

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Laboratory of Information Technologies

FINAL REPORT ON THE

SUMMER STUDENT PROGRAM

Development of a storage and visualization
system for usage statistics regarding JINR's

cloud resources

Supervisor:

Nikolay Kutovskiy

Student:

Ruslan Gainanov, Russia
Saint Petersburg National
Research University of
Information Technologies,
Mechanics and Optics

Participation period:

July 03 – August 27

Dubna, 2016

2

Contents

Abstract .. 3

Description of current state... 3

The choice of the new solution ... 6

The architecture of component interaction.. 8

Description of the developed program .. 9

Collect the data about resource usage from OpenNebula 9

Writing data to InfluxDB .. 10

Auxiliary classes .. 10

Description of the database... 12

Description of the database scheme .. 12

Description of developed module for visualization of statistics 13

Dashboard of statistics of resources distribution over clusters 14

Dashboard of statistics of resources distribution over departments 17

Conclusion ... 18

References .. 18

Acknowledgement.. 19

Appendix A .. 20

Appendix B .. 21

Appendix C .. 27

3

Abstract

Cloud technologies are already wide spread among IT industry and start to

gain popularity in academic field. There are several fundamental cloud models:

infrastructure as a service (IaaS), platform as a service (PaaS), and software as a

service (SaaS). The document describes the system of obtaining and visualization

statistics from cloud infrastructure deployed at the Laboratory of Information

Technologies of the Joint Institute for Nuclear Research (LIT JINR).

Description of current state

The Joint Institute for Nuclear Research has a cloud infrastructure. It is

realized by the fellows of the Laboratory of Information Technologies (LIT).

Application of cloud technologies is suitable for the solving of various classes of

research tasks. The JINR cloud is based on IaaS model [1]. In that model, a third-

party provider (in the JINR hierarchy it is datacenter of LIT) hosts hardware,

software, servers, storage and other infrastructure components on behalf of its users.

IaaS providers also host user’s applications and handle tasks including system

maintenance, backup and resiliency planning. IaaS platforms offer highly scalable

resources, which can be adjusted on-demand. This makes IaaS well suited for

workloads, which are temporary, experimental or change unexpectedly. Other

characteristics of IaaS environments include the automation of administrative tasks,

dynamic scaling, desktop virtualization and policy-based services.

Data center administrators have a long to-do list when it comes to

infrastructure monitoring. From server and equipment monitoring – and in some

cases, mainframe monitoring – it is a practice that is often difficult to juggle,

especially if you work in a large data center like the LIT JINR. However, monitoring

is an essential task. By obtaining the needed data, one can increase security and

scalability, efficiently automate and better align resources with capacity needs.

The JINR cloud service is currently based on OpenNebula software version

4.12. The transition to new version 5.0 is planning in the nearest future. There are

4

many changes in the OpenNebula version 5.0 such as fixed critical errors,

improvements in user interface and ways of interacting with the equipment [2]. The

developers changed inner mechanisms of storing data on the state of physical

resources and the problem of incompatibility of the module being used for

visualization of the statistics was found.

The used module for visualization of the statistics is implement in the form of

the web page in the main window of the management panel of OpenNebula web-

inteface called “Sunstone” [3]. The module consists of a set of pie charts displaying

the percentage of the total and allocated amount of resources of their total value by

clusters (Fig. 1). Moreover, there is the table view of the statistics (Fig. 2).

A pie chart is a circular statistical graphic, which is divided into slices to

illustrate numerical proportion. The arc length of each slice in a pie chart is

proportional to the quantity it represents.

Figure 1 – The current state of the module of statistics of resource distribution over

clusters

5

Figure 2 – Table view of the module of statistics of the resource distribution over

clusters

In addition, for resource distribution over clusters the managers need the

statistics of department resource usage. Such statistics is represented in the pie charts

and the table view (Fig. 3, 4)

Figure 3 – The current state of the module of statistics of resource distribution over

departments

Figure 4 – Table view of the module of statistics of the resource distribution over

departments

6

Aforementioned transition to the new version of OpenNebula makes problem

of usage the module of statistics designed in JINR. In conjunction with this it was

necessary to modernize the current statistics module and transfer it to an external

service with the aim of independence from internal mechanisms and to guarantee

successful upgrades OpenNebula platform in the future. It was suggested to store the

analyzed indicators in a database, which allows to analyze their changes over time

and to obtain the dynamics for the selected period.

