
JOINT INSTITUTE FOR NUCLEAR RESEARCH
Dzhelepov Laboratory of Nuclear Problems

FINAL REPORT ON THE
START PROGRAMME

Measurement of main characteristics for different types of semiconductor
radiation detectors

Supervisor:
Dr. Uladzimir Kruchonak

Student:
Luparau Anatoli, Belarus

Gomel State Technical University

Participation period:
July 07 – August 17,

Summer Session 2024

Dubna, 2024

Contents

1 Introduction..3
1.1 Overview of semiconductor radiation detectors..3
1.2 Objectives...3

2 Experimental setup and procedure...4
2.1 Scope of work..4
2.2 Circuit configuration...4
2.3 Measurement process..6
2.4 Measurement of I-V characteristics of wafers..9

3 Calculation of charge carrier mobility and lifetime...12
4 Conclusion...15
5. References..16
Appendix 1..17
Appendix 2 ...19

2

1 Introduction

1.1 Overview of Semiconductor Radiation Detectors

Semiconductor radiation detectors are essential tools in various fields, including
particle physics, medical imaging, and environmental monitoring. These detectors,
such as those made from materials like GaAs, Si, and CdZnTe, are highly sensitive
to different types of radiation, including particles and photons. The ability to
accurately measure and analyze the signals generated by these detectors is crucial
for understanding their performance and optimizing their use in practical
applications. Despite their widespread use, challenges remain in accurately
characterizing the signal responses and electrical properties of these detectors,
particularly in terms of signal amplitude, duration, and the carrier transport
properties within the semiconductor material.

1.2 Objectives

The primary objective of this study was to measure and analyze the key
characteristics of semiconductor radiation detectors, specifically the signal
amplitude and duration when exposed to light pulses. These measurements were
used to calculate the charge carrier mobility and lifetime within the detectors.
Additionally, the study aimed to assess the integrity of detector matrices by
measuring the current-voltage (I-V) characteristics of wafers at their edges. This
work involved the design and implementation of an experimental setup, data
acquisition using an oscilloscope, and data analysis using ROOT CERN software [1].

3

2 Experimental setup and procedure

2.1 Scope of work

The scope of this work involved the following tasks:

Assemble the Experimental Setup: Design and build a circuit incorporating a
transistor, a current-limiting resistor, and an LED to measure the signal
characteristics of semiconductor detectors. The setup was required to generate
light pulses with precise frequency and pulse width.

Measure Signal Characteristics: Perform measurements to determine the
amplitude and duration of the signals generated by GaAs, Si, and CdZnTe
detectors when exposed to light pulses. This required using an oscilloscope to
capture and record the signals.

Calculate Charge Carrier Properties: Analyze the measured data to calculate the
charge carrier mobility and lifetime within the detectors. This involved fitting the
data to appropriate equations and using software tools for analysis.

Conduct Wafer Measurements: Measure the current-voltage (I-V) characteristics of
detector wafers in a prepared measurement chamber. Calculate the average
resistance of the wafers to assess their quality and uniformity.

2.2 Circuit configuration of LED pulses generator

For this setup, an N-channel MOSFET RD01MUS2B [2] was chosen due to its high-
frequency characteristics. The assembled circuit is shown in Figure 1.

4

Fig. 1. Scheme for the experiment

The signal generator was set to a frequency of 25 Hz with a pulse duration of 100
ns. The voltage source was set to 11.7 V, and the resistor had a resistance of 5
Ohm.

The oscilloscope trace in Figure 2 indicates that the setup is functioning correctly.
The voltage across the LED is shown in purple, while the signal from the generator
is displayed in green.

Fig. 2. Oscilloscope trace from the LED, (3) — Signal from LED, (4) — Signal from
generator

A voltage is applied to the GaAs, Si, and CdZnTe detectors, and the signal
amplitude and duration are measured through the amplifier using an oscilloscope.

5

2.3 Measurement of LED pulses response

The measurement process involved applying a bias voltage to the detector and
illuminating it with an LED. For each voltage level, I measured the signal
amplitude, duration, and delay relative to the generator signal. These
measurements were systematically recorded in a data table.

As the experiment progressed, the applied voltage to the detector was gradually
increased. After each voltage increment, the same set of measurements was
repeated, including the signal amplitude, duration, and delay. This process was
continued until the detector reached its saturation point, where the signal
characteristics no longer showed significant changes with further increases in
voltage. The data collected during this process provided insights into the
performance and response of the detectors under varying conditions.

The measurements are shown in Figures 3 and 4.

Fig. 3. Signal from the detector (yellow) and generator (green) at 100V applied to
the detector

Fig. 4. Signal from the detector (yellow) and generator (green) at 150V applied to
the detector

6

The recorded data and the standard deviation are presented in Table 1. Probably,
this behavior indicates the onset of detector saturation. While the signal amplitude
continues to increase, the duration of the signal stops decreasing and starts to
rise. This suggests that the detector is no longer operating in its linear range, and
its response becomes nonlinear due to the accumulation of excess charge.

