
JINR Summer Student Programme 2016

Development of the data
preprocessing complex for the
ToF-400 system in the BM@N

experiment
JINR Summer Student Programme project report

Author:

Kurganov Alexander
Russia, Moscow state university

Faculity of physics

Supervisors:

Vadim Babkin

Mikhail Rumyantsev

Vyatcheslav Golovatyuk

Participation period:
10 July - 15 August

2016

Contents

1 Abstract 2

2 Intro 4
2.1 ToF-400 system brief description 4
2.2 Front-end and readout electronics 5
2.3 Aim of the work . 6

3 Realization and methods 6
3.1 BmnRoot framework and class structure 6
3.2 Mapping . 8
3.3 INL Correction . 11
3.4 Complete first conversion stage algorithm and determination of

the signal amplitude . 12
3.5 Complete second conversion stage algorithm 14

4 Conclusion 16

5 References 17

Appendices 18

A Corrected mapping 18

B Classes and structures description 20
B.1 BmnTDCDigit . 20
B.2 BmnTof1Digit . 20
B.3 BmnTof1Raw2Digit . 21
B.4 BmnTof1TDCParameters . 21
B.5 BmnTof1Map2 . 21
B.6 myTof1Hit . 23
B.7 TofHitConverter . 23

C Complete list of built debug histograms 25

1

1 Abstract

JINR Nuclotron will provide the heavy-ion beams with energies up to 6 A·GeV
for isospin symmetric nuclei and 4.65 A·GeV for Au nuclei. In the central heavy-
ion collisions at these energies, the nuclear densities of about four times nuclear
matter density can be reached. These conditions are well suited to investigate
the equation-of-state of dense nuclear matter, which plays a central role for the
dynamics of core collapse supernovae and for the stability of neutron stars.

Also the heavy-ion collisions are a rich source of strange particles. The
extension of the experimental program is related to the study of in-medium
effects for vector mesons and strangeness decaying in hadronic modes.

For these purposes, it was proposed to install the BM@N experiment in the
fixed-target hall of Nuclotron with the final goal to perform a research program
focused on the production of strange matter in the heavy-ion collisions at beam
energies between 2 and 6 A·GeV. [1][2]

11 5

6
7

8

2
2

3

(a) BM@N experiment schematic (b) ToF-400 detector schematic from another
view with basic dimensions

Figure 1: BM@N experiment and ToF-400.

The experiment combines high precision track measurements with time-of-
flight information for particle identification and uses total energy measurements
for the analysis of the collision centrality. The experiment setup consists of (see
fig. 1a) several subsystems [2]:

� Analysing magnet (1). The gap between the poles of the analyzing magnet
is around 1 m. The magnetic field can be varied up to 1.2 T to get
the optimal BM@N detector acceptance and momentum resolution for
different processes and beam energies.

2

� Two coordinate planes of Gaseous Electron Multipliers (GEM) detectors
(3) located in the magnetic field, straw (5) and drift chambers (6) lo-
cated outside it are used to measure the charged track momentum and
multiplicity.

� Two multi-gap resistive plated chambers time-of-flight detectors with a
strip readout - TOF400 (4) and TOF700 (7). The design of these de-
tectors allows to discriminate between hadrons (𝜋, 𝐾, 𝑝) as well as light
nuclei with the momentum up to few GeV/c produced in multi-particle
events.

� T0 detector (2), which is planned to trigger central heavy ion collisions
and provide a trigger (T0) signal for the TOF400 and TOF700 detectors.

� Zero degree calorimeter (8) (ZDC) designed for the analysis of the collision
centrality by measuring the energy of forward going particles.

This work will be focused on the TOF400 detector (fig. 1a (4), 1b) scientific
data preprocessing complex development.

3

2 Intro

2.1 ToF-400 system brief description

Figure 2: The ToF-400 plane schematic

The ToF-400 system is symmetrical relative to the beam and consists of two
parts on each (left and right) side of the beam. Both of these parts consist of
two gas boxes with 5 mRPC detector planes in each, which overlap a bit. The
total number of planes in the completed ToF-400 system will be 2× 2× 5 = 20.
Each of the planes has 48 strips in it.[3]

A ToF-400 detector plane consists of three stacks with 5 gas gaps in each.
Common float glass is used as resistive electrodes. The pickup electrodes look
like strips and made on a printed circut board (PCB); differential analog signal
from both sides of the strip is transferred to front-end electronics. Transferring
signals from both sides of the strip enchanses the time resolution and provides a
way to measure the coordinate along the strip by measuring the time difference
between the signals from two sides of the same strip.

Currently in the ToF-400 three detector planes are installed in one gas box
and experimental run data from them is used for debugging and testing pur-
poses. Hereinafter these will be enumerated as planes 1, 2, 3, starting from the
actual bottom in the experimental setup (so plane 2 is the center plane which
overlaps a bit with the plane 1 and plane 3).The data preparation complex,
which will be developed in this work, must be easily expandable and be ready
to prepare raw data from all of the 20 future detector planes.

4

2.2 Front-end and readout electronics

A fast front-end preamplifier discriminator chip NINO[4], originally developed
for ALICE experiment TOF system, is used in BM@N Time-of-Flight system.
The NINO chip has 8 channels, each of which has an ultra-fast preamplifier with
a peaking time less than 1 ns, discriminator with a minimum detection threshold
of 10 fC and output stage which provides s pulse LVDS output signal. Width
of the pulse is determined by the duration of the period of time, in which the
signal is greater than a modifiable threshold, which is set once in a run. Using
this time-over-threshold technology one can measure the signal amplitude.

