. s/

Joint Institute for Nuclear Research
Laboratory of Informational Techonologies
Final report of the summer student programm

Research of the possibilities of using
artificial neural
networks for calculating n-dimensional

integrals
Student: Melnitskii Dmitrii
Supervisor: Hovik Grigorian
Period: 30 Jule - 6 August

Dubna, Russian Federation
2017

Contents

1. Abstract 3
2. Test 3
2.1. Artificial Neural Networks 4
2.1.1. Neurons. 4

2.1.2. Linkages 5

2.1.3. Activation function L. 6

2.2. Learning of ANN 7
2.3. Approximation of continuous functions 8
2.3.1. Rationale 8

2.32. Examples 8

2.4. Scheme of our neural network 10
2.5. Scheme of calculating n-dimensional integrals 10
2.6. Examples 13
2.6.1. 1-dimensional integrals 13

2.6.2. Calculation of two-dimensional integrals 15

2.6.3. Calculation of five-dimensional integral 16

3. Methods 17
3.1. Learning methods for ANN 17
3.1.1. Backpropagation method 17

3.2. Features of our method 18
3.2.1. Accuracy on the cube [01] 18

3.2.2. Full primitive on the last integral 18

4. Figures 19
4.1. Approximation of continuous functions 19
4.2. l1-dimensional integrals 23
4.3. 2-dimensional integral 25

5. Conclusion 26
6. References 27

1. Abstract

Nowadays we spend a lot of time for calculating n-dimensional in-
tegrals, using different methods, like Monte-Carlo and Gauss methods.
Computations by these methods expends a lot of computer resources,
which are leading to the problem of golden mean between computing
speed and resource employment. I and my supervisor developed and
researched a method of calculation which is based on artificial neural
networks.

2. Test

In our research work we studied a new method of calculating n-dimensional
integrals, which is based on artificial neural networks(ANN).

Motivation of this research was that nowadays neural networks are very
usable and there are no so many methods of calculating n-dimensional
integrals.

In our method, as neural network, we use preceptron, because of his
simplicity:.

The biggest problem, when you are dealing with ANN, is the learning
of this network. At first, we had used the backpropagation method for
training, but, as usuall it happens with simple methods, we realized that
this method is too slow for our goals that’s why we started using Leven-
berg-Marquardt algorithm, which is much more faster, but it requires a
lot of memory. Of course, there are some methods, which are slower then
Levenberg—Marquardt algorithm, faster then backpropagation method
and don’t requires such a big quantity of memory:.

The result of our work is that our ANN can calculate 1-dimensional,
2-dimensional, 3-dimensional, 4-dimensional and 5-dimensional integrals
of any continuous function on a tilted interval. At this moment, we are
trying to modificate our programme for calculating any 5-dimensional
integrals of continuous function on a tilted interval with a good accuracy.

Also, i want to note that our shceme allows to calculate any n-dimensional
integral.

2.1. Artificial Neural Networks

Artificial neural networks are computing systems inspired by the bio-
logical neural networks that constitute animal brains. ANN consists of 3

parts:

e Neurons
e Linkages between neurons
e Activation functions

e Weights and biases

We are going to have a small excurus into this parts of ANN.

2.1.1. Neurons

Neuron in ANN - mathematical model of biological neuron. We have

Figure 1. Scheme of neuron

Y INa f(yj)!/:
v N

sumination nonlinearity

Yj =Z=|wﬁxi

a lot of input connections of our neuron. Each of them gives a signal to

neuron, which is miltiplied by weight, different for each neuron. After
that, all signals are summed up.

Input = Z w; * signal; (1)

1=1

Afterwards, that signal arrives at activation function, which outcome is
Output of our neuron, which is going to other neurons in the following
connections.

Output = f(Input + bias) (2)

2.1.2. Linkages

There are a few types of linkages between neurons. Most important
and famous of them are multylayer perceptrons and Hopfield networks.
In perceptrons there are, at least, 2 layers. Signal goes from input layer

C\ hidden layers

output layer

input laye

Figure 2. Perceptron Figure 3. Hopfield network

to output layer through hidden layers. The critical moment is that signal
can not goes back and can’t jumped through one layer.

