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1 Intoduction

1.1 Nonlinear PCA
Image classification is one of the main spheres of machine learning. There are a

large number of methods and algorithms of the image classification problem using
artificial neural networks, such as:

- perceptron [1];
- adaptive resonance networks [2];
- radial basis function networks [3];
- convolution neural networks [4]
However, using of all image’s pixels as input vector makes the training process

too long and, at the same time, increases a number of interneural connections
which brings a bad convergence of cost function.

In this work the method of extracting image features is proposed to use those
features for the further classification. As it shown by M.Kramer [5], the nonlin-
ear principal component analysis (NLPCA), which is similar to the well-known
method of principal component analysis(PCA), using autoassociative neural net-
works(ANN) works better than the regular PCA, because it helps to find nonlinear
dependences in data. On the figure 1 the ANN model of NLPCA realization is
presented.

Figure 1: Autoaccosiative neural network for simultaneous determination of 𝑓
nonlinear factors, 𝜎 indicates sigmoidal nodes, * indicates sigmoidal or linear

nodes
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Bottle-neck layer 𝑇 extracts 𝑓 -principal components. The ability of the neural
network to fit arbitrary nonlinear functions depends on the presence of a hidden
layers with nonlinear nodes.

To train the combined network, the weights appearing in the networks repre-
senting are optimized so that the reconstructed outputs 𝑌 ′ match the inputs 𝑌
as closely as possible. Training is complete, when 𝐸, the sum of squared errors,
qiven in equation 1, is minimized [5]:

𝐸 =
𝑛∑︁

𝑝=1

𝑚∑︁
𝑖=1

(𝑌𝑖 − 𝑌 ′
𝑖 )𝑝

2 (1)

After training, the network has an ability to rescale input images into the smaller-
dimensional features space.

1.2 Deep Belief Network
Images are transformed to the eigenvectors (vectors of the principal compo-

nents) should be classified. To obtain maximum quality of the classification the
number of hidden layers should be increased. However it would inevitably cause
the bad convergence of the cost function. To solve this problem the deep belief
networks (DBN) were proposed[6].

DBNs are probabilistic generative models that are composed of multiple layers
of stochastic, latent variables [6]. The schema of the DBN is presented on the
figure 2.

Net runs a pretraining procedure, using latent restricted Boltzmann machines
(RBM) layers (see below). Discriminative fine-tuning can be performed by adding
a final layer of variables that represent the desired outputs and backpropagating
error derivatives [6].

RBMs and Contrastive Divergence

A Boltzmann machine is a type of stochastic recurrent neural network and
Markov Random Field, for which the bilinear energy function is determined [7]:

𝐸(𝑣, ℎ) = −
∑︁

𝑖∈𝑣𝑖𝑠𝑖𝑏𝑙𝑒

𝑎𝑖𝑣𝑖 −
∑︁

𝑗∈ℎ𝑖𝑑𝑑𝑒𝑛

𝑏𝑗ℎ𝑗 −
∑︁
𝑖,𝑗

𝑣𝑖ℎ𝑗𝑊𝑖,𝑗, (2)

where 𝑣𝑖, ℎ𝑗 are states of visible unit 𝑖 and hidden unit 𝑗, 𝑎𝑖 ,𝑏𝑗 are they biases
and 𝑊𝑖,𝑗 is the weight between them.

RBMs further restrict BMs to those without visible-visible and hidden-hidden
connections. On the figure 3 the comparison of BMs architectures is presented.
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Figure 2: Deep Belief Network model

Figure 3: Comparison of the BMs model’s architectures

The network assigns a probability to every possible pair of a visible and a
hidden vector via this energy function:

𝑝(𝑣, ℎ) =
1

𝑍
𝑒−𝐸(𝑣,ℎ), (3)

where the «partition function», 𝑍, is given by summing over all possible pairs of
visible and hidden vectors:

𝑍 =
∑︁
𝑣,ℎ

𝑒𝐸(𝑣, ℎ) (4)

The probability that the network assigns to a visible vector, 𝑣, is given by summing
over all possible hidden vectors:

𝑝(𝑣) =
1

𝑍

∑︁
ℎ

𝑒𝐸(𝑣,ℎ) (5)

The probability that the network assigns to a training image can be raised by
adjusting the weights and biases to lower the energy of that image and to raise the
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energy of other images, especially those that have low energies and therefore make
a big contribution to the partition function. The derivative of the log probability
of a training vector:

𝜕 log 𝑝(𝑣)

𝜕𝑤𝑖,𝑗
= ⟨𝑣𝑖ℎ𝑗⟩𝑑𝑎𝑡𝑎 − ⟨𝑣𝑖ℎ𝑗⟩𝑚𝑜𝑑𝑒𝑙, (6)

where the angle brackets are used to denote expectations under the distribution
specified by the subscript that follows. This leads to a very simple learning rule
for performing stochastic steepest descent in the log probability of the training
data, where 𝜂 is a learning rate:

