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ABSTRACT

The report “Wavelet analysis of giant monopole resonance in light nuclei” consists of
15 pages of the text, 7 figures, 3 tables, and the reference list with 16 citations.

Keywords: giant monopole resonance, deformation-induced coupling of monopole and
quadrupole modes, fine structure, Landau damping, Skyrme energy density functional, self-
consistent quasiparticle random-phase approximation, wavelet analysis, reaction (𝛼, 𝛼′), 24Mg.

The object of this study are E0 states in 24Mg.
The main objective of this work: To perform the comparative wavelet analysis of

theoretical and experimental data for E0 excitations in the regions of monopole-quadrupole
coupling (MQC) and monopole giant resonance (GMR) and determine dominant widths
(scales) characterising fine structure of E0 spectra to clarify the role of different decay
mechanisms.

Research methods: iThemba experiment (𝛼, 𝛼′) for 24Mg, Quasiparticle random-phase
approximation (QRPA) method with Skyrme forces, continuous wavelet transform with
Morlet mother function, wavelet scales and powers.

In the work, the wavelet analysis of E0 excitations in deformed nucleus 24Mg was
performed. The MQC and GMR regions were investigated. We used iThemba (𝛼, 𝛼′) experimental
data and our QRPA results. The experimental and theoretical wavelet transforms and powers
for theoretical and experimental data were compared and characteristic widths (scales) were
determined. Besides, to clarify the role of the residual interaction, the QRPA wavelet results
were compared with unperturbed two-quasiparticle (2qp) ones. Thus the dominant role
of the Landau damping in fine structure of E0 excitations in light deformed nuclei was
demonstrated.
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1 Introduction

Despite a long previous experimental and theoretical effort, investigation of giant
resonances (GR) remains to be very actual [1, 2, 3, 4]. Giant resonances represent a valuable
source of information on various nuclear properties including nuclear matter. Besides, GR
are a robust test for modern self-consistent theoretical methods based on the energy density
functional (EDF) theory. The E0 monopole giant resonance (GMR) is especially important
since it provides the important information on the nuclear incompressibility [1].

GR are collective excitations of nuclei, exhausting the major part of the corresponding
sum rules. They manifest themselves as powerful and broad maxima dominating in the cross
sections of reactions of nuclei with various particles and external fields [1].

One of the main GR properties is its width Г𝐺𝑅 [1]. The width is the result of various
decay processes of GR. It usually has typical values of a few MeV. The total GR width can
re roughly separated into three parts:

Г𝐺𝑅 = ∆Г + Г↑ + Г↓ (1)

where ∆Г − the Landau damping describing a fragmentation of the collective mode to nearby
elementary one-particle-hole (1p-1h) excitations, Г↑ − the escape width, corresponding to
the direct emission of particles from the continuum, and Г↓ − the propagation width due
to coupling to two-particle-two-hole (2p-2h) and multi-particle-small-hole (np-nh) states.
Information about the dominant damping mechanisms of nuclear GR can be found in the
properties and characteristics of the fine structure of the resonances. This fine structure is
caused by the mixing of several scales of fluctuations that are induced by the decay of nuclear
states.

In spherical nuclei, the coupling with complex configurations results in the significant
(sometime decisive) role of Г↓, see e.g. studies for the giant quadrupole resonance (GQR)
[5, 6] and GMR [7]. Instead, in deformed nuclei, the GMR width is mainly provided by
the Landau damping [4]. Besides, in deformed nuclei there is a remarkable coupling of
isoscalar monopole and quadrupole (K=0) modes [4]. This monopole-quadruppole couling
(MQC) leads to additional structures just below the main GMR [4]. Actually, in deformed
nuclei, IS GMR and GQR must be described simultaneously. Narrow IS peaks induced by
deformation-induced E0/E2 coupling can serve as an additional sensitive measure of nuclear
incompressibility [8].

