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1 Abstract
The purpose of this report is to summarize the conclusions and data obtained by making numerical models of equilibrium
sequences of rapidly rotating neutron stars in General Relativity. The evolutionary sequence models of these stars are
solutions of Einstein’s equations for the stationary gravitational field in axial symmetry. I determine important physical
parameters for such stars as maxiumum-mass, central energy density and angular momentum which may provide relevant

information for gravitational collapse into a blackhole. The rotating neutron star (RNS) code, used to construct these models,
is written by Nikolaos Stergioulas in C language in 1993. In (2)Summary section, I provide a short theory of the topic and

interpretation of the results. In (3)Methods section I describe the numerical methods used in the computing and conclusion of
the results. In (4)Figures section of this report, I use 2 of the equations of states provided by the programmer to analyze the
relations between the neutron star parameters. In (5)Acknowledgements section, I express my gratitude for all the people who
were of assistance in the making of this report. In References section I outline the sources, books, articles I have used as help

for the study.

2 Summary
In this report I present the results of a sur-
vey of relativistic rapidly rotating neutron
stars (RNS) for tabulated equations of state
(EoS). I will consider only uniformly rotating
NS and in this sense, we can divide the NS
evolutionary equilibrium sequences into two
groups: stable and unstable. We say that
such a sequence is stable only if there is a
loss in angular momentum as the central en-
ergy evolves at rest mass. If there is no loss
or if there is a positive gain, then the model
is considered to be unstable.

Now we can also divide evolutionary se-
quences into normal sequences and supramas-
sive sequences. The normal ones have static
spherically symmetric solutions at one end
and supramassive seq. contain no such so-
lutions. The boundary between the two is
the maximum-mass normal seq. which joins
onto the maximum-mass static solution. The
reason why the supramassive seq. are so in-
teresting is that they exist because of rela-
tivistic effects and as the name suggests, their
mass exceeds the normal mass of nonrotat-
ing/static NS, which will eventually result in
catastrophic collapse into a blackhole.

There are 4 limits that should be consid-
ered when building a neutron star:

2.1 Static

- Where angular momentum and angular ve-
locity converge to 0. These are simply the

solutions to TOV eqs. for spherically sym-
metric models.

2.2 Mass-shed
- We reach this limit when the neutron star is
rotating sufficiently rapidly that the gravita-
tional attraction is not enough to keep matter
bound to the surface.

2.3 Stability
- Where an equilibrium solution is marginally
stable to quasi-radial perturbations. The sta-
bility limit begins at maximum-mass on static
limit sequence and usually terminates near
the maximum-mass point on the mass-shed
limit sequence(maximum mass for rotating
star). In other words, we find that there is
a maximum mass limit after which collapse
can occur.

2.4 Low-mass
- The limit under which the NS cannot form.
We will not be considering this limit in this
report.

2.5 Conclusion
In this report, we see that in order to be able
to build realistic neutron stars, we need to put
limits and constraints on various parameters.
We also see that both rotating and static
stars can be unstable after passing a specific
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upper limit in the mass. So after reaching a
critical point in central energy density, the
neutron star will certainly collapse and this
critical point is measured on the basis of the
specific EoS that are used, and its value is
different for every EoS.

3 Methods
The method with which the RNS were anal-
ized was made possible by the code written
by N. Stergiuolas. On successful running of
the code, it prints out 17 physical parameters
shown below.

εc central energy density

M gravitational mass

M0 rest mass

Re radius at the equator

Ω angular velocity

Ωp angular velocity of a particle in circular
orbit at the equator

T/W rotational/gravitational energy

cJ/GM2
� angular momentum

I moment of inertia

Φ2 quadrupole moment

h+ height from surface of last stable co-
rotating circular orbit in equatorial
plane

h− height from surface of last stable counter-
rotating circular orbit in equatorial
plane

Zp polar redshift

Zb backward equatorial redshift

Zf forward equatorial redshift

ωc/Ω ratio of central value of potential ω to
Ω

re coordinate equatorial radius

rp/re axes ratio (polar to equatorial)

The following values for the physical con-
stants are used: c = 2.9979 × 1010 cm/s,
G = 6.6732 × 10−8g−1cm3s2,
mB = 1.66 × 10−24gr, and M� =
1.987 × 1033gr.

