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Abstract

This project investigates the dissipative properties of an accelerated relativistic medium and their connection
to the Unruh e�ect and e�ective black hole radiation. The thermodynamic properties in spaces with a horizon
is one of the most discussed in modern fundamental physics. A notable 2005 string theory limit sets a minimum
shear viscosity. We calculated viscosity in an accelerated frame for a photon medium, where no holographic
description exists, treating the black hole horizon as a membrane of �nite thickness. While the average viscosity
meets the string theory limit, local values are described by a universal function that is independent of particle
spin. Speci�cally, on the membrane surface, the ratio of local viscosity to local entropy is half the string theory
limit. Importantly, this result is gauge-independent, with the positive contribution from gauge �xing exactly
canceling the negative contribution from Faddeev-Popov ghosts.



Contents

1 Introduction 1

2 Unruh e�ect 1

3 Stretched and true horizon 2

4 Methods 2

5 Calculations of viscosity 2

6 Gauge 6

7 Ghosts 6

8 Calculations of entropy and the �nal limit 7

9 Local viscosity and limit 8

10 Conclusions 8

11 Research prospects 9

References 10



1 Introduction

How easy is it to imagine a four-dimensional Euclidean (not to mention �ve- or six-dimensional spaces) space,
it is also di�cult to imagine a body in Rindler space. Have you ever thought about the fact that the famous
Hawking radiation has a lesser�known "brother" - the Unruh e�ect. In this study, we will calculate the ratio of
viscosity to entropy using the KovtunSon-Starinets a method for a medium arising in the context of the Unruh
e�ect during the interaction of a scalar massless �eld. We will analyze the value of the "local" viscosity and the
identi�ed phenomena.

Goal:

Of great interest is the question of the hydrodynamic properties of relativistic swirling liquids placed in
a space with a horizon, such as the space of a black hole or space The Rindler. The aim of the work is to
investigate issues related to entropy and viscosity in appropriate media, in particular, to verify the viscosity
constraint from string theory. Formula, obtained in [Son09].

Tasks:

1. It is necessary to study the existing approaches to the description of dissipative e�ects in spaces with a
horizon: � Calculation of viscosity and entropy for a scalar �eld in the Rindler space.

2. Calculation of viscosity and entropy for photons and comparison with the absolute limit on the ratio of
shear viscosity to entropy predicted from string theory.

3. Comparison of "local" and global dissipative characteristics.
In 2005, the work of D.T. Son showed that there are no completely ideal liquids. Instead , there is a

restriction from below on the ratio of viscosity to entropy. The corresponding result was obtained using string
theory and the holographic approach, and is currently one of the most well-known and important predictions
in string theory. In our work , we plan to investigate the validity of this prediction in a completely new system
corresponding to quantum �elds in an accelerated system the countdown. At the moment, only the literature
has been considered scalar �elds, at the same time string theory predicts the universality of this limit. Therefore,
we want to investigate it for �elds with di�erent spins. Since accelerated quark-gluon plasma occurs in collisions
of heavy ions at particle accelerators , the work is also of interest from the point of view of phenomenology.
Results:

1. The viscosity of photons in an accelerated reference frame at the Unruh temperature was calculated for
the �rst time.

2. The ratio of the average viscosity to the average entropy for photons in a Minkowski vacuum in an
accelerated medium has been clearly shown. This value is equal to 1

4π , which corresponds to the limit derived
from string theory. 3. It is shown that the ratio of local viscosity to local entropy on the membrane surface is
two times less than the limit from string theory and is equal to 1

8π .
4. The ratio of local viscosity to local entropy is found at an arbitrary distance from the membrane of the

extended horizon for photons. It is clearly shown that this function is universal for massless particles with
di�erent spins.

5. Various approaches to calculating entropy are analyzed and it is shown that the thermodynamic de�nition
through the pressure derivative is in agreement with the limit on the ratio of viscosity to entropy from string
theory.

6. It is clearly shown that the viscosity of photons does not depend on the choice of gauge and there is a
mutual compensation of the contributions of the members �xing the gauge and the Faddev-Popov ghosts. Thus,
all the tasks were completed.

