version of the driver implements the minimum required functionality but it’s certain

operations is not a part of the driver's specification (in particular, setting the correct​status​of​

the​​ ​VM).

The​ ​purpose​ ​of​ ​the​ ​project

The aim of this project is to improve driver for cloud bursting integration, developed by a

team of JINR cloud service. The expected improvements include handling of exceptional

situations during configuration as well as the monitoring and interaction of clouds involved in

integration.

The most important task of this work is the completion of the synchronization of VM statuses

in​​ ​accordance​​ ​​​ ​with​​ ​​​ ​the​​ ​​​ ​current​​ ​​​ ​​​ ​specification​​ ​​ ​of​​ ​the​​ ​OpenNebula​ ​​​ ​drivers​.

7

Description of the process of creating VM in cloud

bursting

​For a further understanding of this document one needs to describe a process of VM creation

in the cloud integrated with another one following cloud bursting model. It should be noted

that VM is always controlled by the user of the local cloud (further such cloud will be

referred as main one). If necessary, create a VM, making sure to pre-customize templates and

images for each of the clouds participating in VM deployment. Initially the VM is initialized

on the main cloud. When VM is deployed it gets a ​local id (the id assigned to the VM by the

main cloud) and ​remote id ​(the id that VM gets on a remote cloud). Then VM can be

monitored​ ​from​ ​the​ ​first​ ​cloud​ ​despite​ ​the​ ​fact​ ​that​ ​the​ ​second​ ​cloud​ ​doesn't​ ​exist​ ​yet.

After receiving the ​remote id on the second cloud a VM deployment starts. In case of success

VM get running on the remote cloud. State of this VM can be tracked from the main cloud as

well as various management operations on it can be performed within OpenNebula

specification.

Used​ ​tools

To update the cloud bursting driver for the integration of private cloud platforms, two

testbeds with pre-installed with SL 6.5 x64 ​[17] and OpenNebula 4.12 has been used, each of

which​ ​consisted​ ​of​ ​three​ ​nodes:

1)​ ​Front-end​ ​node​ ​(FN);

2)​ ​Two​ ​working​ ​node​ ​(cloud/cluster​ ​node​ ​CN).

Each of CNs was a OpenVZ-enabled KVM based VM (i.e. KVM VM with OpenVZ support

inside).

The driver described earlier in this document was maintained on the main cloud (let's call it a

first​ ​one).​ ​The​ ​driver's​ ​code​ ​is​ ​written​ ​in​ ​the​ ​programming​ ​language​ ​-​ ​Ruby.

8

The main problems of the current version of the driver

and​ ​their​ ​solution

As a first step a revision of the driver for clouds integration was performed and it revealed

issues​ ​what​ ​can​ ​be​ ​divided​ ​into​ ​three​ ​main​ ​categories:

1. Handling​ ​exceptions​ ​associated​ ​with​ ​a​ ​driver​ ​configuration,

2. Handling​ ​exceptions​ ​related​ ​to​ ​the​ ​monitoring​ ​and​ ​interaction,

3. Code​ ​refactoring.

Handling​ ​exceptions​ ​associated​ ​with​ ​a​ ​driver​ ​configuration

1. A​ ​virtual​ ​machine​ ​template​ ​on​ ​a​ ​remote​ ​cloud

The virtual machine is deployed from a special template that contains the requirements for

the VM. In the case of integration in addition to these requirements there is a special section

PUBLIC_CLOUD​ ​.​ ​Example​ ​of​ ​a​ ​virtual​ ​machine​ ​template​ ​is​ ​listed​ ​below:

CPU="1"
DISK=[
​ ​​ ​IMAGE="centOS",
​ ​​ ​IMAGE_UNAME="oneadmin"​ ​]
MEMORY="1024"
OS=[
​ ​​ ​ARCH="x86_64",
​ ​​ ​BOOT="hd"​ ​]
PUBLIC_CLOUD=[
​ ​​ ​PROVIDER_TEMPLATE_ID="0",
​ ​​ ​TYPE="opennebula"​ ​]

In case if the main cloud does not have the required resources for VM deployment then a

section PUBLIC_CLOUD that specifies the template on the remote cloud is used. Despite the

fact that the format specifies the name of the template and methods for its preparation are

described in the examples mentioning the driver documentation ​[18]​, there is still some

probability of an error during template name specification. A use of the original version of

the driver would lead to attempt to deploy VM even in case of incorrect template name.