One of the most optimal methods to analyze fine structure and widths is the wavelet
analysis [5, 6]. Wavelet is a mathematical function that allows you to analyze various
frequency components of data. The graph of the function looks like a wave-like oscillation
with amplitude decreasing to zero far from the origin. Wavelet analysis is used in tasks
related to the analysis of spatial fields with complex multiscale structure or temporal signals
with spectral composition changing with time (seismic signals). The main idea is to use a
basis, each function of which characterizes both a certain spatial (temporal) frequency and
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the place of its localization in physical space (time).
In this study, we describe E0 excitations in 24Mg within the quasiparticle random

phase approximation (QRPA) with Skyrme forces. The wavelet analysis is used to analyze
fine structure of the experimental iThemba data and the theoretical strength functions in
deformed nucleus 24Mg. By comparison of 2qp and QRPA results we investigate the role of
the Landau damping. Besides, we compare the wavelet results for energy regions of MQC
and GMR.

2 Calculation scheme

The calculations were carried out within the QRPA model [11] based on the Skyrme
functional. The model is fully self-consistent. Both the mean field and the residual interaction
are obtained from the original Skyrme functional. The residual interaction takes into account
all terms derived from the Skyrme functional and the Coulomb (direct and exchange) parts.
Particle-hole and particle-particle [11] channels are included. The pairing interaction is
considered at the BCS level [11].

The Hamiltonian
𝐻 = 𝐻𝑚𝑓 +𝐻𝑝𝑎𝑖𝑟 +𝐻𝑟𝑒𝑠 (2)

includes mean field part 𝐻𝑚𝑓 , pairing contribution 𝐻𝑝𝑎𝑖𝑟 and residual interaction 𝐻𝑟𝑒𝑠.
Skyrme parametrizations SkP𝛿 [12] and SVbas [13] are used. They give essentially

different modulus of nuclear incompressibility: 𝐾∞ =202 and 234 MeV, respectively. SV-bas
has a large (though rather typical for Skyrm forces) incompressibility but poorly describes IS
GMR experimental data for light nuclei [8]. Instead, SkP𝛿 with its very low incompressibility
demonstrates much better performance [8].

Both parametrizations were earlier applied for description of GMR in 24Mg and
28Si [7]. SV-bas has a large (though rather typical for Skyrm forces) incompressibility.

A large configuration space is used in the calculations. The single-particle spectrum
extends from the bottom of the potential well to 30 MeV. The two-quasiparticle (2qp) basis
in QRPA calculations with SkP𝛿 extends to 70 MeV. The QRPA isoscalar monopole (L=0)
and quadrupole (L=2) transition strengths are presented in terms of strength functions

𝑆𝐿(𝐸) =
𝐿∑︁

𝐾=0

(2− 𝛿𝐾,0)
∑︁
𝜈∈𝐾

| ⟨𝜈|�̂�𝐿𝐾 |0⟩
2
𝜉Δ(𝐸 − 𝐸𝜈) (3)

where 𝜈 denotes the QRPA excitation state |𝜈⟩ with energy 𝐸𝜈 and |0⟩ isthe ground QRPA
state. The monopole and quadrupole isoscalar transition operators are �̂�00 =

∑︀𝐴
𝑖 𝑟2𝑖 and

�̂�20 =
∑︀𝐴

𝑖 𝑟2𝑖 𝑌20(𝑟𝑖), respectively. For convenience of comparison with experimental data, the
strength is smoothed by the Lorentzian function 𝜉Δ(𝐸 − 𝐸𝜈) = ∆/(2𝜋[(𝐸 − 𝐸𝜈)

2 −∆2/4])

with averaging parameter ∆ = 100 keV. The energy 𝐸 is considered as the array with the
grid step ∆𝐸=20 keV. The dimension of the strength functions is 𝑓𝑚4/MeV. We also present
the 2qp force functions calculated without considering the residual interaction. In this case,
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the number 𝜈 in the equation (3) denotes 2qp states.

Figure 1 — Top panels: IS0 QRPA (solid blue line) and 2qp (short dashed red line) strength
functions calculated with the SkP strength (𝐾∞=202 MeV) in 24Mg are compared with
the current iThemba LABS experimental data, shown as black filled circles. Bottom panels:
QRPA (solid black line) and 2qp (short dashed red line) of IS20 strength [8]

3 Monopole-quadrupole coupling in 24Mg: experiment vs theory

The experiment [8] was carried out in the iThemba LABS laboratory, South Africa.
A beam of 𝛼-particles was inelastically scattered on a self-supported 24Mg-target. After
extraction of the inelastic scattering cross sections, isoscalar monopole (IS0) strength distribution
was obtained using the difference-of-spectra (DoS) method with excitation energy dependent
corrections.