In Hopfield networks each neuron connected to all others, that’s why
it is fully another case.

2.1.3. Activation function

We can say that the main target of neuron is to transform the input
signal in a special way. It is understood that there are different types of
activation functions. Every type has it’s own props and cons. For ex-

Figure 4. Different types of activation functions

fan(net —d) Fan(net —) Fanlnet —)

(a) Linear function (b) Step function {¢) Ramp function

Fan(net —8) Fan(net — 6) fan(net — @)

(d) Sigmoid function (e) Hyperbolic tangent function {f) Gaussian function

ample, the most frequently used function is sigmoid, because it increases
a weak signal and weakens strong. Gaussian function usually uses in
Radial basis function network, which is a separate interesting theme.

In our work we used 2 types of activation functions: sigmoid and linear
functions.

2.2. Learning of ANN

Learning of ANN is a learning with a teacher. It means, that we have
a table of figures, which consists of 2 parts: inputs and outputs.

At first, we generate random weights and biases in our ANN, after
that we simply loop through all of our table input figures and look at
the result. This result we compare with table output and make error
function. |

H=— Z (Result — OutputTable)’ (3)

alloutputs

Our goal is to change our weights and biases in the way, that will reduce
our Error function, so we have a problem of finding minimum of function.
There are some methods, which are most common for ANN:

e Backpropagation

e Levenberg-Marquardt algorithm
e DBayesian regularisation

e Scaled Conjugate Gradient

Some explanations about this methods you can find below in section
" Methods”.

2.3. Approximation of continuous functions
2.3.1. Rationale

We can legitimately say that any continuous function could be approx-
imate with any precision by a perceptron, because of the theorem, which
is presented below.

Theorem. An arbitrary continuous function, defined on [0, 1] can be
arbitrary well uniformly approximated by a multilayer feed-forward
neural network with one hidden layer (that contains only finite num-
ber of neurons) using neurons with arbitrary activation functions in
the hidden layer and a linear neuron in the output layer.’

3 () — arbitrary activation function. Then ¥Vf € C ([0,1]) (4)

Ve >0 3nyg € N, 3wy, Jw; : sup |f(x) — sz co(wy +v)| < e
x€[0,1] i—0

This theorem says, that we can find such values, as ng, w;;, w;, where
no - number of neurons in the hidden layer of perceptron, w; and wj; -
weigths of the neural network, and approximation error won’t be higer
then a given €.

So, we can conclude, that any continuous function can be approximated
by a perceptron with 1 hidden layer with any given precision, and this is
another reason why we chose this type of neural network.

2.3.2. Examples

Here there are some examples of approximation of continuous function
of 1 and 2 variables. I would like to note that the time of training ANN
in this examples stands at 1 second. Stopping conditions were: 1000
iterations or gradient of learning smaller then 10~7. Of course, we can
change our stopping conditions in any way that we want. More examples
are in the point " Figures”.

1” Approximation with Artificial Neural Networks”,”MSc thesis”,
Baldzs Csanad Csaji

%103
15 14

12

Figure 5. Plot of sin(8z) Figure 6. Error of approximation

e e

Figure 7. Plot of exp(x — y) Figure 8. Error of approximation

2.4. Scheme of our neural network

Figure 9. Sheme of neural network

On the Figure 9 you can see the scheme of our neural network, which
is used for calculating n-dimensional integrals. It’s a perceptron with
one hidden layer. As activation functions in the hidden layer we chose
Hyperbolic tangent sigmoid trasnfer function, or:

1
= 5
l+e® (5)

Benefits of this activation function are that this function is infinitely
differentiable and learning process occurs fast. On the output layer, as
activation function, we took linear function. Reason for our choice will
be shown later.

p(z)

2.5. Scheme of calculating n-dimensional integrals

As it was said earlier, we chose a perceptron with 1 hidden layer, for
reasons that we mentioned in the paragraph ”Approximation of con-
tinuous functions”. Let’s look at the procedure, which is used in our