Although an error messages would appear in the log files, a root cause of such error would be

9

hard to guess for the end user who does not know the driver implementation details of the

driver.​ ​​ ​An​ ​example​ ​of​ ​such​ ​error​ ​messages​ ​in​ ​the​ ​log​ ​file​ ​are​ ​listed​ ​below.

Fri​ ​Jul​ ​21​ ​17:03:09​ ​2017​ ​[Z0][ReM][D]:​ ​Req:4096​ ​UID:0​ ​VirtualMachineDeploy​ ​invoked
,​ ​143,​ ​1,​ ​false,​ ​-1
Fri​ ​Jul​ ​21​ ​17:03:09​ ​2017​ ​[Z0][DiM][D]:​ ​Deploying​ ​VM​ ​143
Fri​ ​Jul​ ​21​ ​17:03:09​ ​2017​ ​[Z0][ReM][D]:​ ​Req:4096​ ​UID:0​ ​VirtualMachineDeploy​ ​result
SUCCESS,​ ​143
Fri​ ​Jul​ ​21​ ​17:03:09​ ​2017​ ​[Z0][VMM][D]:​ ​Message​ ​received:​ ​LOG​ ​I​ ​143​ ​Successfully
execute​ ​network​ ​driver​ ​operation:​ ​pre.
Fri​ ​Jul​ ​21​ ​17:03:12​ ​2017​ ​[Z0][ReM][D]:​ ​Req:2112​ ​UID:0​ ​VirtualMachineInfo​ ​invoked​ ​,
143
Fri​ ​Jul​ ​21​ ​17:03:12​ ​2017​ ​[Z0][ReM][D]:​ ​Req:2112​ ​UID:0​ ​VirtualMachineInfo​ ​result
SUCCESS,​ ​"<VM><ID>143</ID><UID..."
Fri​ ​Jul​ ​21​ ​17:03:12​ ​2017​ ​[Z0][VMM][D]:​ ​Message​ ​received:​ ​LOG​ ​I​ ​143​ ​Command
execution​ ​fail:​ ​/var/lib/one/remotes/vmm/opennebula/deploy
'/var/lib/one/vms/143/deployment.0'​ ​'cloud_fn2'​ ​143​ ​cloud_fn2
Fri​ ​Jul​ ​21​ ​17:03:12​ ​2017​ ​[Z0][VMM][D]:​ ​Message​ ​received:​ ​LOG​ ​I​ ​143
/usr/local/lib/ruby/gems/2.2.0/gems/occi-core-4.3.5/lib/occi/core/mixins.rb:20:in​ ​̀<<':
undefined​ ​method​ ​̀attributes'​ ​for​ ​nil:NilClass​ ​(NoMethodError)
Fri​ ​Jul​ ​21​ ​17:03:12​ ​2017​ ​[Z0][VMM][D]:​ ​Message​ ​received:​ ​LOG​ ​I​ ​143​ ​from
/var/lib/one/remotes/vmm/opennebula/one_bursting_driver.rb:313:in​ ​̀deploy'
Fri​ ​Jul​ ​21​ ​17:03:12​ ​2017​ ​[Z0][VMM][D]:​ ​Message​ ​received:​ ​LOG​ ​I​ ​143​ ​from
/var/lib/one/remotes/vmm/opennebula/deploy:16:in​ ​̀<main>'
Fri​ ​Jul​ ​21​ ​17:03:12​ ​2017​ ​[Z0][VMM][D]:​ ​Message​ ​received:​ ​LOG​ ​I​ ​143​ ​ExitCode:​ ​1
Fri​ ​Jul​ ​21​ ​17:03:12​ ​2017​ ​[Z0][VMM][D]:​ ​Message​ ​received:​ ​LOG​ ​I​ ​143​ ​Failed​ ​to​ ​execute
virtualization​ ​driver​ ​operation:​ ​deploy.
Fri​ ​Jul​ ​21​ ​17:03:12​ ​2017​ ​[Z0][VMM][D]:​ ​Message​ ​received:​ ​DEPLOY​ ​FAILURE​ ​143​ ​-

To handle such kind of errors the following solution was implemented​: additional checks for

the existence and correctness of the template on a remote cloud were added. These checks

result to VM deployment in case of the correct template name and in case of errors a user will

receive​ ​the​ ​message,​ ​clearly​ ​pointing​ ​to​ ​the​ ​cause​ ​of​ ​the​ ​error.

2. Incorrect​ ​owner​ ​of​ ​the​ ​remote​ ​template

As described earlier in this document, the technology of cloud bursting assumes an existence

of a special dedicated user in the remote cloud on whose behalf VMs are created. If a

template in the remote cloud belongs to a different user then such template will be

unavailable​ ​for​ ​a​ ​user​ ​in​ ​local​ ​cloud​ ​and​ ​he​ ​won't​ ​be​ ​aware​ ​of​ ​a​ ​reason.