2 Unruh e�ect

A vacuum is not an empty space. It is �lled with �elds in which there are zero �uctuations, �uctuations. If the
particle detector moves in a straight line at a constant speed, then it does not detect particles. However, the
accelerated detector will begin to register particles, which is due to the fact that the vacuum in the accelerated
frame of reference (in coordinates Rindler's vacuum), di�ers from the Minkowski vacuum. As a result, the
detector will show the existence of a "thermal bath". The properties of this thermal medium are closely related
to the existence of the horizon and are most well known It is the thermodynamic characteristics: energy,
temperature, etc. The dissipative properties of this medium have been much less studied. Unruh radiation is
similar to Hawking radiation, but it is not its analogue. In the second case, the particles will carry away the
energy of the black hole. A qubit (a two-level system with two energy levels) with two energy states would
be well suited as a detector. This way it will be able to show either the presence or absence of particles. The
Unruh e�ect was theoretically predicted by a Canadian physicist By William Unruh in 1976 [Unr76].
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3 Stretched and true horizon

For our calculations, it is worth introducing the cut o� stretched horizon. It is 2+1-dimensional time-like surface
located slightly outside the true horizon Because it has a non-singular induced metric, the stretched horizon
provides a more tractable boundary on which to anchor external �elds; outside a complicated boundary layer,
the equations governing the stretched horizon are to excellent approximation the same as those for the true
horizon. This view of a black hole as a dynamical time-like surface, or membrane, has been called the membrane
paradigm [Par98]. Cutting o� this horizon will allow us to get rid of divergences at in�nities and remove the
e�ects of Red and Blue displacement.

In our calculations, we will denote the thickness of the horizon lc. Accordingly, integration by Rindler
coordinates will be carried out from lc to in�nity.

4 Methods

After the last Superstring Revolution, it became necessary to explain the predicted e�ects using quantum �eld
theory. Obtaining con�rmation of predictions from the String theory using quantum �eld theory is an important
and rare event; for example, testing the predictions of the String theory. The dissipative thermodynamic
characteristics obtained from this theory can be veri�ed using classical methods of �eld theory. Namely, we
will consider the value of the viscosity-to-entropy ratio for media in the accelerated Rindler space, which is
associated with the Unruh e�ect. If it is not di�cult to �nd the entropy of the system, then it requires a lot of
calculations. This work for a scalar massless �eld has already been done in [Chi10]. However, such a solution
remains not obvious for other types of �elds, due to the di�erent values of entropy. We performed a calculation
for a vector massless �eld using the Kubo formula, where we used the average value of the correlator of two
energy-momentum tensors, and also used the point-splitting technique to eliminate uncertainties. In the end,
we also turned to the theory of functions of complex variables, using Cauchy's theorem for residues. We also
separately counted contributions from Maxwell's, gauge's, and ghost's tensor members to show their role in the
calculations.

5 Calculations of viscosity

In our work, we will give in more detail the derivation of the viscosity value from the work [Chi10].We introduce
the Rindler space, which is most often used in the study of the Unruh e�ect. The relation of Minkowski
coordinates to Rindler coordinates is described by the following expressions: z → t sinh(β) + z cosh(β), t =
ρ sinh(η), z = ρ cosh(η) So, the Rindler space metric has the form:

ds2 = ρ2dη2 − dρ2 − dx2 − dy2

Among the properties of the Rindler coordinates is the concept of the Rindler horizon, which can be considered
as a real black hole. Let's assume that this horizon has a non-zero �nite thickness lc. Namely, it is a very thin
membrane. [Par98] Now we can proceed to calculating the viscosity value, for this we use the Standard method
of calculating transport coe�cients � the Kubo formula [Kub57]. We need the Kubo Formula for shear viscosity
[Son09]:

η = lim
ω→0

∫ ∞

lc

χdχ

∫ ∞

lc

χ′ dχ′
∫ ∞

−∞
dx dy dτeiωτ < 0|T̂xy(τ, x, y, χ)T̂xy(0, 0, 0, χ

′)|0 >m (1)

where < 0|T̂xyT̂xy|0 >m is the quantum average of the vacuum Minkowski from the product of two energy-
momentum tensors. It contains information about the properties of the �eld � mass and spin. Speci�cally, in
our work we will consider a vector massless �eld.