The choice of the new solution

To visualize the same statistics on the distribution of resources of the JINR

cloud the Grafana system was chosen. It provides a user-friendly interface through

a web browser displaying various kinds of statistical metrics in real-time, gives

flexible and functional ways to customize the layout of charts and graphs [4].

Grafana is an open source feature rich metrics dashboard and graph editor for

metrics databases. It provides a powerful and elegant way to create, share, and

explore data and dashboards from disparate metric databases. It supports a wide

variety of graphing options for ultimate flexibility. Grafana supports authenticated

login and a basic role based access control implementation. Grafana is deployed as

a single software installation. It includes a web-server and presentation logic. It is

written in Go and Javascript.

Grafana does not store or collect data. For such purpose one can use such

databases as Graphite, Elasticsearch, Prometheus, InfluxDB, OpenTSDB and

KairosDB. Among them, the majority is time-series databases (TSDB). According

to «DB Engines», the most popular database of this type is InfluxDB [5].

InfluxDB is an open source database written in Go specifically to handle time

series data with high availability and high performance requirements. InfluxDB is

meant to be used as a backend storage for many use cases involving large amounts

of timestamped data, including DevOps monitoring, application metrics, IoT sensor

data, and real-time analytics. It has a simple, high performing write and query

HTTP(S) APIs. Custom high performance datastore is written specifically for time

7

series data. The TSM engine allows a high ingest speed and data compression.

Expressive SQL-like query language is tailored to query aggregated data easily. All

of the listed features that InfluxDB currently supports make it a great choice for

working with time series data.

InfluxDB has a simple and functional libraries for data transfer – influxdb-

ruby [6]. It is used for development in the new statistics module.

OpenNebula was designed to be easily adapted to any infrastructure and easily

extended with new components. The result is a modular system that can implement

a variety of cloud architectures and can interface with multiple services (Fig. 5).

Figure 5. The cloud architectures and the system interfaces of OpenNebula

System interfaces expose the full functionality of OpenNebula and are used to

adapt and tune the behavior of cloud to the target infrastructure. The XML-RPC

interface is the primary interface, exposing all the functionality for interaction with

OpenNebula daemon. Any resource, including VMs, virtual networks, images,

users, hosts and clusters is controlled and managed through the XML-RPC interface.

XML-RPC works by sending an HTTP request to a server supporting that

protocol. The client in that case is typically a software which needs to call a single

8

method on the remote system. Multiple input parameters can be passed to the remote

method, one value is returned. The parameter types allow nesting of parameters into

maps and lists, thus larger structures can be transported. Therefore, XML-RPC can

be used to transport objects or structures both as input and as output parameters.

The response that contains the current data about cloud resources is

standardized and it was not changed with the change of version of OpenNebula.

It was decided to use the Ruby programming language for the storage of data.

That is why a requested XML-document with statistics will be carried out with of

Ruby-module XML-RPC::Client [7], and document processing – with help of the

Nokogiri library [8].

The architecture of component interaction

According to selected technologies the following architecture for collection,

storage and visualization was designed (Appendix A, Fig. A.1). The User can pass

to the server #1 (Server #1) and #2 (Server #2) on their URL-address through a

Browser. Following the Server #1, he can interact with the Grafana (view graphs,

charts and tables obtained on the basis of data from InfluxDB). If the User typed the

address of Server #1, then he will be able to manage cloud resources and virtual

machines.

Ruby scripts for collecting statistics were developed. A cron job runs that

scripts within certain period of time. These scripts collect statistics from

OpenNebula through XML-RPC, convert the response into the structured format and

write to InfluxDB via HTTP API.

Hence the following tasks should be resolved:

1) to develop a program for collecting, converting and storing statistical data;

2) to design and configure database;

3) to design and develop a module for statistical data visualization.

9

Description of the developed program

The main logics of the program is implemented in the Ruby-scripts. Following

the standards of object-oriented programming, all functions are presented in the

following classes:

1. The class for collect the data about resource usage from OpenNebula.

2. The class for write the prepared data to InfluxDB.

3. Auxiliary classes.

The main ones are considered below.

Collect the data about resource usage from OpenNebula

The class OneParser collects and prepares data from OpenNebula (List. 1).

The full listing are shown in Appendix B (List. B.1).

Listing 1. Description of class OneParser
class OneParser

 def initialize(hostname)

 def get_system_version

 def get_clusterpool_info

 def get_host_info host

 def get_userpool_info

 def get_user_info user

end

The creation of object of this class is in a file main.rb which consistently

invokes methods to obtain statistics on the clusters, departments and users (List. 2).

The processing of the XML-document receiving from OpenNebula occurs in these

methods.