∆𝑤𝑖,𝑗 = 𝜖
(︀
⟨𝑣𝑖ℎ𝑗⟩𝑑𝑎𝑡𝑎 − ⟨𝑣𝑖ℎ𝑗⟩𝑚𝑜𝑑𝑒𝑙

)︀
(7)

Because there are no direct connections between hidden units in an RBM, it
is very easy to get an unbiased sample of ⟨𝑣𝑖ℎ𝑗⟩𝑑𝑎𝑡𝑎. Given a randomly selected
training image, 𝑣, the binary state, ℎ𝑗, of each hidden unit is set to 1 with prob-
ability [Eq.8]. And it is also very easy to get an unbiased sample of the state of a
visible unit, given a hidden vector [Eq.9].

𝑝(ℎ𝑗 = 1|𝑣) = 𝜎

(︃
𝑏𝑗 +

∑︁
𝑖

𝑣𝑖𝑤𝑖,𝑗

)︃
(8)

𝑝(𝑣𝑖 = 1|ℎ) = 𝜎

(︃
𝑎𝑖 +

∑︁
𝑗

ℎ𝑗𝑤𝑖,𝑗

)︃
, (9)

where 𝜎 = 1/(1 + 𝑒𝑥𝑝(−𝑥)).
Getting an unbiased sample of ⟨𝑣𝑖ℎ𝑗⟩𝑚𝑜𝑑𝑒𝑙, however, is much more difficult. It

can be done by starting at any random state of the visible units and performing
alternating Gibbs sampling for a very long time [8].This procedure is called Markov
chain [Fig.4].

Figure 4: Sampling in an RBM
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Such approach is impossible realize, however, there is a «trick» to speed up
sampling process – contrastive divergence(CD) [9] learning algorithm:

- since we eventually want 𝑝(𝑣) ≈ 𝑝𝑡𝑟𝑎𝑖𝑛(𝑣), we initialize the Markov chain
with a training example;

- CD does not wait for the chain to converge. Samples are obtained after only
k-steps of Gibbs sampling. In practice, 𝑘 = 1.

1.3 Datasets
As a database for training and testing networks, two well-known datasets will

be used:
- «MNIST handwritten digit database»;
- «FERET face database».
MNIST handwritten digits database includes 70 thousands of handwritten dig-

its images, which format is 28 × 28 pixels [Fig.5]

Figure 5: MNIST handwritten database sample

Face database FERET includes of 400 people’s faces photos (40 people to 10
photos for each) taken from different angles, which format is 55×45 pixels [Fig.6].

Figure 6: FERET face database sample
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1.4 The aim of the work
The aim of this work is to develop a scientific programme complex, which

will help to obtain maximum accuracy on the classifications made for both test
sets of using images databases. This program should include two artificial neural
networks:

- Autoassosiative neural network for the implementing Nonlinear PCA;
- Deep Belief Network for the final classification.
Tune the model’s hyperparameters to increase accuracy and test complete

models on two datasets. Make a comparison of the results of classification using
different types of networks: DBN and the regular perceptron with one hidden
layer.

2 Methods and realization

2.1 The problem of convergence
Deep Learning is equal to many hidden layers in the artificial neural network.

It means that the network be affected by the problem named «vanishing and
exploding gradients» [10]. To avoid this problem in the work some techniques will
be used.

Autoencoder

Autoassociative neural network(ANN) that were used for simultaneous deter-
mination of nonlinear factors has three hidden layers. It means they are also
affected by this problem. Therefore network training with the backpropagation
algorithm brings a bad convergence. On the figure 7 there is an example of the
autoencoder’s output. Tied weights and the Adam Optimization [11] were used
to solve this issue.

Figure 7: Example of the autoencoder’s output that was trained with the
backpropagation and regular weights
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Regular formula for a feed forward neural network with a single hidden layer:

𝑓(𝑥) = 𝜎2 (𝑏2 + 𝑊2𝜎1(𝑏1 + 𝑊1𝑥)) (10)

The problem of this architecture is that, since the weight matrices 𝑊1 and 𝑊2

are independent, the autoencoder can easily learn the identity given a big enough
hidden layer. A way around this is to use a tied weights which has the formula:

𝑓(𝑥) = 𝜎2
(︀
𝑏2 + 𝑊 𝑇

1 𝜎1(𝑏1 + 𝑊1𝑥)
)︀

(11)

Here we set 𝑊2 = 𝑊 𝑇
1 eliminating a lot of degrees of freedom.

Using of this technique we the global minimum of the cost function 1. Recov-
ered by autoencoder from 64 nonlinear principal components images are shown on
the figure 8.