The preamplifier PCB has three NINO chips on it; so, each preamplifier
board has 3 × 8 = 24 channels. To measure the signal on both sides of each
strip in the system, (48/24)× 2 = 4 preamplifier boards are connected to each
plane. On each preamplifier PCB two 3-row, 32-column connectors are placed,
using which the preamplifier board connects to a special “transmitter” PCB on
the gas box, one side of which is located inside the gas box (and has 3 connectors
with 8 strips connected to each) and the other on the outside.

The signal from the strip (on the input of the preamplifier board) has a con-
siderably long front period duration. The duration of period of time, in which
the signal voltage rises from zero to the threshold voltage is dependent from the
signal overall amplitude; due to this, the time resolution is spoiled. To overcome
this effect, a time-amplitude correction must be applied to the experimental
data. The LVDS signal is then transmitted to the TDC72VHL time-to-digital

(a) Preamplifier board (b) TDC72VHL PCB

Figure 3: Front-end electronics and TDC PCBs

converters (TDCs), made in a VHL module form. Each TDC72VHL module
has 9 HPTDC[5] 32-channels chips on the PCB. Each HPTDC chip has 1024
bins, and is operating in the 24ns mode (24𝑛𝑠/1024 ≈ 23.4𝑝𝑠 per bin). To
provide a way to work in this mode, the HPTDC chip’s channels have to be

5

combined by quads, so in total each HPTDC has only 8 “real” channels instead
of 32. Unfortunately, operating in this mode leads to larger nonlinearity, so cor-
rections using integral nonlinearity (INL) measurements should be made while
preprocessing the experimental data. These INL characteristics vary not only
from chip to chip, but also from channel to channel.

2.3 Aim of the work

The aim of this work is to develop a scientific data preprocessing complex, which
will prepare raw TDC experimental data for any future analysis. This system
should include:

� INL (integral nonlinearity) corrections;

� Conversion of TDC72VHL board serial number and the triggered channel
index on it to strip number, it’s side and plane ID (mapping);

� Measuring the actual time between leading and trailing parts of the signal
(signal amplitude), as the TDC72VHL boards output two distinct signals
on the signal leading and trailing parts;

� Combining the measurements on both sides of the strip to determine the
position along the strip and increase the overall time resolution;

3 Realization and methods

3.1 BmnRoot framework and class structure

The BM@N experiment uses a special software framework BmnRoot[6] to pro-
cess and analyse the experimental data. This framework is build around the
ROOT[7] environment and the FairSoft object-oriented framefork FairRoot[8].
Overall the BmnRoot is a powerfull tool for BM@N detector performance stud-
ies, development of algorithms for reconstruction and physics analysis of the
data. It also provides an invterface for the PostgreSQL database, which will be
used in this work to download the nessessary data. The BmnRoot framework
is written in C++.

The Tof-400 data preprocessing complex was developed during this work
inside the BmnRoot framework. To perform such an integration, a couple of
C++ classes’ source codes in the BmnRoot were changed and a couple of classes
were added.

6

To perform a decoding process from raw binary experimental data to a
ROOT TTree file, the class BmnRawDataDecoder is included in the frame-
work. It performs the decoding process in two stages:

1. Decoding the raw binary data and putting it in a couple of different struc-
tures, which then are inserted inside a ROOT TTree structure and saved.
This process only saves the ADC and TDC data in a bit more convenient
format than binary and does not perform any changes to the data.

2. Conversion of the raw TDC and ADC measurements to the detector data
with applied INL corrections and mapping, saving it to a different TTree
file.

The TDC information after the first stage is stored in a BmnTDCDigit
class. The BmnTDCDigit class stores only one TDC digit (TDC measure-
ment) and has the following fields inside:

� Crate serial and slot, in which the current VHL module is inserted;

� VHL module type (0𝑥12 for the TDC72VHL TDC);

� HPTDC chip’s id;

� HPTDC chip channel index;

� Type of the TDC digit: leading or trailing;

� Time (value) of the digit in TDC bins.

During the second conversion the BmnRawDataDecoder class uses the
BmnTof1Raw2Digit::FillEvent method to convert an array of BmnTD-
CDigit structures into Tof-400 data. The Tof-400 data after the second stage
is stored in a BmnTof1Digit structure. The BmnTof1Digit structure stores
the plane id, strip index, side of the strip, leading time of the signal and its
width.

Only the second stage of the conversion process concerns this work. As said
before, the BmnTof1Raw2Digit class is used to convert an array of BmnT-
DCDigit structures in the event into an array of BmnTof1Digit structures.
During this work, the BmnTof1Raw2Digit class was completely remade to
perform the convertion process properly and apply the INL corrections and
mapping during it. This classes’ description can be found in the appendix B.

After these two stages, an additional conversion process was added along
with a couple of classes. During this stage an array of BmnTof1Digit struc-
tures is converted in an array of myTof1Hit structures. This conversion stage

7

is needed to “connect” two BmnTof1Digit instances on different sides of one
strip into one myTofHit structure instance. The myTof1Hit class stores the
signal amplitude, average leading time, position along the strip in time equiva-
lent (difference between the leading time of two TDC digits), and the plane and
strip IDs. The myTof1Hit class was added to the BmnRoot framework during
this work.

To perform the last described conversion, a new class TofHitConverter
was created. Its description also can be found in the appendix B.

After the last conversion, some data analysis should be performed to check
if every step is done properly and to measure the time-amplitude dependence.
A couple of debugging histograms were also built inside the TofHitConverter
class right during the conversion process. These histograms will be described
later.