10

programme. First of all, we have to approximate our function with the
help of neural network. Let’s assume that approximation procedure was
done. Then we can write:

[z, xo.. ~ Out = (Zw © (Z T+ vz)> - vout> (6)

Our main target is to integrate this function, and because of 6, we can
write:

/f(a:l,xg,)Ty / (Z w; - (i wij - T —HJ@)) + vout> dx,

(7)
N w. n

/f(ﬂfl, Lo, xn)dxl ~ Z —jq) ((wij - X; + UJ) +/Uout'x1 = \Ij(ﬂfl, Loy ...,
=1

j=1 Wij1

O(x) = In(cosh(x))
. Z w%jl - P (Z (wy; - x; + vz)> + Vgut - 1 = V(21, o, ...7,) (8)

1=1

After substitution of boundary conditions we would have next expression:

" (22,...20)
/down<)f(xh T, ...y)day ~ V(2 (2, ...2,)) — V(21" (29, ...70,))
(9)

As you can see, in the expression 9 we don’t have dependence on variable
x1, that’s mean that from function of n variables we got to the function
of (n — 1) variables after the process of approximation, integration and
substitution of boundary conditions.

Figure 10 shows the process of getting from a function of n variables
to the function of (n — 1) variables.

11

Figure 10. Sheme of one iteration

f(%q,..Xp) f(%2,...Xn)

Substitution o
boundary
conditions

Approximation
of the function

Integration

The procedure is that we are repeating scheme, that’s illustrated on
the Figure 10, n times. Schematically, we can represent this procedure
in the next way:

Figure 11. Sheme of our method’s procedure
Scheme A

Approximation
of the function

Integration boundary

i I
%, conditions &

X1 Xn)

Scheme & | fl¥z.-%q)

Scheme A fl:xg.---?l-,:l

(===l

f(xn)

Scheme A

Result

Main idea of our procedure, is that we get each integral on each itera-
tion, which is leading us to the result of the problem.

12

2.6. Examples
2.6.1. 1-dimensional integrals

Let’s look at few examples of calculating usual integrals of function of
1 variable.

%108

0.5} ; E
-\ \ /f
4 ; 1 H
I

18
16
14

Tt

/

ooy \/ \\‘v \\/

0 L L L L I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1 A5

08

06

041

02

(0] 0.1 02 03 04 05 0.6 0.7 0.8 09 1

. T /
Figure 12. [e*dx, 2" € [0, 1] Figure 13. Error of integration

In all examples, learning time is less then 10 seconds.

Also, I'd like to note that in fact there is dependence of quality of
learning on number of neurons in our neural network, but we won'’t face
with this problem, because it’s very difficult for us at this moment.

13

4
03 r 8 =10

101 \J'

0 01 02 03 04 05 06 07 08 08 1 -12

Figure 14. [; sin(8x)dz, 2’ € [0, 1] Figure 15. Error of integration

Function graph
015
_x‘ID'E Error of integration

-0.1

Figure 16.

fox/ sin(Sexp(z))dz, #' € [0,1] Figure 17. Error of integration

14

2.6.2. Calculation of two-dimensional integrals
Lets consider next integral:

//de (10)

Let’s reckon that f(x) is continuous and D is a limited space area. By
using Fubini theorem we can write next:

//de—/:dx/yijj)f(az,y)dy (11)

After training of our neural network to the function, f(x,y) we would
have expression 6, where we have 2 variables. After that, we can get
antiderivative of this function on the variable y:

ya()
[Sy = P (12

Subsequently, we can create a new neural network, which would be ap-
proximate for a F'(z).

:Zwi-go(wi-fn—i—vi)—i—vout (13)

And we can do the same conversion as in the previous paragraph.

:/;F(:C’)dx’:/; (;Wi'@(wi’]n"i'vi)—'_vout) dx’ (14)

And our answer will look like this:

/ / £dS = / da /y y(()) Fly)dy = Fla) — Fz) (15)

Let’s consider next integral.