An output of additional error messages in the log file seems a proper ​solution to the problem

described​ ​above​.

10

3. Incorrect​ ​datastore​ ​configuration​ ​on​ ​the​ ​remote​ ​cloud

One of the datastore configuration option is the choice of Transfer Mode (TM_MAD

attribute), which can take one of three values: ​ssh​, ​shared​, ​qcow2​. In the case of cloud

bursting the valid value is only ​ssh​, however, if the user specifies a different value, this may

lead to negative consequences. Since VM deployment takes place twice in both clouds - local

and remote ones (see ​Description of the process of creating VM in cloud bursting​) then

wrong parameter for TM_MAD attribute will cause to successful VM deployment on the

local cloud and to a failure on the remote one although the status of such VM will correspond

to normal termination of operation what leads to discrepancy in VM statuses in local and

remote​ ​clouds.

The following ​solution ​was implemented​: pre-inspection of settings and in case of detection

of incorrect parameters, VM deployment won't happen even in the local cloud and thus in the

remote​ ​one​ ​too​ ​with​ ​printing​ ​an​ ​appropriate​ ​messages​ ​in​ ​a​ ​log​ ​file.

Handling​ ​exceptions​ ​related​ ​to​ ​monitoring​ ​and​ ​interaction

1. Monitoring​ ​of​ ​not​ ​yet​ ​undeployed​ ​VM

Information about a VM deployed on a remote cloud is delivered to the main (local) cloud

(and further affect the display of the VM on the primary cloud). Such VM monitoring occurs

within certain intervals of time. The results of each monitoring cycle are recorded in several

special log files (central OpenNebula and VM-specific ones) for further analysis and to

collect statistics. It might happen that during VM monitoring cycle a VM deployed at the

local cloud hasn't yet achieved the same status on the remote one thus leading to a

discrepancy in monitoring results and causing an appearance of an error message in a log file

about void values since a DEPLOY_ID does not exist yet at that stage on the remote cloud.

An​ ​example​ ​of​ ​such​ ​error​ ​message​ ​in​ ​the​ ​log​ ​file​ ​is​ ​listed​ ​below.

Fri​ ​Jul​ ​21​ ​18:48:34​ ​2017​ ​[Z0][ONE][E]:​ ​Error​ ​parsing​ ​host​ ​information:​ ​syntax​ ​error,
unexpected​ ​EQUAL,​ ​expecting​ ​COMMA​ ​or​ ​CBRACKET​ ​at​ ​line​ ​13,​ ​columns​ ​200:201.
Monitoring​ ​information:
HYPERVISOR=opennebula
PUBLIC_CLOUD=YES
PRIORITY=-1
CPUSPEED=1000
HOSTNAME="fn2.localdomain"
TOTALMEMORY=10485760

11

TOTALCPU=1000
USEDMEMORY=0
USEDCPU=0.0
VM_POLL=YES
VM=[
​ ​​ ​ID=146,
​ ​​ ​DEPLOY_ID=,
​ ​​ ​POLL="USEDCPU=0.0​ ​NETTX=0​ ​NETRX=0​ ​NAME=​ ​USEDMEMORY=0​ ​STATE=a
GUEST_IP=10.0.0.151]

Similar error message are mentioned a few times in each of the logs depending on the

duration of VM deployment on a remote cloud and the duration of intervals of monitoring

cycle​ ​adding​ ​redundant​ ​records​ ​to​ ​the​ ​log​ ​file.

An implemented solution is an additional conditions check allowing to avoid getting extra

records​ ​in​ ​the​ ​appropriate​ ​logs.

2. ​ ​Restoring​ ​the​ ​previously​ ​stopped​ ​VM

In the VM life cycle it might happen a situation that requires stopping a VM by one of the

operations (suspend, poweroff, stop, etc.) with the subsequent resume of such virtual

machine. Due to changes in specifications OpenNebula, solution implemented in the original

version​ ​of​ ​the​ ​driver,​ ​no​ ​longer​ ​supported​ ​and​ ​VM​ ​recovery​ ​is​ ​not​ ​possible.

As a ​solution ​a revision of the driver in accordance with the updated OpenNebula

specification has been made allowing to fully restore the functionality of the recovery VM

after​ ​stopping.