We introduce the formula of the propagator of a vector massless �eld in the pulsed form from [LL75], where
ξ is gauge value.

−i

(2π)4

∫
d4peip(x−y)

p2
[ηµν − pµpν

p2
(1− ξ)] (2)

Let's write it in the coordinate representation, using positive-frequency Whiteman function [Shi80]

1

8π2x2
[ηµν(1 + ξ) +

2xµxν

x2
(1− ξ)] (3)
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Consider the quantum average of the product of two energy-momentum tensors of our �eld (consider only
the Maxwell terms, gauge terms and ghosts terms separately)

(−FµαF ν
α)(−FλβF ρ

β ) =

(
∂

∂Xµ
1

∂

∂Xν
2

AαA
α − ∂

∂Xµ
1

∂

∂Y2α
AαAν − ∂

∂Y α
1

∂

∂Xν
2

AµA
α +

∂

∂Y α
1

∂

∂Y2α
AµAν

)
·

·

(
∂

∂Xλ
1

∂

∂Xρ
2

AβA
β − ∂

∂Xλ
1

∂

∂Y2β
AβAρ −

∂

∂Y β
1

∂

∂Xρ
2

AλA
β +

∂

∂Y β
1

∂

∂Y2β
AλAρ

) (4)

(−FµαF ν
α)(−FλβF ρ

β ) =
∂

∂Xµ
1

∂

∂Xν
2

∂

∂Y λ
1

∂

∂Y ρ
2

AαA
αAβA

β − ∂

∂Xµ
1

∂

∂Xν
2

∂

∂Y λ
1

∂

∂Y2β
AαA

αAβAρ−

− ∂

∂Xµ
1

∂

∂Xν
2

∂

∂Y β
1

∂

∂Y ρ
2

AαA
αAλA

β +
∂

∂Xµ
1

∂

∂Xν
2

∂

∂Y β
1

∂

∂Y2β
AαA

αAλAρ−

− ∂

∂Xµ
1

∂

∂X2α

∂

∂Y λ
1

∂

∂Y ρ
2

AαAνAβA
β +

∂

∂Xµ
1

∂

∂X2α

∂

∂Y λ
1

∂

∂Y2β
AαAνAβAρ+

+
∂

∂Xµ
1

∂

∂X2α

∂

∂Y β
1

∂

∂Y ρ
2

AαAνAλA
β − ∂

∂Xµ
1

∂

∂X2α

∂

∂Y β
1

∂

∂Y2β
AαAνAλAρ−

− ∂

∂Xα
1

∂

∂Xν
2

∂

∂Y λ
1

∂

∂Y ρ
2

AµA
αAβA

β +
∂

∂Xα
1

∂

∂Xν
2

∂

∂Y λ
1

∂

∂Y2β
AµA

αAβAρ+

+
∂

∂Xα
1

∂

∂Xν
2

∂

∂Y β
1

∂

∂Y ρ
2

AµA
αAλA

β − ∂

∂Xα
1

∂

∂Xν
2

∂

∂Y β
1

∂

∂Y2β
AµA

αAλAρ+

+
∂

∂Xα
1

∂

∂X2α

∂

∂Y λ
1

∂

∂Y ρ
2

AµAνAβA
β − ∂

∂Xα
1

∂

∂X2α

∂

∂Y λ
1

∂

∂Y2β
AµAνAβAρ−

− ∂

∂Xα
1

∂

∂X2α

∂

∂Y β
1

∂

∂Y ρ
2

AµAνAλA
β +

∂

∂Xα
1

∂

∂X2α

∂

∂Y β
1

∂

∂Y2β
AµAνAλAρ

(5)

After that, using Wick's theorem, we omit the disconnected terms, thereby moving on to the study of the
one-loop Feynman diagram:
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< (−FµαF ν
α)1(−FλβF ρ