/dy/fxy

= zy - sin(x — y)
z,y € [0,1]

15

w1072 Integral Error of approximation

I I I I I I I I | I
] 01 02 03 04 05 06 07 08 09 1 (0) 4 0 o 0Ox

Figure 18. Primitive Figure 19. Error of integration

More examples of calculations are in the paragraph ”Figures”. It’s
very important to say, that in our examples(Paragraphs
2.6.1,2.6.2) error of approximation coinside with the error
of integration, because of the reasons, which are indicated
in the paragraph ”Methods”

2.6.3. Calculation of five-dimensional integral

Let’s consider next integral.

3 x5 T4 T3)
/ dz; / dz, / dx; / dry | dxy- f(x)

f(x7y> = I

Ly, To, X3, T4, T5 S [07 3]
This integral can be calculated with the help of our method.

Value, calculated by our system: 0.6012
Desired value: ~ 0.6034

As we can see, in this simple example we got comparably good result.
Unfortunately, at this moment, we have problem with a memory that’s
leading to a bad approximation of given function. We're going to test
our method on a heterogeneous cluster.

16

3. Methods
3.1. Learning methods for ANN

The problem of learning ANN is to find minimum of error function(Paragraph
2.2). Most common methods for perceptrons are gradien methods, like
backpropagation.

3.1.1. Backpropagation method

Backpropagation method consists of 4 parts:
e Propagation of the signal through the neural network
e Calculation of the error function

e Propagation of the output activations back through the network
using the training pattern target in order to generate the deltas
(the difference between the targeted and actual output values) of
all output and hidden neurons

e Weight’s update, which is depended on the gradient of the error
function

Here are the formulas, which are describing the process of weight’s up-
dating.

wij = wij + Awij (16)
OH
A’UJU’ = —7787 = —7702'(5]'
ij

where 7 - coefficient of learning, o; - signal on ¢ neuron, 9, - error of j neuron

More about this method you can find in the work of R.Rojas ”"Neural
Networks”.

17

3.2. Features of our method
3.2.1. Accuracy on the cube [0,1]

If we have the accuracy of approximation(mean squared error) less
then ¢, then accuracy of integration won’t grow up.

/abf(x)dx = /ab U(x)dx + /ab Error(x)dx

/ab f(x)dx — /ab\IJ(:U)dJZ _ /ab Error(z)de <e-(b—a)=¢

That’s the reason, why we are considering functions on the cube [0, 1]. It’s
very easy for us to say, what accuracy we would get after our procudere.
At this moment, nobody did the full theory of neural network approxi-
mation.

3.2.2. Full primitive on the last integral

In the paragraph 2.5. we devised a formula of integral expressed
through the neural network:

uP(.Z'Q,...I'n)

/ f(@1, 20, ..xp)dzy ~ WP (20, ... 7)) — U (2024, ... 2,))

‘f"“’"(xg,...xn)

Let’s say, that we are on the last step of our procedure.

/a F)dz, ~ V(D) — U(a)

But parameter b can be different, as approximation was done on a full
interval [a, b|.

/a " fla)da, ~ W) — W(a) (17)

And situation becomes very good, because we know everything about
function W. In our opinion, this feature is the most important in this
method.

18

4. Figures

4.1. Approximation of continuous functions

In this section we will see some examples of approximation with the
help of neural networks.

Let’s consider next function.
f(x) _ esin(l(]x) T

x € [0,1]

Graph of function 1078 Error of approximation

It

5
1
-
=

-
=]
T

-
=
T

L D - R
r - r r r -

L L L L L L L L I | L L L L L I L L L |
] 01 02 03 04 05 06 07 08 09 1 01 0z 03 04 05 06 07 08 09 1

=]

Figure 20. Graph of function Figure 21. Error of approximation

e Number of neurons: 15
e Elapsed time: 12s

e Number of approximation points: 100

19

Let’s consider same function but with different number of
approximation points.

f(x) _ 6sin(10x) T

x € [0,1]

Graph of function 108 Error of approximation
2571 ar

o 01 02 03 04 05 06 07 08 09 1 0 01 0z 03 04 05 06 o7 08 09 1

Figure 22. Graph of function Figure 23. Error of approximation

e Number of neurons: 15
e Elapsed time: 12s

e Number of approximation points: 300

Difference between these two example is that oscillations of error are
lower on the second example, when we took more points. One more
interesting thing is that elapsed time, under equal conditions, equal in
both cases.