In conclusion, the data preprocessing complex itself consists of two main
classes BmnTof1Raw2Digit and TofHitConverter each representing a dis-
tinct conversion stage. The first stage’s input data is an array of BmnTD-
CDigit structures in the event, the output data is an array of BmnTof1Digit
instances. The second stage’s input data is the first stage output, and the out-
put data of the second stage is an array of myTof1Hit structures. During the
first stage, INL corrections, mapping appliance and signal width measurements
are performed. During the second stage the data from two different sides of the
same strip is combined.

In further subsections the full conversion process stages will be described in
detail.

3.2 Mapping

Mapping in the developed program is applied during the first stage of full con-
version process, applied in the BmnTof1Raw2Digit class method and consists
in fact of three conversion processes:

1. Index of the HPTDC chip in it and triggered channel of the HPTDC to
TDC global (across all of the HPTDC chips on it) channel (hereinafter
TDC channel);

2. Crate ID (the sync module ID in it) and insertion slot of the TDC in the
crate to TDC serial number;

3. TDC serial number and the TDC channel to plane ID, strip index and its
side.

8

The first conversion is quite straightforward and is performed using a simple
equation

𝑇𝐷𝐶 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 = (𝐻𝑃𝑇𝐷𝐶 𝑖𝑛𝑑𝑒𝑥) · 8 + (𝐻𝑃𝑇𝐷𝐶 𝑐ℎ𝑎𝑛𝑛𝑒𝑙) (1)

Second and third conversions are made using special tables, which are down-
loaded from a PostgreSQL database and then stored in RAM using std::map
key-value containers. In second conversion, std::pair of crate ID and slot num-
ber is used as a searching key and the TDC serial is used as value. In case
of third conversion TDC serial is used as a key and a special structure Bm-
nTof1Parameters (see app. B) is used as a value. This structure has INL
data in it and an array of BmnTof1Map2 structures, each of which stores
plane ID, strip number and side of the strip. The index of this array is a TDC
channel.

Such a way of storing mapping data provides a fast access to it (the com-
putational complexity of searching the value by key in std::map container is
𝑂(𝑙𝑜𝑔𝑁)).

The hardest part of implementation of mapping is the determination of the
third conversion’s mapping table. Due to the equalization of the trace length on
the front-end amplifier PCB purposes channels are already mixed up; moreover,
some cables could be soldered incorrectly, which only increases the confusion.
Unfortunately, the mapping table based on the PCB trace data and cable con-
nection, provided by my supervisors, wasn’t completely right because of some
soldering and connection errors, and needed correction.

To correct this mapping table a couple of histograms were plotted:

1. 3 2D histograms for each plane, in which X bin is the left-sided triggered
strip number and Y bin is the right-sided triggered strip number (left-
sided and right-sided strips with maximal amplitude (signal width) in
the current event data were used to fill the histogram); (LR histograms
hereinafter)

2. 3 2D histograms for each plane, in which the X bin is the left-sided trig-
gered strip number and the Y bin is the right-sided triggered strip number
of the closest by time left-right pair found in the event (T-LR histograms
hereinafter);

3. 6 2D histograms for each plane and side of the strips, X bin is the strip
number and Y bin is the TDC digit’s leading time; (XT histograms here-
inafter)

9

 Strip R
0 5 10 15 20 25 30 35 40 45

S
tr

ip
 L

0

5

10

15

20

25

30

35

40

45

Plane 2 LR

(a) 2nd plane LR histogram

 Strip R
0 5 10 15 20 25 30 35 40 45

S
tr

ip
 L

0

5

10

15

20

25

30

35

40

45

Plane 3 LR

(b) 3rd plane LR histogram

Figure 4: LR histograms for 2nd and 3rd planes in case of uncorrected mapping

 Strip R
0 5 10 15 20 25 30 35 40 45

S
tr

ip
 L

0

5

10

15

20

25

30

35

40

45

Plane 2 LR

(a) 2nd plane LR histogram

 Strip R
0 5 10 15 20 25 30 35 40 45

S
tr

ip
 L

0

5

10

15

20

25

30

35

40

45

Plane 3 LR

(b) 3rd plane LR histogram

Figure 5: LR histograms for 2nd and 3rd planes in case of corrected mapping

In case of correct mapping table, the LR and T-LR histograms, obviously,
should look like diagonals, because triggering the left side of the strip also
triggers its right side. All of the six XT histograms should have no abrupt
(high-deteriorative) zones in them and be the same for both sides of the same
plane.

On fig. 4 the 2nd and 3rd plane LR histograms for the uncorrected mapping
table are shown. It is obvious that the mapping has a couple of errors and needs
correction. These errors were found and corrected using these histograms. Same
histograms for the corrected mapping table are shown on the fig. 5. Applied
corrections and the final mapping table could be found in the appendix A, full
list of the built histograms is provided in the appendix C.

Fortunately, these errors will be eliminated in the future runs, so no complex
mapping table confusion will occur in future.

A special ROOT macros, which uploads the mapping tables to the Post-

10

greSQL database, has also been written during this work.

3.3 INL Correction

As said before, usage of the 24ns mode, in which the HPTDC chips operate in
the TDC72VHL module, leads to large nonlinearity. To overcome this problem,
this nonlinearity should be measured and then corrected using this collected
data.

To define the INL (integral nonlinearity) term the DNL (differential non-
linearity) must be defined. The DNL for each of 1024 bins can be calculated
using the equation (where 𝑖 = 0, 1023 is the bin number, 𝑗 = 0, 71 is the channel
number and 𝑘 represents the TDC72VHL module serial number)

𝐷𝑁𝐿 =
𝑊 𝑟

𝑖,𝑗,𝑘 −𝑊 𝑡

𝑊𝑡
.