Listing 2. Working with class OneParser
one = OneParser.new(ONE_HOST)

clusters = one.get_clusterpool_info

clusters.each do |c|

 c.hosts.each do |h|

 one.get_host_info h

 end

end

departments, users = one.get_userpool_info

users.each do |u|

 one.get_user_info u

10

 if (!(u.lab.to_s.empty?)) &&

(departments.include?(u.lab.to_s))

 departments[u.lab.to_s].add_user u

 end

end

Writing data to InfluxDB

The class Influx is responsible for recording data (List. 3). The methods,

which are invoked from the main file (List. 4), make sending the read data to

InfluxDB. The full listing is showed in Appendix B (List B.2).

Listing 3. Description of class Influx
class Influx

 def initialize(hostname)

 def write_clusters_info clusters

 def write_departments_info departments

end

Listing 4. Working with class Influx
inf = Influx.new(INFLUXDB_HOST)

inf.write_clusters_info(clusters)

inf.write_departments_info(departments.values)

Auxiliary classes

To explain that classes one needs to briefly describe a concept of virtualization

and some terms in that fields.

Each department has employees. They need some virtual resources. The

employee has an user account on the cloud service. User creates virtual machines

(VMs) which runs on the host (physical computer that located at a datacenter). To

run VMs some physical resources of host (number of CPU cores, amount of RAM

and disk space) are allocated. The VM consumes them in active state. The set of

hosts are grouped into so called cluster which can has a centralize control.

In this way, there is a need for the following classes:

 Class Host (List. 5) is for a physical computer;

 Class Cluster (List. 6) is for a group of hosts;

11

 Class User (List. 7) is for a user account;

 Class Department (List. 8) is for a department that includes employees.

Listing 5. Description of class Host
class Host

 attr_accessor :id, :name,

 :cpu_total, :cpu_real, :cpu_allocated,

 :ram_total, :ram_real, :ram_allocated,

 :disk_total, :disk_real

 def initialize id

end

Listing 6. Description of class Cluster
class Cluster

 attr_accessor :id, :name,

 :cpu_total, :cpu_real, :cpu_allocated,

 :ram_total, :ram_real, :ram_allocated,

 :disk_total, :disk_real, :hosts

 def initialize id

 def add_host h

end

Listing 7. Description of class User
class User

 attr_accessor :id, :name, :gname, :lab,

 :cpu_real, :cpu_allocated,

 :ram_real, :ram_allocated,

 :disk_real, :disk_allocated,

 :vms_real, :vms_allocated

 def initialize id

end

Listing 8. Description of class Department
class Department

 attr_accessor :name,

 :cpu_real, :cpu_allocated,

 :ram_real, :ram_allocated,

 :disk_real, :disk_allocated,

 :vms_real, :vms_allocated

 def initialize name

 def add_user u

end

The classes Host (List. 5) and Cluster (List. 6) make the necessary

calculations of the following parameters:

 total numbers of physical processors (CPU) (attribute cpu_total);

12

 number of CPU allocated to users (attribute cpu_allocated);

 real usage of CPU (attribute cpu_real);

 total amount of RAM (attribute ram_total);

 the amount of RAM allocated to users (attribute ram_allocated);

 real usage of RAM (attribute ram_real);

 total amount of disk space (attribute disk_total);

 real usage of disk space (attribute disk_real);

Unlike the classes Host and Cluster, classes User (List. 7) and Department

(List. 8) have additional parameters as:

 total numbers of created virtual machines (attribute vms_real);

 quantity of the allocated places under the created virtual machines (attribute

vms_allocated)

Description of the database

Aforementioned InfluxDB is used for the long-term storage. It is intended for

storing time-series data which is nothing more than a sequence of data points,

typically consisting of sequential measurements made from the same source over a

time interval [9].

The measurement is a part of InfluxDB’s structure that describes data stored

in the associated fields. Measurements are strings. Measurement can have the tag

value or a field value. Tag values are strings and metadata is stored then. Tag values

are indexed and so increases query performance.

Description of the database scheme

In accordance with the described requirements the next tables are designed

(Fig. 6):

 rd_cluster – for storage of measurements of resources used by clusters;

 rd_department – for storage of measurements of resources used by

departments;

13

rd_cluster

time

Cluster [tag]

disk_total

cpu_total

cpu_allocated

cpu_real

ram_total

ram_allocated

ram_real

disk_real

rd_department

time

Department [tag]

disk_allocated

cpu_allocated

cpu_real

ram_allocated

ram_real

vms_real

disk_real

vms_allocated

Figure 6 – The database scheme

Description of developed module for visualization of statistics

After creating and configuring database and running scripts to collect and

store statistics it was necessary to develop charts, graphs and tables to display it for

managers.