20

Let’s consider a function with a few extremes.
flz)=e"" sin(8(zx —y)) @

x € [0,1]

Graph of function Error of approximation

o 1
0.5 0.6 08
0.4
0.2
ay 0 o OX

Figure 24. Graph of function Figure 25. Error of approximation

e Number of neurons: 15
e Elapsed time: 17s

e Number of approximation points: 1002100

As we can see, elapsed time is't very big, that’s why result is not very
good. Below, there is an example of the same problem but with the

different stopping conditions.

21

flz) ="V sin(8(x —y)) -«
x € [0,1]

Graph of function Error of approximation

L L o - ma w
¥ i ri L i)

1
0.8 05 06 0.8
0.4
0.2
ay 0 o OX

Figure 26. Graph of function Figure 27. Error of approximation

e Number of neurons: 15
e Elapsed time: 47s

e Number of approximation points: 1002100

As we can see, the program run time increases to 47s, and accuracy
increases from 1072 to 107°.

22

4.2. 1-dimensional integrals

1
flz) =
I+
z € 0,1]
07 - Graph of function ; =107 Error of integration
06 0.5
05
ol
041 l
0.5
03
ar
02r
o1l 151
] D.I'I DTZ DI3 Uj4 D.I5 Dlﬁ DTT D.Iﬂ- 0‘9 ‘II _ZD D.I‘I DTZ DIJ Dj4 D.I5 D.‘S DTT U.IB DTQ ‘II
Figure 28. Graph of integral Figure 29. Error of integration

e Number of neurons: 15
e Elapsed time: 1s

e Number of approximation points: 300

Very good results in short time.

23

() = In(cos(z)
x € [0,1]

Graph of function © 10758 Error of integration
01y ar

Figure 30. Graph of integral Figure 31. Error of integration

e Number of neurons: 15
e Elapsed time: 1s

e Number of approximation points: 300

24

4.3. 2-dimensional integral

Let’s consider next problem

Y T
/ dy’ / d'f(2',y')
0 0

f(ﬂ?/, y/ _ e(a:—y)-sin(ﬁ(x—y))

z € 0,1]

Integral Error of integration

IS

- & & FNE =) 2
¥ ra ra ra i i

0
0.2 0.5
05 0e 04
0.8 : 0.2
Oy 0 0 Ox

o 1 oy

Figure 32. Graph of integral Figure 33. Error of integration

e Number of neurons: 15
e Elapsed time: 30s
e Number of approximation points: 300

In fact, this problem should work with our scheme, but, really, it’s very
to transform our scheme for calculating such integrals.

25

5. Conclusion

During my stay at Dubna, I had done a lot of things. First of all, I
met a lot of interesting people. Talking to them was a big pleasure for
me. Secondly, I participated in different conferences and learnt a lot from
them.

Our work, which was done with my supervisor Hovik Grigorian and our
friend Alexander Ayriyan, was a good practice for me, and we are plan-
ning to continue our research in this field. At this moment, we created
and researched algorithm, that could calculate n-dimensional integrals.
During our research we faced with some problems, like problem of mem-
ory. This problems under consideration at the moment, and I believe,
that we will manage them in the future.

I must note, that results of calculating 1- and 2- dimensional integrals,
which are provided in this report, can compete with best methods, like
Monte-Carlo method.

Also, I want to say thank you for JINR and Orginizing Comitee for
this opportunity:.

In addition, I want to say thank you for my supervisor, Hovik Grigo-
rian, and Alexander Ayriyan. Both of them are professionals with a big
experience. At the result, they became good friends for me.

26

6. References

e " Approximation with Artificial Neural Networks, MSc thesis” by
Balazs Csanad Csaji

e "Neural Network” by R.Rojas, 1997

27