β )2 >=
∂

∂bµ
∂

∂bλ
< AαAβ >

∂

∂bν
∂

∂bρ
< AαAβ > +

∂

∂bν
∂

∂bλ
< AαAβ >

∂

∂bµ
∂

∂bρ
< AαA

β > −

− ∂

∂bµ
∂

∂bλ
< AαAβ >

∂

∂bν
∂

∂bβ
< AαAρ > − ∂

∂bν
∂

∂bλ
< AαAβ >

∂

∂bµ
∂

∂bβ
< AαAρ > −

− ∂

∂bµ
∂

∂bβ
< AαAλ >

∂

∂bν
∂

∂bρ
< AαAβ > − ∂

∂bν
∂

∂bβ
< AαAλ >

∂

∂bµ
∂

∂bρ
< AαA

β > +

+
∂

∂bµ
∂

∂bβ
< AαAλ >

∂

∂bν
∂

∂bβ
< AαAρ > +

∂

∂bν
∂

∂bβ
< AαAλ >

∂

∂bµ
∂

∂bβ
< AαAρ > −

− ∂

∂bµ
∂

∂bλ
< AαAβ >

∂

∂bα

∂

∂bρ
< AνA

β > − ∂

∂bα

∂

∂bλ
< AνAβ >

∂

∂bµ
∂

∂bρ
< AαA

β > +

+
∂

∂bµ
∂

∂bλ
< AαAβ >

∂

∂bα

∂

∂bβ
< AνAρ > +

∂

∂bα

∂

∂bλ
< AνAβ >

∂

∂bµ
∂

∂bβ
< AαAρ > +

+
∂

∂bµ
∂

∂bβ
< AαAλ >

∂

∂bα

∂

∂bρ
< AνA

β > +
∂

∂bα

∂

∂bβ
< AνAλ >

∂

∂bµ
∂

∂bρ
< AαA

β > −

− ∂

∂bµ
∂

∂bβ
< AαAλ >

∂

∂bα

∂

∂bβ
< AνAρ > − ∂

∂bα

∂

∂bβ
< AνAλ >

∂

∂bµ
∂

∂bβ
< AαAρ > −

− ∂

∂bα
∂

∂bλ
< AµAβ >

∂

∂bν
∂

∂bρ
< AαAβ > − ∂

∂bν
∂

∂bλ
< AαAβ >

∂

∂bα
∂

∂bρ
< AµA

β > +

+
∂

∂bα
∂

∂bλ
< AµAβ >

∂

∂bν
∂

∂bβ
< AαAρ > +

∂

∂bν
∂

∂bλ
< AαAβ >

∂

∂bα
∂

∂bβ
< AµAρ > +

+
∂

∂bα
∂

∂bβ
< AµAλ >

∂

∂bν
∂

∂bρ
< AαAβ > +

∂

∂bν
∂

∂bβ
< AαAλ >

∂

∂bα
∂

∂bρ
< AµA

β > −

− ∂

∂bα
∂

∂bβ
< AµAρ >

∂

∂bν
∂

∂bβ
< AαAρ > − ∂

∂bα
∂

∂bβ
< AµAλ >

∂

∂bν
∂

∂bβ
< AαAρ > +

+
∂

∂bα
∂

∂bλ
< AµAβ >

∂

∂bα

∂

∂bρ
< AνA

β > +
∂

∂bα

∂

∂bλ
< AνAβ >

∂

∂bα
∂

∂bρ
< AµA

β > −

− ∂

∂bα

∂

∂bλ
< AνAβ >

∂

∂bα
∂

∂bβ
< AµAρ > − ∂

∂bα

∂

∂bλ
< AνAβ >

∂

∂bα
∂

∂bβ
< AµAρ > −

− ∂

∂bα
∂

∂bβ
< AµAλ >

∂

∂bα

∂

∂bρ
< AνA

β > − ∂

∂bα

∂

∂bβ
< AνAλ >

∂

∂bα
∂

∂bρ
< AµA

β > +

+
∂

∂bα
∂

∂bβ
< AµAλ >

∂

∂bα

∂

∂bβ
< AνAρ > +

∂

∂bα

∂

∂bβ
< AνAλ >

∂

∂bα
∂

∂bβ
< AµAρ >

(6)