Two panels to display resource usage statistics has been developed:

 resource distribution over clusters;

 resource distribution over departments;

Dashboards (or panel) are a collection of widgets that give an overview of the

reports and needed metrics. Dashboards let monitor many metrics at once, so one

can quickly check the health of accounts or see correlations between different

reports.

The process of creating each of the panels is shown below.

14

Dashboard of statistics of resources distribution over clusters

The request (List. 9) fills the table (Table 1) that displays the last state about

resources used in each cluster.

Listing 9. Request the latest data of clusters
SELECT LAST("cpu_total") / 100 AS "Total CPU, cores",

 LAST("cpu_allocated") / 100 AS "Allocated CPU, cores",

 LAST("cpu_allocated") / LAST("cpu_total") *100 AS

"Allocated CPU, %",

 (LAST("cpu_total")-LAST("cpu_allocated")) / 100 AS "Free

CPU, cores",

 (LAST("cpu_total")-

LAST("cpu_allocated"))/LAST("cpu_total")*100 AS "Free CPU, %",

 LAST("cpu_real") / LAST("cpu_total") *100 AS "Real CPU

usage, %",

 LAST("ram_total") /1024/1024 AS "Total RAM, GB",

 LAST("ram_allocated")/1024/1024 AS "Allocated RAM, GB",

 LAST("ram_allocated") / LAST("ram_total") *100 AS

"Allocated RAM, %",

 (LAST("ram_total")-LAST("ram_allocated"))/1024/1024 AS

"Free RAM, GB",

 (LAST("ram_total")-

LAST("ram_allocated"))/LAST("ram_total")*100 AS "Free RAM, %",

 LAST("ram_real") / LAST("ram_total") *100 AS "Real RAM

usage, %"

FROM "rd_cluster"

WHERE $timeFilter

GROUP BY "Cluster" fill(NONE)

Table 1. Resource distribution over clusters (table view)

C
lu

st
er

T
o
ta

l
C

P
U

,

co
re

s

A
ll

o
ca

te
d

C
P

U
,

co
re

s

A
ll

o
ca

te
d

C
P

U
,

%

F
re

e
C

P
U

,

co
re

s

F
re

e
C

P
U

,

%

R
ea

l
C

P
U

u
sa

g
e,

 %

T
o
ta

l

R
A

M
,

G
B

A
ll

o
ca

te
d

R
A

M
,

G
B

A
ll

o
ca

te
d

R
A

M
,

%

F
re

e
R

A
M

,

G
B

F
re

e
R

A
M

,

%

R
ea

l
R

A
M

u
sa

g
e,

 %

36-ovz-

pub
48 71 148 -23 -48 3.0 65.50 101.00 154 -35.50 -54 28.3

36-kvm-
pub

12 8 67 4 33 8.8 23.04 12.00 52 11.04 48 41.2

33-ovz-

pub
52 56 108 -4 -8 4.6 148.51 91.43 62 57.09 38 12.3

33-ovz-
priv

32 24 75 8 25 0.4 61.22 35.00 57 26.22 43 10.3

33-kvm-

priv
24 16 67 8 33 1.2 46.08 18.50 40 27.58 60 28.2

22х-

ovz-

NOvA

0 0 0 0 0 0 0 0 0 0 0 0

22х-
kvm-

NOvA

100 1 1 99 99 0.1 234.51 0.50 0 234.01 100 1.3

15

22x-

openvz
56 29 52 27 48 0.1 251.06 51.00 20 200.06 80 1.5

Total 324 205 63 119 37 1.7 829.93 309.43 37 520.50 63 8.7

The Table 2 contains other requests and graphical forms based on obtained

the results.