In Fig.1, the MQC effect in 24Mg is demonstrated using Skyrme force SkP𝛿 [8]. In the
upper panel of the figure, the QRPA IS0 monopole strength functions from the equation (3)
are compared with the experimental data. The iThemba LABS experimental data are shown
as black filled circles, where each data point accumulates the IS0 strength in the 0.5 MeV
energy range. Fig.1 shows that both experimental and QRPA IS0 strengths segregate into a
narrow structure at ≈15 MeV in 24Mg and a broad structure at higher energies, which is a
typical picture for deformed nuclei. The comparison of IS0 and IS2(K=0) strengths shows
that IS0 peak arises just due to MQC effect. It is also useful to compare the QRPA IS0
strength with the 2qp IS0 strength (red dashed line) obtained without residual interaction.
We see a strong collective effect: the residual interaction significantly shifts down the IS0
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strength and creates collective peaks at ≈15 MeV in 24Mg.

4 Basics of wavelet analysis

In this report, wavelet analysis based on the continuous wavelet transform (CWT) is
used for scale extraction [15].

The wavelet analysis can be roughly treated as a local Fourier transformation. The
wavelet transform 𝐶(𝛿𝐸,𝐸𝑥) (usually complex-valued) of some signal 𝜎(𝐸) is defined as a
convolution of the signal with a particular mother wavelet function Ψ:

𝐶(𝛿𝐸,𝐸𝑥) =
1√
𝛿𝐸

∫︁
𝜎(𝐸)Ψ*

(︃
𝐸𝑥 − 𝐸

𝛿𝐸

)︃
𝑑𝐸 (4)

The parameter 𝛿𝐸 scales, i.e., expands or stretches, the function, and the parameter 𝐸𝑥 shifts
the wavelet position along the excitation energy so that information about the localization of
the scale becomes available. This transformation results in a two-dimensional (2D) distribution
of wavelet coefficients 𝐶(𝛿𝐸,𝐸𝑥). These coefficients will be large at those scales 𝛿𝐸 and
locations 𝐸𝑥 where the shape of the scaled and shifted wavelet Ψ(𝑥) has the greatest similarity
to the analyzed data sample 𝜎(𝐸). Instead, if the scale of the wavelet function is very different
from the characteristic scales at this location, the coefficients will be small. Consequently, if
we study this two-dimensional distribution of wavelet coefficients, we can extract not only
the values of characteristic scales, but also their locations, which is very important for the
thorough analysis.

Another important advantage of wavelet analysis is the ability to use different wavelet
mother functions most suitable for a particular problem, thus extracting the necessary
features in the most efficient way. In order to obtain the desired representation of a signal
using wavelet analysis, it is necessary to select the function that best resembles the features
of the signal under study. The shape of the wavelet function should be similar to the shape of
the signal, but the scaling resolution of different wavelets should also be taken into account.
It was shown by Shevchenko et al [5] that the Morlet wavelet function is most suitable for
analysis of fine structure of GR.

The Morlet function is obtained by taking a periodic wave and localizing it with a
Gaussian envelope that is superimposed on a sinusoidal structure [16],

Ψ𝑀𝑜𝑟𝑙𝑒𝑡(𝑥) = 𝜋−1/4𝑒𝑖𝑘𝑥𝑒−𝑥2/2 (5)

where 𝑘 defines the number of sinusoidal oscillations in the Gaussian window. Strictly
speaking, the Morlet function (5) is not applicable as a wavelet because it does not satisfy the
admissibility condition (6). However, 𝑘 can be chosen such that Ψ(0) is close to zero. Hence,
we must choose a value of 𝑘 large enough to hold, at least approximately, the condition
Ψ(0) = 0. For this purpose 𝑘 ≥ 5 is suitable, then the quadratic integrability condition is
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satisfied [16],

𝐾Ψ =

∫︁ ∞

−∞
|Ψ2(𝑥)|𝑑𝑥 < ∞ (6)

is satisfied within the accuracy of calculations with single-precision arithmetic. Higher values
of 𝑘 will slightly improve the scale resolution, and in the limiting case we obtain the Fourier
spectrum. For the analysis of the nuclear giant resonance spectra described below, a value
of 𝑘 = 5, provides the best value [6].