Figure 8: Images from the FERET database recovered with the autoencoder
from 64 nonlinear principal components

Deep Neural Network

The main reason of using DBN in the given work is that this network does
not suffer from «vanishing and exploding gradients» problem. But some learn-
ing algorithms (in particular unsupervised learning algorithms such as algorithms
for training RBMs by approximate maximum likelihood) are problematic in this
respect because we cannot directly measure the quantity that is to be optimized
(e.g. the likelihood) because it is intractable. On the other hand, the expected
denoising reconstruction error is easy to estimate (by just averaging the denoising
error over a validation set) [12]. Furthermore, a training time of the DBNs is too
long. To speed up the training time and to avoid the convergence problem a Deep
Neural Network(DNN) with weights normalized initialization [10] will be used.

Consider a weight matrix 𝑊 ∈ R𝑚×𝑛 where each element was drawn from
an independent and identically distributed(IID) Gaussian with variance 𝑉 𝑎𝑟(𝑊 ).
And there is no correlation between input and weights and both are zero-mean.
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If we consider one filter (row) in 𝑊 , say 𝑤, then the variance of the output signal
over the input signal is:

𝑉 𝑎𝑟(𝑊 𝑇𝑥)

𝑉 𝑎𝑟(𝑋)
=

∑︀𝑁
𝑛 𝑉 𝑎𝑟(𝑤𝑛𝑥𝑛)

𝑉 𝑎𝑟(𝑋)
=

𝑛𝑉 𝑎𝑟(𝑊 )𝑉 𝑎𝑟(𝑋)

𝑉 𝑎𝑟(𝑋)
= 𝑛𝑉 𝑎𝑟(𝑊 ) (12)

It is reasonably to keep variance of the signal going forward in the network to
remain the same, thus it would be advantageous if 𝑛𝑉 𝑎𝑟(𝑊 ) = 1.

So the formula of the normalized initialization will be:

𝑊 ∼ 𝑈

[︃
−

√
6

√
𝑛𝑗 + 𝑛𝑗+1

,

√
6

√
𝑛𝑗 + 𝑛𝑗+1

]︃
, (13)

where 𝑈 [−𝑎, 𝑎] is the uniform distribution in the interval (−𝑎, 𝑎) and the n is the
size of the previous layer(the number of columns of 𝑊 ).

The DNN will be much faster than DBN, because of lack of a pretraining
procedure(RBM hidden layers). After updating network models with these tech-
niques we give the first predictions on the test set which consists of two parts:
handwritten digits and faces. The result is shown on the table 1.

Table 1: Comparison of the different estimators
Perceptron Deep Neural Network Deep Belief Network

MNIST 0.7977 0.8713 0.8482
FERET 0.8750 0.9583 0.9416

As we can see the results of the predictions are good and an accuracy of the
perceptron with one hidden layer is already lower than in the deep learning models.
But we can improve these results if will use cross validation for a hyperparameter
optimization.

2.2 Model selection
Firstly, we need to choose an optimal number of principal components for a

data rescaling. And a boundary of the number of principal components is equals
to 250. It prevents the model from a growing complexity. On the figure 9 is shown
the dependence of the accuracy on the number of neurons in the bottle-neck layer.

As we can see on the figure 9, the optimal number of the components begins
with 60 components. Now lets take a look on how many epochs is needed to train
the network with the different numbers of principal components.
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Figure 9: Dependence of the accuracy on the number of neurons in the
bottle-neck layer

Figure 10: Dependence of the epoch’s number on the number of neurons in the
bottle-neck layer

The graphic 10 shows that the epochs number inversely proportional to the
bottle-neck neurons number. The main reason is the insufficient number of neurons
for the input data reconstruction. The curve stabilizes around 70 neurons.

First two tests showed that the optimal components number lies between 50
and 200. The figure below displays training time dependence on the bottle-neck
layer neurons number. It is worth noting that the epochs number and training
time value are not the same things. This test proves that the optimal value is
around 70-80 neurons in the bottle-neck layer.
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Figure 11: Dependence of the training time on the number of neurons in the
bottle-neck layer

Experiments with different numbers of principal components showed that 64 is
a good choice, because it helps to ensure accuracy value around 95 percent and, as
it said before, great number of neurons increases the model complexity. Therefore
the number of the principal components which is chosen is 64. A final model
of the autoencoder consists of 5 layers: input and output layers with the same
dimensions(length of the input vector), mapping and demapping layers with 256
neurons per layer and the bottle-neck layer, which number of the neurons equals
to 64.

DNN and DBN tuning

A good quality of deep architectures is that they can model high-level abstrac-
tions in data that allows to obtain high prediction quality. But the model can be
easy overfitted if wrong parameters were choosed.