Table 2. The forms for displaying resource distribution

Description Request Form

Display

statistics of

CPU usage for

selected

cluster on

percentage

form

SELECT

(LAST("cpu_allocated")/

LAST("cpu_total") *100)

FROM "rd_cluster"

WHERE "Cluster" =~

/^$selected_cluster$/

 AND $timeFilter

GROUP BY

TIME($interval)

fill(NULL)

Display

statistics of

RAM usage

for selected

cluster on

percentage

form

SELECT

(LAST("ram_allocated")/

LAST("ram_total") *100)

FROM "rd_cluster"

WHERE "Cluster" =~

/^$selected_cluster$/

 AND $timeFilter

GROUP BY

TIME($interval)

fill(NULL)

16

Display

statistics of

distribution

CPUs over

clusters

SELECT

(LAST("cpu_total")/100)

FROM "rd_cluster"

WHERE $timeFilter

 AND CLUSTER !~ "/---

Total for all clusters-

--/"

GROUP BY "Cluster"

Display

statistics of

distribution

RAM over

clusters

SELECT

LAST("ram_total")

 /1024/1024

FROM "rd_cluster"

WHERE $timeFilter

 AND CLUSTER !~ "/---

Total for all clusters-

--/"

GROUP BY "Cluster"

Line graph allows to estimate changes of the resources usage. For example,

Fig. 7 shows the change of the number of CPUs over clusters which allocated to

users. This graph is obtained from a query, which is listed in List. 10.

Figure 7 – Request the data about allocated processors

Listing 10. Request the data about processors
SELECT (mean("cpu_allocated")/100)

FROM "rd_cluster"

WHERE $timeFilter

 AND "Cluster" =~ /^$selected_cluster$/

GROUP BY TIME($interval),

 "Cluster" fill(NULL)

17

Similarly, graphs and charts for undocumented metrics are created. The result

is a full dashboard shown on the Fig. C.1 in Appendix C.

Dashboard of statistics of resources distribution over departments

The request (List. 11) fill the table (Table 3) that displays the last state about

resources used in each cluster.

Listing 11. Request the latest data on departments
SELECT LAST("cpu_allocated") AS "Allocated CPU, cores",

 LAST("cpu_real") AS "Real CPU usage, cores",

 LAST("cpu_real") / LAST("cpu_allocated") *100 AS "Real

CPU usage, %",

 LAST("ram_allocated")/1024 AS "Allocated RAM, GB",

 LAST("ram_real") /1024 AS "Real RAM usage, GB",

 LAST("ram_real") / LAST("ram_allocated") *100 AS "Real

RAM usage, %",

 LAST("vms_allocated") AS "Allocated VMs",

 LAST("vms_real") AS "Real VMs usage",

 LAST("vms_real") / LAST("vms_allocated") *100 AS "Real

VMs usage, %"

FROM "rd_department"

WHERE $timeFilter

GROUP BY "Department" fill(NONE)

Table 3. Resource distribution over departments (table view)
Department Allocated

CPU,

cores

Real

CPU

usage,

cores

Real

CPU

usage,

%

Allocated

RAM,

GB

Real

RAM

usage,

GB

Real

RAM

usage,

%

Allocated

VMs

Real

VMs

usage

Real

VMs

usage,

%

VBLHEP 33 27 81.8 47.00 41.00 87.2 8 4 50

NICA 7 6 85.7 7.00 6.93 99.0 3 2 66.7

LIT 320 173 54.1 571.06 246.50 43.2 245 116 47.3

FLNP 2 0 0 4.00 0 0 1 0 0

EGI_Federated_Cloud 1 0 0 1.00 0 0 1 0 0

DLNP 24 17 70.8 44.00 33.00 75.0 12 5 41.7

CERN 10 1 10.0 18.00 2.00 11.1 10 1 10.0

BES3 5 5 100.0 10.00 5.00 50.0 5 5 100.0

---Total--- 402 229 57.0 702.06 334.43 47.6 285 133 46.7

The result is a full dashboard about the resource distribution over departments

which is shown on the Fig. C.2 in Appendix C.

.

18

Conclusion

Thus, the developed system allows to store the JINR cloud infrastructure

usage information in a long-term mode, give the ability to retrieve usage statistics

for a long period of time and makes assessment of actual cloud resources usage. In

addition to that, one can evaluate an actual use of the cloud resources during certain

period of time. The designed charts and graphs showing statistics in a convenient

format can be used for annual reports of the Laboratory of Information

Technologies. All technologies and tools used in that development are free open

source software supporting and developing by a large community of users.

The developed system utilizes OpenNebula XML-RPC which is stable and is

not changed over OpenNebula releases It makes developed service independent of

OpenNebula version and is not blocking issue any longer for JINR cloud software

upgrades.