It is convenient to extract the dominant widths (energy scales 𝛿𝐸) using so-called
wavelet powers

𝑃 (𝛿𝐸) =
1

𝑁

∑︁
𝑖

|𝐶𝑖(𝛿𝐸,𝐸𝑥(𝑖))𝐶
*
𝑖 (𝛿𝐸,𝐸𝑥(𝑖))| (7)

where 𝑖 = 1, ..., 𝑁 runs all the energy grid range (N is the number of energy bins in the
considered excitation-energy range).
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Figure 2 — Experimental and theoretical IS0 strength functions for 24Mg (left), corresponding
squared wavelet transforms 𝐶(𝛿𝐸,𝐸𝑥)*𝐶*(𝛿𝐸,𝐸𝑥) (middle) and wavelet powers (right). The
powers are estimated for the energy region indicated by the vertical dashed lines (10 MeV ≤
𝐸𝑥 ≤ 25 MeV) in the left panel. The black and red dots mark the dominant (characteristic)
scales 𝛿𝐸)

5 Results and discussion

Fig.2 shows IS0 experimental and theoretical (SkP𝛿, SV-bas) strength functions in
24Mg and corresponding wavelet transforms and powers. The energy range 10 MeV ≤ 𝐸𝑥 ≤
25 MeV covers both MQC and GMR regions. The red and blue shades in the middle panels
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serve as a measure of magnitudes of squared wavelet transforms 𝐶(𝛿𝐸,𝐸𝑥)*𝐶*(𝛿𝐸,𝐸𝑥). The
specific pattern of alternating regions of large and small coefficients as a function of 𝐸𝑥 is due
to the use of an oscillating function. For extraction of the scales dominating in the considered
energy region, it is convenient to consider wavelet powers (right panels). The maxima of the
power spectrum are treated as characteristic scales of distribution of IS0 strength in 24Mg.
Since power values generally grow with the scale, the scale axis in Fig.2 is limited to 2 MeV
for a better visibility of the characteristic scales at lower energies.

Left panels of Fig.2 show that SkP𝛿 well reproduces the experimental strength distribution.
Besides, SkP𝛿 provides a reasonable agreement for the squared wavelet transforms (middle
panels) and gives a nice description of wavelet powers (right panels). SV-bas results are much
worse.

Experimental and SkP𝛿 powers in Fig.2 show that the most dominant scales are
concentrated at 0.2 MeV < 𝛿𝐸 < 1 MeV. Following previous studies [5, 6], the characteristic
scales scales can be divided into three groups: small scales around 100 keV, medium scales
at 100 keV — 1 MeV and large scales of the order of several MeV. The scales from these
three groups, extracted from Fig.2, are collected in Table 1. It is seen that, at least for the
medium scales, we have a reasonable agreement with the experiment.

Table 1 — Summary of the characteristic scales deduced from the CWT analysis for the
energy interval 10-25 MeV

Dataset Scales (keV)
Small Medium Large

Expt. 260, 370, 520, 710 1200, 1630
SkP𝛿 90 150, 250, 400, 670
SVbas 140, 230, 320, 660 1460

To inspect the impact of the monopole-quadrupole coupling, let’s now perform the
similar analysis for MQC energy region (10 MeV ≤ 𝐸𝑥 ≤ 15 MeV). Following Fig.3,
SLy6 results are again in rather good agreement with thee experiment. Again the powers
demonstrate that most dominant widths lie in the range 0.2 MeV — 1 MeV. The total set
of the characteristic widths is exhibited in Table 2. For medium scales we have rather good
agreement with the experiment.
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Figure 3 — The same as in Fig. 2 but now for MQC energy range (10 MeV ≤ 𝐸𝑥 ≤ 15 MeV)
indicated in the left panels

Table 2 — Summary of the characteristic scales deduced from the CWT analysis (in keV)
for the energy interval 10-15 MeV

Dataset Scales (keV)
Small Medium Large

Expt. 270, 360, 500, 710, 1150, 1600
SkP𝛿 90 150, 250, 400, 700 1490
SVbas 130, 190, 340, 650 1510