3. VM​ ​statuses​ ​synchronization​ ​on​ ​integrated​ ​clouds

The synchronization statuses of VM refers to the compliance status of the same VM that is

visible from the remote cloud and the local cloud. There were only 3 different VM statuses

visible from the main cloud in the original release driver. However according to the updated

specifications it is possible to obtain 6 statuses now. It should be noted that the specification

of the OpenNebula cloud bursting model imposes a significant limitation comparing with

more​ ​than​ ​40​ ​possible​ ​statuses​ ​each​ ​VM​ ​can​ ​reach​ ​in​ ​each​ ​cloud​ ​locally.

A ​solution ​is to handle additional statuses what has been implemented in the updated version

of​ ​driver.​ ​However​ ​the​ ​full​ ​sync​ ​status​ ​is​ ​not​ ​covered​ ​by​ ​the​ ​specification.

12

Code​ ​refactoring

An important part of software development is code refactoring. The driver for clouds

integration based on cloud bursting model is no exception and as part of this work a its code

refactoring has been performed both the original one and added by the author of that

document. Repeating blocks of code were moved into a separate functions, constants added

which allowed to reduce the number of magic numbers and strings in the program code. The

code was tuned to more correspond to the style of the Ruby programming language. As a

result a readability of code was increased without loss of software functionality as well as to

ease​ ​a​ ​further​ ​improvements​ ​in​ ​the​ ​driver's​ ​code.

An​ ​updated​ ​code​ ​of​ ​the​ ​driver​ ​is​ ​available​ ​at​ ​​[18]​.

Conclusion

Thus, during participation in SSP’17 the author of this project sufficiently improved

previously created by the JINR cloud team driver for clouds integration based on the cloud

bursting model. A handling of more exceptions as well as of more VM statuses were added

into the driver. Apart from that its code was updated and refactored to match a current

version​ ​of​ ​OpenNebula​ ​specification.

References
1. OpenNebula​ ​Federation​ ​(website)

https://docs.opennebula.org/5.2/advanced_components/data_center_federation/overview.html
2. Cloud​ ​service​ ​OpenNebula​ ​(website)

https://opennebula.org/
3. Apache​ ​License​ ​(website)

https://www.apache.org/licenses/LICENSE-2.0
4. Amazon​ ​EC2​ ​(website)

https://aws.amazon.com/ec2/
5. Open​ ​Cloud​ ​Computing​ ​Interface​ ​(website)

http://occi-wg.org/
6. vCloud​ ​(website)

http://vcloud.vmware.com
7. XEN​ ​(website)

https://www.xenproject.org/

13

https://www.xenproject.org/
http://occi-wg.org/
https://opennebula.org/
https://aws.amazon.com/ec2/
https://www.apache.org/licenses/LICENSE-2.0
https://docs.opennebula.org/5.2/advanced_components/data_center_federation/overview.html
http://vcloud.vmware.com/

8. KVM​ ​(website)
https://www.linux-kvm.org/page/Main_Page

9. VMware​ ​(website)
https://www.vmware.com/

10. Wikipedia:​ ​OpenNebula​ ​(website)
https://en.wikipedia.org/wiki/OpenNebula

11. IBM​ ​SoftLayer​ ​(website)
http://www.ibm.com/Cloud_Softlayer

12. Microsoft​ ​Azure
https://azure.microsoft.com

13. A.V. Baranov et al. Approaches to cloud infrastructures integration // Computer Research and
Modeling, ISSN: ​2076-7633 (Print), ​2077-6853 (Online), 2016, Vol. 8, No. 3, P. 583 – 590
(in​ ​Russian)

14. rOCCI​ ​(website)
http://occi-wg.org/2012/04/02/rocci-a-ruby-occi-framework/

15. OpenNebula:​ ​XML-RPC​ ​API​ ​(website)
https://docs.opennebula.org/5.2/integration/system_interfaces/api.html

16. OpenStack​ ​(website)
https://www.openstack.org

17. Scientific​ ​Linux​ ​(website)
https://www.scientificlinux.org/

18. GitHub:​ ​JINR​ ​Cloud​ ​bursting​ ​driver​ ​(website)
https://github.com/JINR-LIT/ONE-cloudbursting-driver

14

https://www.openstack.org/
https://www.linux-kvm.org/page/Main_Page
http://occi-wg.org/2012/04/02/rocci-a-ruby-occi-framework/
https://azure.microsoft.com/
https://github.com/JINR-LIT/ONE-cloudbursting-driver
http://www.ibm.com/Cloud_Softlayer
https://www.vmware.com/
https://www.scientificlinux.org/
https://docs.opennebula.org/5.2/integration/system_interfaces/api.html
https://en.wikipedia.org/wiki/OpenNebula