References

1. N. Balashov, A. Baranov, V. Korenkov, N. Kutovskiy, A. Nechaevskiy,

R.Semenov. JINR Cloud Service: Status and Perspectives. Trudy Instituta

sistemnogo programmirovania RAN [Proceedings of the Institute for system

programming of the RAS], 2015, vol. 27, issue 6, pp. 345-354

2. OpenNebula Release Notes 5.0 / OpenNebula Project

URL: http://docs.opennebula.org/5.0/intro_release_notes/release_notes

3. JINR: OpenNebula Sunstone – Cloud Operations Center

URL: https://cloud.jinr.ru/

4. Grafana - Beautiful Metrics, Analytics, dashboards and monitoring

URL: http://grafana.org/

5. DB-Engines Ranking - popularity ranking of time Series DBMS

URL: http://db-engines.com/en/ranking/time+series+dbms

6. Ruby client for InfluxDB

URL: https://github.com/influxdata/influxdb-ruby

19

7. Class XMLRPC Client (Ruby 2.3.1)

URL:http://ruby-doc.org/stdlib-2.3.1/libdoc/xmlrpc/rdoc/XMLRPC/Client

8. Module Nokogiri

URL:http://www.rubydoc.info/github/sparklemotion/nokogiri/Nokogiri

9. InfluxDB – Time-Series Data Storage / InfluxData

URL: https://influxdata.com/time-series-platform/influxdb/

Acknowledgement

I would like to express my appreciation to Nikolay Kutovskiy, my practice

supervisor and S. Z. Pakuliak, Director of University Centre of Joint Institute for

Nuclear Research, for giving me an opportunity to participate in Student Summer

Program 2016. I also wish to acknowledge the help provided by Nikita Balashov and

Aleksandr Baranov for consulting me in my work.

I would like to thank to Elena Karpova for excellent organization of our

practice and helped us to see greatest physical things and facilities at JINR.

Finally, I feel all the gratitude for the woman who works in the dining room

and makes my food warm.

20

Appendix A

The architecture of developed system

Figure A.1 – The scheme of architecture of the components interaction

21

Appendix B

The implementation of main classes

Listing B.1. Implementation of class OneParser
#!/usr/bin/env ruby

ONE_CONF = 'configs/one.conf'.freeze

require 'yaml'

require 'xmlrpc/client'

require 'nokogiri'

require_relative 'host'

require_relative 'cluster'

require_relative 'user'

class OneParser

 def initialize(hostname)

 @hostname = hostname

 public_cloud_one_conf = YAML.load(File.read(ONE_CONF))

 @localhost = public_cloud_one_conf[@hostname]

 @local_client = XMLRPC::Client.new(@localhost['hostname'],

@localhost['rpc_path'], @localhost['port'])

 @local_credentials =

"#{@localhost['username']}:#{@localhost['password']}"

 end

 def get_system_version

 begin

 response = @local_client.call('one.system.version',

@local_credentials)

 rescue

 puts "#{Time.now.utc}: Error. Cannot call 'one.system.version'...

Exit"

 exit -1

 rescue XMLRPC::FaultException => e

 puts 'Error:'

 puts e.faultCode

 puts e.faultString

 exit -1

 end

 version = response[1]

 version

 end

 def get_clusterpool_info

 begin

 response = @local_client.call('one.clusterpool.info',

@local_credentials)

 rescue

 puts "#{Time.now.utc}: Error. Cannot call 'one.clusterpool.info'...

Exit"

 exit -1

 rescue XMLRPC::FaultException => e

 puts 'Error:'

 puts e.faultCode

 puts e.faultString

 exit -1

 end

22

 if response[0] != true

 puts "Error:" + !response[0]

 puts response[2]

 exit -1

 end

 doc = Nokogiri::XML.parse(response[1])

 clusters = []

 doc.xpath('//CLUSTER_POOL/CLUSTER').each do |cluster|

 c = Cluster.new cluster.xpath('ID').text.to_i

 c.name = cluster.xpath('NAME').text

 cluster.xpath('HOSTS/ID').each do |host_id|

 h = Host.new host_id.text

 c.add_host h

 end

 clusters.push c

 end

 return clusters

 end

 def get_host_info host

 begin

 response = @local_client.call('one.host.info', @local_credentials,

host.id)

 rescue

 puts "#{Time.now.utc}: Error. Cannot call 'one.host.info'... Exit"

 exit -1

 rescue XMLRPC::FaultException => e

 puts 'Error:'

 puts e.faultCode

 puts e.faultString

 exit -1

 end

 if response[0] != true

 puts "Error:"

 puts response[0]

 puts response[2]

 exit -1

 end

 doc = Nokogiri::XML.parse(response[1])