Here we also use the technique of point-sliping, to avoid ambiguities in expressions[Chi10]. Some members of
the expression disappear when switching to the numerical values of the �elds in question µ = λ = 1, ν = ρ = 2.
Thus, all metrics will go to zero, except ηµλ è ηνρ. Which, in turn, are equal -1. Also, accordingly, changes
bµ, bλ and bν , bρ íà −x è −y. We will also carry out substitutions related to b2 = t2−x2−y2− (z−z′)2− iϵϵ(t).
Exactly, α = −t2 + (z − z′)2 + iϵϵ(t) è −(x2 + y2) = −r2. So we move on to a spherical coordinate system and
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integrate it into the horizon plane:

< T 12T 12 >=
2

π4(−α− r2)4
+

4x2

π4(−α− r2)5
+

4y2

π4(−α− r2)5
+

16x2y2

π4(−α− r2)6
(7)

replacing x and y with r cos(ϕ) and r sin(ϕ)

< T 12T 12 >=
2r
(
α2 − r4 cos(4ϕ)

)
π4(α+ r2)6

(8)

∫ ∞

lc

∫ ∞

lc

< T 12T 12 > dxdy =

∫ ∞

lc

∫ 2π

0

r < T 12T 12 > dϕdr =
2

5α3π2
(9)

Let's move on to the Rindler coordinates explicitly∫ ∞

−∞

2eitω

5π2(χ2 + χ′2 − 2χχ′ cosh(t))3
dτ (10)

There are two poles of the expression, which, as a result of periodicity, turn into an in�nite set of points
concentrated along parallel lines. To calculate this integral, it is necessary to apply Cauchy's theorem, known
from the Theory of functions of a complex variable. Creating a contour in�nite along the axis of the abscissa,
we will place two poles there. Let's set a rule for bypassing the contour and divide it into 4 parts, where 2 and
3 will immediately turn to zero. Let's integrate and take the limit:

η =

∫ ∞

lc

χdχ

∫ ∞

lc

χ′ dχ′
−6χ4 + 6χ′4 + 4(χ4 + 4χ2χ′2 + χ′4) ln

(
χ
χ′

)
5(χ2 − χ′2)5π2

(11)

η = −
∫ ∞

lc

χ′ dχ′
−5l4c + 4l2cχ

′2 + χ′4 + 4(l4c + 2l2cχ
′2) ln

(
lc
χ′

)
20(l2c − χ′2)4π2

(12)

η =
l4c − χ′4 − 4l2cχ

′2 ln
(

lc
χ′

)
40(χ′2 − l2c)

3π2
(13)

The viscosity value for a vector massless �eld has the form:

η =
1

120π2l2c
(14)
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6 Gauge

We introduce the value of the energy-momentum tensor with gauge corrections and Faddeev-Popov ghosts,
omitting the diagonal terms that turn to zero in our work. [LL75]

Tµν
photon,gauge =

1

ξ
(Aµ∂ν(∂A) +Aν∂µ(∂A)) (15)

Interestingly, the members of the species ∂
∂bα

∂
∂bβ

AαAβ for this propagator, they turn to zero, as a result, all
fourth-order derivatives in our calculations are also zero. Despite this, the cross products of the Maxwell terms
and the gauge ones, by themselves, do not turn 0; however, the sum of them is mutually compensated and gives
zero.

< T 12
photon,gaugeT

12
photon,gauge >=

1

2π4(−α− r2)4
+

2x2

π4(−α− r2)5
+

2y2

π4(−α− r2)5
+

16x2y2

π4(−α− r2)6
(16)

replacing x and y with r cos(ϕ) and r sin(ϕ)

< T 12
photon,gaugeT

12
photon,gauge >=

r
(
(α− r2)2 − 4r4 cos(4ϕ)

)
2π4(α+ r2)6

(17)

∫ ∞

lc

∫ ∞

lc

< T 12
gaugeT

12
gauge > dxdy =

∫ ∞

lc

∫ 2π

0

r < T 12
gaugeT

12
gauge > dϕdr =

1

15α3π2
(18)