The results for GMR energy region (15 MeV ≤ 𝐸𝑥 ≤ 25 MeV) are shown in Fig. 4 and
Table 3. The results look similar to those for MQC energy range (10 MeV ≤ 𝐸𝑥 ≤ 15 MeV)

(though with more medium scales in ther GMR case).
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Figure 4 — The same as in Fig. 2 but now for GMR energy range 15 MeV ≤ 𝐸𝑥 ≤ 25 MeV

Table 3 — Summary of the characteristic scales deduced from the CWT analysis (in keV)
for the energy interval 15-25 MeV

Dataset Scales (keV)
Small Averages Large

Expt. 160, 240, 400, 580, 800 1700
SkP𝛿 100 170, 340, 560, 770 1160, 1760
SVbas 90 140, 300, 670 1380
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Figure 5 — Comparison of non-normalized SkP𝛿 (top) and SV-bas (bottom) powers for energy
intervals 10-15 MeV and 15-25 MeV.

Note that the apparent similarity of the powers in MQC and GMR cases is actually
somewhat misleading because we use in Figs. 3 and 4 the normalized powers. In this
connection, it is worth to consider the powers without the norminalisation. This is done
in Fig.5. This figure shows a strong dominance of MQC contribution for SkP𝛿 and of GMR
contribution for SV-bas. As can be seen from Figs. 3 and 4, the difference in SkP𝛿 and SV-bas
results can be trivially explained by the non-optimal choice of the boarder between MQC
and GMR regions in SV-bas case. It is seen that some strong MQC peaks turned out to lie
in the GMR range. So, just SkP𝛿 results in Fig.5 should be considered as relevant.
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To clarify the impact of the residual interaction and role of Landau damping, it is
instructive to compare QRPA results with unperturbed two-quasiparticle (2qp) ones obtained
without the residual interaction. The theoretical results for 2qp strengths are exhibited in
Fig.6. The left panels of the figure show that 2qp strength is upshifted as compared to
QRPA strength. Following right panels, 2qp strength leads to a broader and more uniform
distribution of the widths which vary from 0.1 to 2 MeV. As compared to QRPA case, the
relative contribution of small widths grows. The 2qp characteristic scales, denoted in the
figure by red dots significantly deviate from experiment and QRPA results.
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Figure 6 — The same as in Fig.2 but for 2qp theoretical strength.
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Figure 7 — Comparison of Skp𝛿 and SV-bas powers obtained with and without the residual
interaction.

The non-normalized SkP𝛿 and SV-bas powers obtained with and without the residual
interaction are compared in Fig.7. We see that 2qp strength leads to a broad and rather
uniform distribution of the widths. The residual interaction redistributes the widths in
favor of medium widths 0.2 - 1 MeV. Just these medium widths mainly represent the
Landau damping. Altogether, we see very important role of the residual interaction. The
maximum QRPA peaks are 3 times higher than in the unperturbed case. Thus, the dominant
role of Landau damping in the fine structure of E0-excitations in light deformed nuclei is
demonstrated.

13



6 Conclusions

In this report, a comparative wavelet analysis of theoretical and experimental data has
been performed for E0 excitations in the deformed nucleus 24Mg in the monopole-quadrupole
coupling (MQC) and giant monopole resonance (GMR) regions. The theoretical results are
obtained in the framework of QRPA method using Skyrme forces SkP𝛿 and SV-bas with
nuclear incompressibility 𝐾∞ =202 and 234 MeV, respectively.

The following results are obtained:

1. The force SkP𝛿 with a low incompressibility well reproduces experimental strength
functions, wavelet powers and characteristic widths (scales). The most dominant widths
have values 0.2-1 MeV. The performance of the force SV-bas is essentially worse.
So, Skyrme forces with a low incompressibility look preferable for description of E0
excitations in light deformedv nuclei.,

2. The separate wavelet analysis is done for monopole-quadrupole coupling (MQC) and
giant monopole resonance (GMR) energy regions. The dominance of MQC powers is
demonstrated.

3. The comparison of the QRPA and unperturbed 2qp wavelet results shows the dominant
role of the residual interaction and Landau damping in the fine structure of E0-excitations.
Just these factors resul in the proper strength functions and wavelet powers.
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