Here 𝑊 𝑟
𝑖,𝑗,𝑘 is the real bin 𝑖 time width, and 𝑊 𝑡 = 24𝑛𝑠/1024 is the ideal bin

width. The 𝑗 and 𝑘 indexes will be omitted hereinafter.
One can measure the DNL for each bin of each channel in the TDC72VHL

module by applying a uniform-distributed in time LVDS pulse signals to the
input of the TDC72VHL and calculating the number of events in each bin.
Theoretically, the number of events in each bin should be proportional to the
bin width, and, if the HPTDC chips were perfect (without any nonlinearity),
number of events in each bin would be the same. In fact, the number of events
varies from bin to bin, so does the bin width. Using such a procedure, one can
find each bin’s real width and, therefore, the differential nonlinearity.

The integral nonlinearity is defined as a sum over all of the DNL in “previ-
ous” bins:

𝐼𝑁𝐿𝑖 =
𝑖∑︁

𝑥=0

𝐷𝑁𝐿𝑥.

To convert the TDC Digit value 𝑣 (bin id + number of full TDC cycles * total bin
number in the channel) to real time in ns with the appliance of the nonlinearity
correction, one can use an equation

𝑡 =
𝑣%1024∑︁
𝑖=0

𝑊 𝑖
𝑟+

⌊︁ 𝑣

1024

⌋︁
×24𝑛𝑠 =

𝑣%1024∑︁
𝑖=0

𝐷𝑁𝐿𝑖×𝑊𝑡+𝑊𝑡×(𝑣%1024)+
⌊︁ 𝑣

1024

⌋︁
×24𝑛𝑠,

where ⌊𝑥⌋ is the floor operation, and 𝑥%𝑦 is the remainder of 𝑥 divided by 𝑦.

11

Bin
0 200 400 600 800 1000

IN
L

6−

4−

2−

0

2

4

INL for FFE9-DA91 TDC, channel 0

Figure 6: INL for the channel 0 of the FFE9-DA91 TDC72VHL module.

In terms of INL characteristics, this equation can be simplified to

𝑡 =
(︀
𝑣 + 𝐼𝑁𝐿(𝑣%1024)

)︀
× 24𝑛𝑠

1024
. (2)

Due to the comparative simplicity of this formula, INL characteristics are used
to store the nonlinearity data and to apply the correction. An example of the
INL characteristics for one channel is given on fig. 6.

The INL characteristics are stored in the database for each channel and TDC
module separately as an array of double type values. The size of this array is
equal to the number of bins – 1024. Before the conversion starts, these INL char-
acteristics are loaded into 2D 72× 1024 arrays of double type values inside each
of the created during the mapping downloading process BmnTof1Parameters
instance in the described in previous section std::map. The first dimension of
each array represents the channel ID, while second dimension represents the bin
ID.

3.4 Complete first conversion stage algorithm and deter-

mination of the signal amplitude

To find the signal amplitude we must find closest leading and trailing signals for
the same strip and same side of it. To perform that, the BmnTof1Parameters
class stores an array of temporary double values for each TDC channel double
BmnTof1Parameters::t[72]. All of the temporary values are filled with “-1”
before processing each event.

12

Also, all input TDC digits in the beginning of current event processing are
sorted by time. While sorting the algorithm also “filters” the TDC data by
ignoring all the TDC digits whose type is not valid (not 0x12 for TDC72VHL).
This sorting is performed by inserting all filtered elements into the std::set
container one by one.

Then, after the TDC digits are sorted and filtered, a loop over all of the
sorted element in std::set container is performed. For each TDC digit the pro-
gram performs these steps (we will define the TDC digit “time” as TDC Digit
value converted to “real” time using eq. (2) and the corresponding INL charac-
teristics):

1. Convert the HPTDC id and HPTDC channel to “common” TDC module
channel using equation (1).

2. Using the TDC digit’s fields for VHL crate serial and insertion slot of
the triggered TDC as a key, find the TDC Serial in the mapping table
described in section 3.2.

3. Using this TDC Serial as a key, find in the std::map the corresponding
BmnTof1Parameters instance. From this instance we can extract map-
ping for each TDC channel (see section 3.2) and INL characteristics (see
section 3.3), while also gaining access to the temporary storage in it t[72].

4. If the TDC digit is leading, just put the TDC digit time into the temporary
storage BmnTof1Parameters::t[72] for the corresponding channel and
TDC Serial. Go to step 6.

5. If the TDC digit is not leading, check the temporary storage for the cor-
responding channel and TDC Serial:

(a) If the value stored in the temporary value array for the corresponding
channel and TDC Serial is -1, it means that no leading TDC digit
was found yet in this event for this strip. As the TDC Digits are
sorted by time, it also means that the TDC digit we are currently on
doesn’t hold any information and we might as well just skip it. Go
to step 6.

(b) If the value stored in the temporary value array for the corresponding
channel and TDC Serial is not -1, it means that we found a leading-
trailing pair, where the leading time is stored in the temporary array
value and the trailing time is the current TDC digit’s time. Using
mapping tables stored in the BmnTof1Parameters instance, find
the corresponding plane ID, strip ID and side for this TDC Serial and

13

channel. Fill the output array with these plane ID, strip ID, strip
side, leading time (from the temporary storage) and signal amplitude
in time equivalent (𝑡𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔 − 𝑡𝑙𝑒𝑎𝑑𝑖𝑛𝑔)

6. Go to the next TDC digit in the sorted list of them.

This loop continues until the program reaches the end of the input array of
BmnTDCDigit instances.

This algorithm is implemented in theBmnTof1Raw2Digit’s method FillEvent.
The BmnRawDataDecoder class itself handles the event loop and calls this
method for each event, passing an array of all TDC digits in current event to
the method using a TClonesArray of BmnTDCDigit instances and extracting
a TClonesArray* of BmnTof1Digit.