∫ ∞

−∞

eitω

15π2(χ2 + χ′2 − 2χχ′ cosh(t))3
dτ (19)

η =

∫ ∞

lc

χdχ

∫ ∞

lc

χ′ dχ′
−3χ4 + 3χ′4 + 2(χ4 + 4χ2χ′2 + χ′4) ln

(
χ
χ′

)
15(χ2 − χ′2)5π2

(20)

η = −
∫ ∞

lc

χ′ dχ′
−5l4c + 4l2cχ

′2 + χ′4 + 4(l4c + 2l2cχ
′2) ln

(
lc
χ′

)
120(l2c − χ′2)4π2

(21)

η =
l4c − χ′4 − 4l2cχ

′2 ln
(

lc
χ′

)
240(χ′2 − l2c)

3π2
(22)

The value of the contribution to viscosity for a vector massless �eld from the gauge terms of the energy-
momentum tensor:

η =
1

720π2l2c
(23)

It is interesting to note that the expression does not depend on ξ.

7 Ghosts

It is also necessary to take into account the Faddeev-Popov ghosts. In the case of multiplying these terms
with Maxwell and gauge terms, we immediately get zero due to their commutativity properties. However, there
remain 4 terms obtained by multiplying the wind terms. [DIK09]

T 12
photon,ghosts = −1

ξ
(∂µc̄∂νc+ ∂ν c̄∂µc) (24)

where c is The Lagrangian of ghosts: [DIK09].

c =
−i

(2π)4

∫
d4peip(x−y)

p2
[ηµν − pµpν

p2
(1− ξ)] (25)

<
1

ξ2
(∂µc̄∂νc+ ∂ν c̄∂µc)(∂λc̄∂ρc+ ∂ρc̄∂λc) >=

= − 1

4π4(−α− r2)4
− x2

π4(−α− r2)5
− y2

π4(−α− r2)5
− 8x2y2

π4(−α− r2)6

(26)
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The expression turns out to be equal to a similar calculation for a scalar massless �eld multiplied by 2. replacing
x and y with r cos(ϕ) and r sin(ϕ)

< T 12
photon,ghostsT

12
photon,ghosts >= −

r
(
(α− r2)2 − 4r4 cos(4ϕ)

)
2π4(α+ r2)6

(27)

∫ ∞

lc

∫ ∞

lc

< T 12
ghostsT

12
ghosts > dxdy =

∫ ∞

lc

∫ 2π

0

r < T 12
ghostsT

12
ghosts > dϕdr = − 1

15α3π2
(28)

−
∫ ∞

−∞

eitω

15π2(χ2 + χ′2 − 2χχ′ cosh(t))3
dτ (29)

η = −
∫ ∞

lc

χdχ

∫ ∞

lc

χ′ dχ′
−3χ4 + 3χ′4 + 2(χ4 + 4χ2χ′2 + χ′4) ln

(
χ
χ′

)
15(χ2 − χ′2)5π2

(30)

η =

∫ ∞

lc

χ′ dχ′
−5l4c + 4l2cχ

′2 + χ′4 + 4(l4c + 2l2cχ
′2) ln

(
lc
χ′

)
120(l2c − χ′2)4π2

(31)

η = −
l4c − χ′4 − 4l2cχ

′2 ln
(

lc
χ′

)
240(χ′2 − l2c)

3π2
(32)

The value of the contribution to viscosity for a vector massless �eld from the members of the Fadeev-Popov
ghosts of the energy-momentum tensor:

η = − 1

720π2l2c
(33)

It is worth noting that it does not depend on ξ as well as the gauge terms. Moreover, the expression is equal to
it in modulus, as a result of which the contribution from the gauge parts and the parts of the ghosts turns to
zero.