 host.name = doc.xpath('//HOST/NAME').text

 host.cpu_total = doc.xpath('//HOST_SHARE/MAX_CPU').text.to_i

 host.cpu_allocated = doc.xpath('//HOST_SHARE/CPU_USAGE').text.to_i

 host.cpu_real = doc.xpath('//HOST_SHARE/USED_CPU').text.to_i

 host.ram_total = doc.xpath('//HOST_SHARE/MAX_MEM').text.to_i

 host.ram_allocated = doc.xpath('//HOST_SHARE/MEM_USAGE').text.to_i

 host.ram_real = doc.xpath('//HOST_SHARE/USED_MEM').text.to_i

 host.disk_total = doc.xpath('//HOST_SHARE/MAX_DISK').text.to_i

 host.disk_real = doc.xpath('//HOST_SHARE/USED_DISK').text.to_i

 end

 def get_userpool_info

 begin

 response = @local_client.call('one.userpool.info',

@local_credentials)

 rescue

 puts "#{Time.now.utc}: Error. Cannot call 'one.userpool.info'... Exit"

 exit -1

 rescue XMLRPC::FaultException => e

 puts 'Error:'

 puts e.faultCode

23

 puts e.faultString

 exit -1

 end

 if response[0] != true

 puts "Error:" + !response[0]

 puts response[2]

 exit -1

 end

 doc = Nokogiri::XML.parse(response[1])

 users = {}

 departments = []

 doc.xpath('//USER_POOL/USER').each do |user|

 id = user.xpath('ID').text.to_i

 u = User.new id

 u.name = user.xpath('NAME').text

 u.name = user.xpath('NAME').text

 u.gname = user.xpath('GNAME').text

 u.lab = user.xpath('TEMPLATE/LAB').text

 if !u.lab.to_s.empty?

 departments.push(u.lab)

 users.store(id.to_s, u)

 end

 end

 doc.xpath('//USER_POOL/QUOTAS').each do |quotas|

 id = quotas.xpath('ID').text.to_i

 if users.include?(id.to_s)

 u = users[id.to_s]

 u.cpu_allocated = quotas.xpath('VM_QUOTA/VM/CPU').text.to_i

 u.cpu_real = quotas.xpath('VM_QUOTA/VM/CPU_USED').text.to_i

 u.ram_allocated = quotas.xpath('VM_QUOTA/VM/MEMORY').text.to_i

 u.ram_real = quotas.xpath('VM_QUOTA/VM/MEMORY_USED').text.to_i

 u.disk_allocated =

quotas.xpath('VM_QUOTA/VM/SYSTEM_DISK_SIZE').text.to_i

 u.disk_real =

quotas.xpath('VM_QUOTA/VM/SYSTEM_DISK_SIZE_USED').text.to_i

 u.vms_allocated = quotas.xpath('IMAGE_QUOTA/RVMS').text.to_i

 u.vms_real = quotas.xpath('IMAGE_QUOTA/RVMS_USED').text.to_i

 end

 end

 departments.compact!

 departments.uniq!

 return departments, users.values

 end

 def get_user_info user

 begin

 response = @local_client.call('one.user.info', @local_credentials,

user.id)

 rescue

 puts "#{Time.now.utc}: Error. Cannot call 'one.user.info'... Exit"

 exit -1

 rescue XMLRPC::FaultException => e

 puts 'Error:'

 puts e.faultCode

 puts e.faultString

 exit -1

 end

 if response[0] != true

 puts "Error:" + !response[0]

 puts response[2]

24

 exit -1

 end

 doc = Nokogiri::XML.parse(response[1])

 user.name = doc.xpath('//USER/NAME').text

 user.gname = doc.xpath('//USER/GNAME').text

 user.lab = doc.xpath('//USER/TEMPLATE/LAB').text

 user.cpu_allocated = doc.xpath('//USER/VM_QUOTA/VM/CPU').text.to_i

 user.cpu_real = doc.xpath('//USER/VM_QUOTA/VM/CPU_USED').text.to_i

 user.ram_allocated = doc.xpath('//USER/VM_QUOTA/VM/MEMORY').text.to_i

 user.ram_real = doc.xpath('//USER/VM_QUOTA/VM/MEMORY_USED').text.to_i

 user.disk_allocated =

doc.xpath('//USER/VM_QUOTA/VM/SYSTEM_DISK_SIZE').text.to_i

 user.disk_real =

doc.xpath('//USER/VM_QUOTA/VM/SYSTEM_DISK_SIZE_USED').text.to_i

 user.vms_allocated = doc.xpath('//USER/VM_QUOTA/VM/VMS').text.to_i

 user.vms_real = doc.xpath('//USER/VM_QUOTA/VM/VMS_USED').text.to_i

 end

end

25

Listing B.2. Implementation of class Influx
#!/usr/bin/env ruby

INFLUX_CONF = 'configs/influx.conf'.freeze

NAME_OF_TOTAL_CLUSTER = '---Total for all clusters---'