The mapping table and INL characteristics can be loaded either from a local
file using corresponding methods (see app. B) or from the PostgreSQL database.
This downloading is performed only once per conversion process.

That way, on the output of the first conversion stage the Tof1Digit’s am-
plitude is determined, and INL correction is applied, as well as the mapping
table.

3.5 Complete second conversion stage algorithm

According to the aim of this work described in section 2.3, after the first stage
conversion is complete, all that remains is to find different-sided pairs of Bm-
nTof1Digit instances on the same strip and plane. This is performed by the
TofHitConvertor (see app. B) class. Its ConvertDigitToHit method han-
dles the event loop, passing a TClonesArray* of BmnTof1Digits to the same
classes’ method FillEvent. The FillEvent method handles all the event process-
ing and outputs a TClonesArray* of myTof1Hit. The algorithm implemented
in the FillEvent method is described below and repeats for each event in the
file.

1. Sort the BmnTof1Digits first by plane, then by strip, and finally by side
(right <= left) using the std::multiset container. That way in the sorted
list we will have “clusters” of Tof1 digits with the same plane, strip and
side.

2. Locate the current cluster of Tof1 digits with the same plane ID and strip
(ignoring side sorting). This is done in 𝑂(𝑛) complexity by just finding
the first digit after current, whose strip or plane is not equal to the current
digit’s strip and plane correspondingly.

14

3. Check the first Tof1 digit in the cluster. If it is on the left side of the
strip, due to the sorting that means that there is no right-sided digits in
this cluster (strip). Go to step 7.

4. Find the nearest by time left and right digits in the cluster using bruteforce
approach (loop in a loop, 𝑂(𝑛2) complexity). This can be done faster [9],
but the number of digits in one strip in one event rarely exceeds 3, so
almost no performance boost would occur.

5. Push a new myTof1Hit into the output array, using data from the found
pair of Tof1 digits, filled with data (see below):

(a) Hit time = (𝑡𝑙𝑒𝑓𝑡 + 𝑡𝑟𝑖𝑔ℎ𝑡)/2.0;

(b) Hit amplitude = 𝑎𝑚𝑝𝑙𝑒𝑓𝑡 + 𝑎𝑚𝑝𝑟𝑖𝑔ℎ𝑡;

(c) Hit position = 𝑡𝑙𝑒𝑓𝑡 − 𝑡𝑟𝑖𝑔ℎ𝑡.

(d) Strip and plane ID are filled from the right-sided digit in the pair

6. Remove the found pair from the sorted list. If the cluster is not empty, go
to step 3.

7. Skip all the digits of the same strip and plane up to the next cluster (same
strip and side as the digit found in step 3).

8. If the end of sorted list is not reached, go to step 2.

9. End of the sorted list was reached while trying to skip the cluster. That
means that there is no more clusters with both left- and right-sided digits
or nonempty ones, and, therefore, the conversion process for this event is
complete.

During this conversion process the histograms described in section 3.2 are built
(see app. C).

The myTof1Hit class stores the average time between left and right side.
This increases the time resolution, as well as overcomes the position-time depen-
dency. It also stores the position of interaction - difference between leading time
on the left side and leading time on the right side, as well as the hit amplitude
- a sum of the amplitudes on the left and right side. Obviously, it also stores
the plane ID and strip number.

As said before, the TofHitConverter class performs this conversion on each
event in the input file. It outputs the events to a different file containing a TTree
filled with TClonesArray’s of myTof1Hit along with the debug histograms.

15

4 Conclusion

In this work a data preprocessing complex for ToF-400 system in the BM@N
experiment was developed. The complex features:

� INL Correction;

� Mapping;

� Signal amplitude measurement, combining process of the leading and trail-
ing signals;

� Combining process of TDC digits on different sides of one strip;

� Measurement of interaction position along the strip.

The complex is built around the BMNRoot framework and is easily expand-
able and editable, as the developed complex is easily configurable. It preloads all
the settings from the PostgreSQL database; a couple of macros for data upload
into the database were also written.

The developed system was tested on the test run data and may be used in
all upcoming runs.

16

5 References

[1] Ablyazimov T. O. et al. (BM@N Collaboration) // Conceptual Design Re-
port of BM@N. http://nica.jinr.ru/files/BM@N/BMN_CDR.pdf

[2] Afanasiev S. V. et al. (BM@N Collaboration) // BM@N Project Prologation
for 2017-2021.

[3] ToF-400 status for project prolongation, March 2016. http://bmnshift.
jinr.ru/wiki/lib/exe/fetch.php?media=tof_wall400_for_htc.docx

[4] Anghinolfi F. et al. // NINO: an ultra-fast and low-power front-end ampli-
fier/discriminator ASIC designed for the multigap resistive plate chamber,
Nucl. Instrum. Meth. A 533 (2004) 183.

[5] Christiansen J. // High performance time to digital converter (HPTDC),
Digital Microelec. Group, CERN, HPTDC manual version 2.2 for HPTDC
version 1.3.

[6] NICA / Bmnroot – Simulation and Analysis Framework for NICA/BM@N
Detectors. https://git.jinr.ru/nica/bmnroot

[7] Root - Cern. An object oriented framework for large scale data analysis.
https://root.cern.ch/

[8] FairRoot. https://fairroot.gsi.de/

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein // Introduction to
algorithms, third edition.; MIT Press, 2009. p. 1039–1043 of section 33.4:
Finding the closest pair of points.