8 Calculations of entropy and the �nal limit

It is known from statistical physics [LL80]:

sloc = − 1

V

∂F

∂T
=

∂p

∂T
(34)

Where T is temperature. In our case, this is the Unruh temperature equal to a
2π , where a is the acceleration of

the system, which can also be considered in Rindler coordinates.
The pressure for spin 1:

p =
1

3

(
π2T 4

15
+

T 2

6χ2
− 11

240π2χ4

)
(35)

[Dow94] Given Z = 1
|a| , a = 1

χ , we get the entropy values:

sloc =
1

15πχ3
(36)

s =
1

30πl2c
(37)

We obtain the limit of the ratio of shear viscosity to entropy

η

s
=

1

4π
(38)

It is also noteworthy that this limit does not depend on the value lc.
Note that the correspondence with the limit of string theory is obtained using [BDS24], whereas using the

expressions for entropy from [Dow94] we would get a completely di�erent expression.
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9 Local viscosity and limit

We obtain the values of the so-called "local" viscosity. The value turns out to be non-obvious and more
cumbersome than the value of the integral viscosity:

ηloc
sloc

=
3χ(χ4 + 4χ2lc

2 − 5lc
4 − 4lc

2(2χ2 + l2c) ln
(

χ
lc

)
)

4π(χ2 − l2c)
4

(39)

As you can see, this expression is derived from the Maxwell terms of the tensor. The values obtained from the
ghosts and gauge members are equal and opposite in sign.

At a value below 1,66lc, the value of the "local" viscosity falls below the minimum value for global viscosity;
and at lc → 0 (which corresponds to the membrane surface)It is equal to 1

8π , that is, half of the minimum value.
At χ → ∞ (away from the horizon), the viscosity value tends to 3

4π .
When the thickness of the lc membrane changes at constant χ. With a value of lc → 0, which corresponds

to the assumption of the absence of a membrane, we get 3
4π .Also, this value will not depend on χ!This indicates

a constant viscosity value at any distance of many large membrane thicknesses from the membrane.
The appearance of a distance dependence is a direct indication of the presence of a membrane of �nite

thickness, and the scale at which the ratio of viscosity to entropy varies markedly determines the thickness of
the membrane.

despite the fact that the viscosity is equal to 3
4π , this is compensated by its drop on scales of the order of

the membrane thickness below and 1
4π ; which on average results in 3

4π .

On the graph, the gray area indicates the membrane area, the distance from the stretched to the true horizon.

10 Conclusions

Let's summarize and list the results obtained.
1. The viscosity of photons in an accelerated reference frame at the Unruh temperature was calculated for

the �rst time.
2. The ratio of the average viscosity to the average entropy for photons in a Minkowski vacuum in an

accelerated medium has been clearly shown. This value is equal to 1
4π , which corresponds to the limit derived

from string theory. 3. It is shown that the ratio of local viscosity to local entropy on the membrane surface is
two times less than the limit from string theory and is equal to 1

8π .
4. The ratio of local viscosity to local entropy is found at an arbitrary distance from the membrane of the

extended horizon for photons. It is clearly shown that this function is universal for massless particles with
di�erent spins.
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5. Various approaches to calculating entropy are analyzed and it is shown that the thermodynamic de�nition
through the pressure derivative is in agreement with the limit on the ratio of viscosity to entropy from string
theory.

6. It is clearly shown that the viscosity of photons does not depend on the choice of gauge and there is a
mutual compensation of the contributions of the members �xing the gauge and the Faddev-Popov ghosts. Thus,
all the tasks were completed.

11 Research prospects

The prediction for the viscosity-to-entropy ratio from string theory is universal. At the same time, it is not
obvious from the calculation we have carried out - the calculation directly depends on which �elds we are
considering. Therefore, it is of interest to check the universality of the limit by considering higher spins, as
well as massive �elds. It can be noted that this work uses characteristics directly related to the properties
of particles. In this paper, we have considered massless particles with spin 1, which fully corresponds to the
behavior of such a particle as a photon. If we take into account the mass of the particle, then we get the values
for the carriers of the weak interaction of W± è Z0 bosons. Then we can see the di�culties, in particular, the
e�ects of quantum chromodynamics will give us values for gluons and gluon plasma. Subsequently, the addition
of quarks will give us a value for the quark-gluon plasma, which is most observed in quantum e�ects, and which
will be easier to detect in the case of the Unruh e�ect experiment. To summarize, we can say that we are ready
to publish an article on this topic based on the above calculation results.
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