If the model is not complex enough, it may not be powerful enough to captur
all of the useful information necessary to solve a problem. However, if the model
is very complex (especially if there is a limited amount of data), it is suffer from
overfitting. Deep learning takes the approach of solving very complex problems
with complex models and taking additional countermeasures to prevent overfitting
such as: dropouts and regularization. But lets tune the model complexity without
this aid methods.

And the first is necessary to choose the number of the hidden layers. On the
figure 12 above we can see two curves that represent the dependence between the
accuracy and the number of the hidden layers. As it is shown the best choice
is two hidden layers. So we have chosen the hidden layers number, it’s time to

11



Figure 12: Dependence of the accuracy on the number of the hidden layers

determine an optimal combination of the hidden neurons per layer.
On the figure 13 the accuracy distribution dependence on the number of neu-

rons in the hidden layers is showed. On axes we can see the number of neurons in
the first hidden layer, and on the vertical axis - the number of neurons in the sec-
ond hidden layer. But it is not clear on this plot which combination of the hidden
neurons is better. Therefore lets print a table [2] with the best combinations and
their accuracies. As we can see in the table, two last combinations bring us the
same accuracy, but 100 in the second layer better than 180. Thus, the optimal
numbers of the hidden neurons per layer are 300 and 100 respectively.

Figure 13: Accuracy distribution depends on the number of neurons in the
hidden layers
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Table 2: 10 best combinations of the hidden neurons numbers
Neurons 1st layer Neurons 2nd layer Cross-validation accuracy

200 230 0.939286
250 300 0.939286
260 210 0.939286
300 160 0.939286
300 200 0.939286
300 100 0.942857
300 180 0.942857

The other hyperparameters were tuned using the grid search cross-validation
(see scikit-learn.org). The following chapter presents the results of testing the
final tuned models.

2.3 Testing
Since we set up the neural network models, it is the time to test them. Firstly,

lets take a look, how good the ANN can rescale the input data from the 64
nonlinear principal components. In figures 8,14 are shown the examples of the
data rescaling.

Figure 14: Images from the MNIST database recovered with the autoencoder
from 64 nonlinear principal components

The main test is that how the model will rescale the input data with the
different percent of noise on the images. In table 3 we can see the example of the
noisy images compared with the original ones.

Generally, to clear images from the noise the ANN had to be trained to mini-
mize the sum of square errors between the output image, produced by feed forward
noisy image through the net, and the clear image that noisy image refers to. Even-
tually, the network will learn how to clear images(denoising autoencoder). The
ANN in this work doesn’t have this quality, but nevertheless it can recover even
the noisy images.
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Table 3: Example of the noisy images

On the figures 15, 16 below the examples of the recovered noisy images are
shown.

Figure 15: Noisy images from the FERET database recovered with the
autoencoder from 64 nonlinear principal components

Figure 16: Noisy images from the MNIST database recovered with the
autoencoder from 64 nonlinear principal components
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Classifiers

The images rescaled to the 64-dimensional eigenvectors were classified by three
different artificial neural networks:

- perceptron with one hidden layer;
- deep neural network with random initialized weights;
- deep belief network.
The example of the incorrect classifier predictions (as classifier the DBN were

used) [Fig.17]. It should be pointed out, the classification of the handwritten digits
is a very difficult task even for the human.

Figure 17: Incorrect predictions on the MNIST test set

Table 4 contains the results of the testing different classifiers with the two
datasets:

- MNIST handwritten digits dataset;
- FERET faces datases.
The results are very good. Deep learning techniques provide to obtain the 100

percent accuracy on the faces database and the 92 –98 percent accuracy on the
handwritten digits dataset. And if it is not a problem for the human to differ
faces, then the DBN had made better predictions, even in the case of digits, than
the human can.

Table 4: Final comparison of the different estimators
Perceptron Deep Neural Network Deep Belief Network

MNIST 0.7977 0.9285 0.9839
FERET 0.8750 1.0000 1.0000
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3 Conclusion
In this work the programme complex, consists of three neural networks: ANN

for the NLPCA realization, DNN and DBN classifiers, - for the image recognizing
problem was developed. Significant steps to achieve the goal of high predictions
accuracy were done:

- the network models were choosed;
- DNN classifier was added to compare with DBN;
- the convergence problem was solved;
- all hyperparameters were tuned with grid search cross-validation method;
- models were tested and the classifiers comparison table was presented.
The obtained results are quite satisfactory. Proposed model allowed to achieve

the 100 percent accuracy on the FERET database and the best results for the
MNIST handwritten digits dataset is 98.39%, which the DBN provides, versus 79%
with perceptron. It proves that deep learning deals with classification tasks much
better than the regular machine learning algorithms due to its capability to define
complex nonlinear dependencies in data.

Final comparison shows that DBN is the best model, but, it worth to note,
that DNN model trains much faster even using contrastive divergence algorithm
for the RBMs layers pretraining.

The developed system can be improved to cope with noisy images classification
and it can be speeded up using GPUs.
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