17

http://nica.jinr.ru/files/BM@N/BMN_CDR.pdf
http://bmnshift.jinr.ru/wiki/lib/exe/fetch.php?media=tof_wall400_for_htc.docx
http://bmnshift.jinr.ru/wiki/lib/exe/fetch.php?media=tof_wall400_for_htc.docx
https://git.jinr.ru/nica/bmnroot
https://root.cern.ch/
https://fairroot.gsi.de/

Appendices

A Corrected mapping

Originally provided mapping tables:

Crate serial Slot TDC Serial TDC Channels Plane Side Strips

01690454 4 FFE9DA91 48-71 1 Left 0-23
01690454 4 FFE9DA91 24-47 1 Left 24-47
01690454 4 FFE9DA91 0-23 1 Right 0-23
01690454 5 076CCF62 48-71 1 Right 24-47
01690454 5 076CCF62 24-47 2 Left 0-23
01690454 5 076CCF62 0-23 2 Left 24-47
01690454 6 076CAD53 48-71 2 Right 0-23
01690454 6 076CAD53 24-47 2 Right 24-47
01690454 6 076CAD53 0-23 3 Left 0-23
01690454 7 FFE9F5CB 48-71 3 Left 24-47
01690454 7 FFE9F5CB 24-47 3 Right 0-23
01690454 7 FFE9F5CB 0-23 3 Right 24-47

Table 1: Uncorrected mapping. All the serials are written in hexademical

Side Table

Left

Channel 0 1 2 3 4 5 6 7 8 9 10 11
Strip 4 1 10 7 5 2 11 8 6 3 12 9

Channel 12 13 14 15 16 17 18 19 20 21 22 23
Strip 19 22 13 16 20 23 14 17 21 0 15 18

Right

Channel 0 1 2 3 4 5 6 7 8 9 10 11
Strip 21 0 15 18 20 23 14 17 19 22 13 16

Channel 12 13 14 15 16 17 18 19 20 21 22 23
Strip 6 3 12 9 5 2 11 8 4 1 10 7

Table 2: Mapping for each of the 24 channels / 24 strips pair (each line of the
tab. 1)

18

Corrections that should be made after applying the mapping based on the
tables 1 and 2:

1. Cyclically shift all the strips towards the zero strip in the second table
(Strip 1 becomes strip 0, strip 0 becomes 23, strip 2 becomes strip 1 and
so on);

2. Swap the 24-32 and 39-47 strips in the right side of plane 3 (strip 24 swaps
with strip 39, strip 25 swaps with strip 40 and so on);

3. Reverse the order of 0-7 strips in the left side of plane 2 (strip 0 swaps
with strip 7, strip 1 swaps with strip 6 and so on).

19

B Classes and structures description

All listings are provided in a shortened form.

B.1 BmnTDCDigit

Listing 1: BmnTDCDigit.h
c l a s s BmnTDCDigit : pub l i c TObject {
pub l i c :

// Defau l t con s t ruc to r
BmnTDCDigit () ;

// Constructor to use
BmnTDCDigit(UInt t i S e r i a l , UChar t iType , UChar t i S l o t , Boo l t iLeading ,
UChar t iChannel , UChar t iHptdcId , UInt t iValue) ;

//Getters
UInt t GetSe r i a l () const { re turn f S e r i a l ;}
UChar t GetType () const { re turn fType ;}
UChar t GetSlot () const { re turn f S l o t ;}
Bool t GetLeading () const { re turn fLeading ;}
UChar t GetChannel () const { re turn fChannel ;}
UInt t GetValue () const { re turn fValue ;}
UChar t GetHptdcId () const { re turn fHptdcId ;}

//Destructor
v i r t u a l ˜BmnTDCDigit () ;
p r i va t e :
UInt t f S e r i a l ; //VHL cra t e S e r i a l
UChar t fType ; //TDC type
UChar t f S l o t ; //VHL S lo t
Boo l t fLeading ; //True f o r l e ad ing d i g i t s , Fa l se f o r t r a i l i n g
UChar t fChannel ; //HPTDC Channel
UChar t fHptdcId ; //HPTDC Chip ID
UInt t fValue ; //Value

} ;

B.2 BmnTof1Digit

Listing 2: BmnTof1Digit.h
c l a s s BmnTof1Digit : pub l i c TObject
{

pub l i c :
//Default , normal and ” copying ” con s t ru c t o r s
BmnTof1Digit () ;
BmnTof1Digit (Shor t t plane , Shor t t s t r i p , Shor t t s ide , F l oa t t t , F l o a t t a
) ;
BmnTof1Digit (const BmnTof1Digit* , F l o a t t t , F l o a t t a) ;

20

//Destructor
v i r t u a l ˜BmnTof1Digit () ;

// Getters
Shor t t GetPlane () const { re turn fPlane ; }
Shor t t GetStr ip () const { re turn f S t r i p ; }
Shor t t GetSide () const { re turn f S i d e ; }
F loa t t GetAmplitude () const { re turn fAmplitude ; }
F loa t t GetTime () const { re turn fTime ; }

// S e t t e r s
void SetPlane (Shor t t v) { fP lane = v ; }
void Se tS t r i p (Shor t t v) { f S t r i p = v ; }
void SetS ide (Shor t t v) { f S i d e = v ; }
void SetAmplitude (F l oa t t v) { fAmplitude = v ; }
void SetTime (F l oa t t v) { fTime = v ; }

// Pr in t s the in fo rmat ion s to r ed in t h i s Tof1Dig i t
void p r i n t (const char * comment = nu l lp t r , s td : : ostream& os = std : : cout) const ;

p r i va t e :
F l oa t t fAmplitude ; //Amplitude
F l oa t t fTime ; //Leading time
Shor t t fP lane ; //Plane ID
Shor t t f S t r i p ; // S t r i p number
Shor t t f S i d e ; // Side (1 f o r Left , 0 f o r r i g h t)