The theory that the code is based on uses
a metric in the following form:

ds2 = −eγ+ρdt2 + e2α(dr2 + r2dθ2) + eγ−ρr2(dφ− ωdt)2

(3.1)
where the metric potentials ρ, γ, α, ωare

functions of r and θ only.
The stress tensor has the following form:

T µν = (ε+ P )uµuν + Pgµν , (3.2)

where ε is total energy density, P is pres-
sure and u is 4-velocity.

The numerical methods used in the code
are Runge-Kutta 4th Order and Interpola-
tion. Should the reader like a more extensive
reviews on these methods, they could check
3rd and 17th Chapter of Numerical recipes in
C, S. Teukolsky, W. Press.

The code is programmed to work in two
modes: first one is with tabulated equa-
tions of state and the other is with a poly-
tropic equation. The tabulated one contains
4 columns: energy density (in g/cm3), pres-
sure (in dynes/cm2), enthalpy (in cm2/s2),
and baryon number density (in cm−3).

RNS has several options which allow you
to specify model parameters and choose from
different output formats. A model is defined
uniquely by specifying two parameters - one
will always be the central energy density and
the other can be one of the following: mass,
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rest mass, angular velocity, angular momen-
tum, or the ratio of the polar coordinate ra-
dius to the coordinate equatorial radius.

The parameters are specified using the fol-
lowing flags:

-e central energy density in gr/cm3

-r axes ratio

-m mass in M�

-z rest mass in M�

-o angular velocity in 104s−1

-j angular momentum in GM2
�/c

4 Figures
We will start with the FPS equation which is
rather stiff.

Fig.1 Mass-Radius relation. Static and
rotating cases.

Fig.1 is a plot of Mass-Radius relation of
the FPS equation of state. It should be read
from right to left as the central energy density
increases with the decrease of the equatorial
radius. The line with the lesser maximum-
mass is for the static neutron star, and the
line with the higher maximum mass is for ro-
tating neutron star(mass shed limit). The red

line shows the stability limit between maxi-
mum mass of static stars and rotating stars.
Left to that line the neutron star models are
unstable and right to that line - stable, mean-
ing that the left side is unstable to small ra-
dial perturbations, and we can see on the
right side that even with slightly bigger ra-
dial perturbations, the change of mass is still
positive, so the star will stay stable as long as
it doesn’t cross the red line (stability limit).
The same conclusions can be drawn if we
make a Mass/Central energy density plot.

Fig.2 Mass-Central energy density relation.
Static and rotating cases.

Fig.2 should be read from left to right. On
this plot, again we see that the maximum
mass limit for a static neutron star with FPS
EoS is equal to 1.8 solar masses, and for a
rotating star - 3.1 solar masses. Again we
draw the red line as the stability limit and
see that all neutron stars, this time right to
the limit, are unstable, as the equatorial ra-
dius decreases counterproportionally to the
central energy density. So we can conclude
that:

M > 1.8M� unstable static stars

M > 3.1M� unstable rotating stars

The second equation of state we will be
looking at will be F. Analogously, we make
two plots in this case two.
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Fig.3 Mass-Radius relation. Static and
rotating cases.

In this case, the maximum masses for static
and rotating stars are lower. Again, the same
relation can be seen when we draw the sta-
bility limit. On Fig.3, left from the limit are
the stars that are unstable, and right from it
- stable.

Fig.4 Mass-Central energy density relation.
Static and rotating cases.

On Fig.4 we see the relation between the mass
and central energy density for static and ro-
tating stars with EoS F. After drawing the
line for the stability limit, we can see that
right from the limit, the stars are unstable,
and left from it - stable. So we get:

M > 1.463M� unstable static stars

M > 1.67M� unstable rotating stars
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