NAME_OF_TOTAL_DEPARTMENTS = '---Total for all LABs---'

require 'yaml'

require 'influxdb'

require_relative 'host'

require_relative 'cluster'

require_relative 'department'

class Influx

 def initialize(hostname)

 f = YAML.load(File.read(INFLUX_CONF))[hostname]

 @measurement_cluster = f['measurement_cluster']

 @measurement_department = f['measurement_department']

 @influxdb = InfluxDB::Client.new host: f['host'],

 port: f['port'],

 database: f['database'],

 username: f['username'],

 password: f['password'],

 time_precision: f['time_precision']

 end

 def write_clusters_info clusters

 data = []

 total_clusters = Host.new 0

 total_clusters.name = NAME_OF_TOTAL_CLUSTER

 clusters.each do |c|

 data << {

 series: @measurement_cluster,

 values: { cpu_total: c.cpu_total,

 cpu_real: c.cpu_real,

 cpu_allocated: c.cpu_allocated,

 ram_total: c.ram_total,

 ram_real: c.ram_real,

 ram_allocated: c.ram_allocated,

 disk_total: c.disk_total,

 disk_real: c.disk_real },

 tags: { Cluster: c.name }

 }

 total_clusters.cpu_total = total_clusters.cpu_total + c.cpu_total

 total_clusters.cpu_real = total_clusters.cpu_real + c.cpu_real

 total_clusters.cpu_allocated = total_clusters.cpu_allocated +

c.cpu_allocated

 total_clusters.ram_total = total_clusters.ram_total + c.ram_total

 total_clusters.ram_real = total_clusters.ram_real + c.ram_real

 total_clusters.ram_allocated = total_clusters.ram_allocated +

c.ram_allocated

 total_clusters.disk_total = total_clusters.disk_total + c.disk_total

 total_clusters.disk_real = total_clusters.disk_real + c.disk_real

 end

 data << {

 series: @measurement_cluster,

 values: { cpu_total: total_clusters.cpu_total,

 cpu_real: total_clusters.cpu_real,

 cpu_allocated: total_clusters.cpu_allocated,

 ram_total: total_clusters.ram_total,

 ram_real: total_clusters.ram_real,

 ram_allocated: total_clusters.ram_allocated,

26

 disk_total: total_clusters.disk_total,

 disk_real: total_clusters.disk_real },

 tags: { Cluster: total_clusters.name }

 }

 @influxdb.write_points(data)

 end

 def write_departments_info departments

 data = []

 total_departments = Department.new NAME_OF_TOTAL_DEPARTMENTS

 departments.each do |d|

 data << {

 series: @measurement_department,

 values: { cpu_real: d.cpu_real,

 cpu_allocated: d.cpu_allocated,

 ram_real: d.ram_real,

 ram_allocated: d.ram_allocated,

 disk_real: d.disk_real,

 disk_allocated: d.disk_allocated,

 vms_real: d.vms_real,

 vms_allocated: d.vms_allocated },

 tags: { Department: d.name }

 }

 total_departments.cpu_real = total_departments.cpu_real + d.cpu_real

 total_departments.cpu_allocated = total_departments.cpu_allocated +

d.cpu_allocated

 total_departments.ram_real = total_departments.ram_real + d.ram_real

 total_departments.ram_allocated = total_departments.ram_allocated +

d.ram_allocated

 total_departments.disk_real = total_departments.disk_real +

d.disk_real

 total_departments.disk_allocated += d.disk_allocated

 total_departments.vms_real += d.vms_real

 total_departments.vms_allocated += d.vms_allocated

 end

 data << {

 series: @measurement_department,

 values: { cpu_real: total_departments.cpu_real,

 cpu_allocated: total_departments.cpu_allocated,

 ram_real: total_departments.ram_real,

 ram_allocated: total_departments.ram_allocated,

 disk_real: total_departments.disk_real,

 disk_allocated: total_departments.disk_allocated,

 vms_real: total_departments.vms_real,

 vms_allocated: total_departments.vms_allocated },

 tags: { Department: total_departments.name }

 }

 @influxdb.write_points(data)

 end

end

27

Appendix C

The developed dashboards

Figure C.1 – The dashboard of resource distribution over clusters

28

Figure C.2 – The dashboard of resource distribution over departments