} ;

B.3 BmnTof1Raw2Digit

B.4 BmnTof1TDCParameters

B.5 BmnTof1Map2

Listing 3: BmnTof1Raw2Digit.h
// Side o f the s t r i p i s s to r ed as a bool v a r i a b l e
#de f i n e TOF1 LEFT true
#de f i n e TOF1 RIGHT f a l s e

//Parameters
#de f i n e TOF1 CHANNELNUMBER 72 //Number o f channe l s
#de f i n e TOF1 BIN NUMBER 1024 //Number o f b ins in a channel
#de f i n e TOF1 MAX TIME (2 4 .) // In ns
#de f i n e TOF1 TDC TYPE (0 x12) //TDC72VHL type

//A simple comparsion f un c t i o n a l c l a s s to compare the TDCDigits
// Sor t s them by time
s t r u c t Tof1TDCCompare {

bool operator () (const BmnTDCDigit& a , const BmnTDCDigit& b) ;
} ;

//Map element
s t r u c t BmnTof1Map2 {

21

Shor t t plane ;
Shor t t s t r i p ;
Boo l t s i d e ;
// Constructors
BmnTof1Map2(Short t , Short t , Boo l t) ;
BmnTof1Map2 () ;

} ;

//TDC parameters
s t r u c t BmnTof1TDCParameters {

double INL [TOF1 CHANNELNUMBER] [TOF1 BIN NUMBER] ; //INL
BmnTof1Map2 ChannelMap [TOF1 CHANNELNUMBER] ; //A BmnTof1Map2 f o r every channel
double t [TOF1 CHANNELNUMBER] ; //Temporary value
BmnTof1TDCParameters () ; // Simple con s t ruc to r

} ;

c l a s s BmnTof1Raw2Digit {
pub l i c :

//BmnTof1Raw2Digit main cons t ruc to r
BmnTof1Raw2Digit () ;
//Another cons t ructor , c a l l s setRun (. . .)
BmnTof1Raw2Digit (i n t nPeriod , i n t nRun) ;
// Destructor
˜BmnTof1Raw2Digit () ;

//Loads mapping and INL from the DB f o r run #nRun in per iod #nPeriod
void setRun (i n t nPerion , i n t nRun) ;

//Load mapping from two f i l e s
void setMapFromFile (std : : s t r i n g placementMapFile , s td : : s t r i n g mapFile) ;
//Save the mapping to two f i l e s
void saveMapToFile (std : : s t r i n g placementMapFile , s td : : s t r i n g mapFile) ;

//Loads INL from an INI f i l e
void setINLFromFile (std : : s t r i n g INLFile) ;
// Saves INL f o r TDCSerial to an INI f i l e
void saveINLToFile (std : : s t r i n g INLFile , unsigned i n t TDCSerial) ;

//Main conver s i on func t i on
void F i l lEvent (TClonesArray *data , TClonesArray * t o f 1 d i g i t) ;

//Returns TDC Channel
s t a t i c UShort t ToGlobalChannel (UChar t HptdcId , UChar t channel) ;

p r i va t e :
//BmnTof1Raw2Digit i n i t f unc t i on (c a l l e d in BmnTof1Raw2Digit c on s t ru c t o r s)
void i n i t () ;
//RunIndex and PeriodIndex
i n t RunIndex , Per iodIndex ;

// Sto r e s the placement map
std : : map<std : : pa ir<UInt t , UChar t>, UInt t> PlacementMap ;

// Sto r e s the loaded main mapping
std : : map<UInt t , BmnTof1TDCParameters> TDCMap;

// I n s e r t s a va lue in the placement map

22

void p lmap inse r t (UInt t S e r i a l , UChar t Slot , UInt t TDCSerial) ;
} ;

B.6 myTof1Hit

Listing 4: myTof1Hit.h
c l a s s myTof1Hit : pub l i c TObject {

pub l i c :
// Constructors
myTof1Hit (UInt t plane , UInt t s t r i p , Double t time , Double t amp, Double t
pos) ;
myTof1Hit () ;

// Getters
UInt t GetPlane () ;
UInt t GetStr ip () ;
Double t GetTime () ;
Double t GetAmplitude () ;
Double t GetPos i t ion () ;

p r i va t e :
UInt t iP lane ; // Plane ID
UInt t i S t r i p ; // S t r i p number
Double t fTime ; // Mean time
Double t fAmplitude ; // Hit amplitude
Double t fPo s i t i o n ; // Hit p o s i t i o n

} ;

B.7 TofHitConverter

Listing 5: TofHitConverter.h
//Comparsion f un c t i o n a l c l a s s
c l a s s Tof1DigitPointerCompare {

pub l i c :
bool operator () (BmnTof1Digit* a , BmnTof1Digit* b) ;

} ;

c l a s s TofHitConverter {
pub l i c :

// Constructors
TofHitConverter () ;
TofHitConverter (std : : s t r i n g inF i l e , s td : : s t r i n g ou tF i l e) ;
void i n i t () ;

// S e t t e r s
void S e tD i g i tF i l e (std : : s t r i n g i nF i l e) ;
void Se tH i tF i l e (std : : s t r i n g ou tF i l e) ;

//Main func t i on s
//Convert the D i g i tF i l e to H i tF i l e

23

void ConvertDigitToHit (I n t t l ookat = −1) ;

//Convert one event
void F i l lEvent (TClonesArray* d i g i t , TClonesArray* hit , bool debug) ;

p r i va t e :
// Hi s to s
TH2D* h xy [3] ; //LR Histograms
TH2D* h xTy [3] ; //T−LR Histograms
TH2D* h xt [6] ; //XT Histograms

std : : s t r i n g d ig i tF i l ename ; // Input f i l ename
std : : s t r i n g hitFi lename ; //Output f i l ename

TFile * d i g i t F i l e ; // Input TFile
TFile * h i t F i l e ; //Output TFile
TTree* d i g i tTr e e ; // Input TTree
TTree* hi tTree ; //Output TTree

//Creates a h i t from two pa i red TDC Dig i t s
void c r ea t eH i t (TObject* where , const BmnTof1Digit* l e f t , const BmnTof1Digit*
r i g h t) ;

} ;

24

C Complete list of built debug histograms

On the left histograms for the uncorrected mapping are shown, on the right -
same histograms after correction. Histograms are labeled above them.

 Strip R
0 5 10 15 20 25 30 35 40 45

S
tr

ip
 L

0

5

10

15

20

25

30

35

40

45

Plane 1 LR

 Strip R
0 5 10 15 20 25 30 35 40 45

S
tr

ip
 L

0

5

10

15

20

25

30

35

40

45

Plane 1 LR

 Strip R
0 5 10 15 20 25 30 35 40 45

S
tr

ip
 L

0

5

10

15

20

25

30

35

40

45

Plane 2 LR

 Strip R
0 5 10 15 20 25 30 35 40 45

S
tr

ip
 L

0

5

10

15

20

25

30

35

40

45

Plane 2 LR

 Strip R
0 5 10 15 20 25 30 35 40 45

S
tr

ip
 L

0

5

10

15

20

25

30

35

40

45

Plane 3 LR

 Strip R
0 5 10 15 20 25 30 35 40 45

S
tr

ip
 L

0

5

10

15

20

25

30

35

40

45

Plane 3 LR

Strip R
0 5 10 15 20 25 30 35 40 45

S
tr

ip
 L

0

5

10

15

20

25

30

35

40

45

Plane 1 T-LR

Strip R
0 5 10 15 20 25 30 35 40 45

S
tr

ip
 L

0

5

10

15

20

25

30

35

40

45

Plane 1 T-LR

25

Strip R
0 5 10 15 20 25 30 35 40 45

S
tr

ip
 L

0

5

10

15

20

25

30

35

40

45

Plane 2 T-LR

Strip R
0 5 10 15 20 25 30 35 40 45

S
tr

ip
 L

0

5

10

15

20

25

30

35

40

45

Plane 2 T-LR

Strip R
0 5 10 15 20 25 30 35 40 45

S
tr

ip
 L

0

5

10

15

20

25

30

35

40

45

Plane 3 T-LR

Strip R
0 5 10 15 20 25 30 35 40 45

S
tr

ip
 L

0

5

10

15

20

25

30

35

40

45

Plane 3 T-LR

Strip
0 5 10 15 20 25 30 35 40 45

T
im

e,
 n

s

100

150

200

250

300

350

400

450

500

550

600

Plane 1 XT Side L

Strip
0 5 10 15 20 25 30 35 40 45

T
im

e,
 n

s

100

150

200

250

300

350

400

450

500

550

600

Plane 1 XT Side L

Strip
0 5 10 15 20 25 30 35 40 45

T
im

e,
 n

s

100

150

200

250

300

350

400

450

500

550

600

Plane 2 XT Side L

Strip
0 5 10 15 20 25 30 35 40 45

T
im

e,
 n

s

100

150

200

250

300

350

400

450

500

550

600

Plane 2 XT Side L

26

Strip
0 5 10 15 20 25 30 35 40 45

T
im

e,
 n

s

100

150

200

250

300

350

400

450

500

550

600

Plane 3 XT Side L

Strip
0 5 10 15 20 25 30 35 40 45

T
im

e,
 n

s

100

150

200

250

300

350

400

450

500

550

600

Plane 3 XT Side L

Strip
0 5 10 15 20 25 30 35 40 45

T
im

e,
 n

s

100

150

200

250

300

350

400

450

500

550

600

Plane 1 XT Side R

Strip
0 5 10 15 20 25 30 35 40 45

T
im

e,
 n

s

100

150

200

250

300

350

400

450

500

550

600

Plane 1 XT Side R

Strip
0 5 10 15 20 25 30 35 40 45

T
im

e,
 n

s

100

150

200

250

300

350

400

450

500

550

600

Plane 2 XT Side R

Strip
0 5 10 15 20 25 30 35 40 45

T
im

e,
 n

s

100

150

200

250

300

350

400

450

500

550

600

Plane 2 XT Side R

Strip
0 5 10 15 20 25 30 35 40 45

T
im

e,
 n

s

100

150

200

250

300

350

400

450

500

550

600

Plane 3 XT Side R

Strip
0 5 10 15 20 25 30 35 40 45

T
im

e,
 n

s

100

150

200

250

300

350

400

450

500

550

600

Plane 3 XT Side R

27

	Abstract
	Intro
	ToF-400 system brief description
	Front-end and readout electronics
	Aim of the work

	Realization and methods
	BmnRoot framework and class structure
	Mapping
	INL Correction
	Complete first conversion stage algorithm and determination of the signal amplitude
	Complete second conversion stage algorithm

	Conclusion
	References
	Appendices
	Corrected mapping
	Classes and structures description
	BmnTDCDigit
	BmnTof1Digit
	BmnTof1Raw2Digit
	BmnTof1TDCParameters
	BmnTof1Map2
	myTof1Hit
	TofHitConverter

	Complete list of built debug histograms