7

U, V Signal, mV Sigma Width, ns Sigma Delay, ns Sigma
30 22 0.9 875 4.6 916 4.2
35 25.2 0.7 798 3.9 975 2.9
40 32.9 0.2 702 4.8 1032 3.2
45 41.7 0.4 619 1.6 1098 2.7
50 52.4 0.3 566 1.1 1159 2.9
60 74.4 0.4 493 1.4 1241 1.4
70 97.1 0.4 447 0.6 1295 0.4
80 120 0.5 428 0.8 1325 0.5
90 150 0.5 395 0.4 1362 0.5

100 174 0.7 372 0.7 1394 0.7
110 201 0.7 356 0.8 1413 0.3
120 230 0.6 343 0.2 1432 0.3
130 258 0.8 327 0.3 1452 0.5
140 302 1.1 321 0.3 1463 0.4
150 327 1 313 0.2 1475 0.2
160 357 0.7 305 0.1 1486 0.2
170 383 0.5 298 0.5 1496 0.6
180 424 1.1 290 0.3 1506 0.2
190 449 0.9 286 0.2 1513 0.2
200 475 0.7 283 0.2 1519 0.2
210 506 1 280 0.2 1524 0.2
220 535 0.7 276 0.2 1530 0.2
230 556 1 274 0.3 1534 0.2
240 586 0.9 274 0.2 1535 0.3
250 610 0.7 273 0.2 1540 0.2
260 641 0.8 269 0.3 1545 0.2
270 665 0.6 269 0.2 1547 0.2
280 703 0.8 266 0.2 1551 0.2
290 722 0.9 265 0.2 1554 0.2
300 748 1.1 263 0.1 1557 0.1
310 772 1.2 262 0.1 1559 0.1
320 792 1.3 261 0.1 1561 0.2

Tab. 1. Measurement Results for the CdZnTe Detector

8

2.4 Measurement of I-V characteristics of wafers

Regarding the I-V measurements, the setup is already prepared, and it is only
necessary to place the wafers in the insulating chamber, move the needle across
the contacts, and conduct the measurements using a computer program. The
installed wafer is shown in Figure 5.

Fig. 5. Wafer AG-450#30 in the setup

Regarding the I-V characteristics measurements of the wafers, the results are
shown in Figure 6.

Fig. 6. I-V characteristics of GaAs detector

9

On the wafers, measurements are taken at areas labeled "s" and "b". The
measurement results are saved in a file named after the wafer, including the area
label and number, as well as the voltage range.

Calculations will be presented for the wafer AG-450#30, with a thickness of 520
μm. It is necessary to calculate the average resistance for U>0 and U<0 on each
pad. For this purpose, a program was written that iterates through all the pads,
with information stored in separate text files, and saves the result in a file named
"Name_Result.txt". The code for the program is provided in Appendix 2.

The contents of the file with the I-V measurements are shown in Figure 7, with the
first column representing voltage and the second column representing current.
The program's operation is illustrated in Figure 8.

Fig. 7. Voltage and current of wafer AG-450#30

10

Fig. 8. Calculation of resistance for the wafer pads AG-450#30

This process is then repeated for the subsequent wafers. The program is versatile
for such measurements, requiring only the format name as
"Name_Pad_Voltage_DateTime.txt".

Let's calculate the resistivity using the formula ρ = R⋅S
l

 for both positive and

negative voltage. For the calculation, we'll use a cross-sectional area (S) of
0,5cm*0,5cm, with the thickness (l) of our wafer being 520μm. For the s1 pad and
positive voltage ρ = 4992438255,17⋅0,5⋅0,5

0,052
= 24 [GΩ⋅cm], for negative voltage

ρ = 4504491270,29⋅0,5⋅0,5
0,052

= 21,65 [GΩ⋅cm]. This result indicates the integrity of

the wafer, as a typical resistivity ranges from 109 to 1010 Ω*cm.

11

3 Calculation of charge carrier mobility and lifetime

Using ROOT CERN, I generated graphs from the data collected in the tables and
fitted them with appropriate functions[3]. For the signal, the fitting function used
was (par[1] x[0]/par[0]) (1 exp(par[0]/x[0])), and for the duration, the fitting⋅ ⋅ − −
function was par[0]/x[0]+par[1]. The formula used for fitting the signal was derived
from the Hecht [4] equation:

CCE= μ τ U
d2

⋅ (1−e− d2

μ τ U), where:

 CCE is the collected charge signal,
 μ is the charge carrier mobility,
 τ is the charge carrier lifetime,
 U is the applied voltage,
 d is the thickness of the detector.

And for fitting the duration:

t= d2

μU
, where t is the time.

The par[0] values for the duration are divided by 109, as the measurements were in
nanoseconds and the calculations require seconds. The thickness d is kept in
centimeters, as its unit of measurement does not affect the result.
Let us proceed with the calculation of μ and τ for the CdZnTe detector:
The plot and fitting of the duration for the CdZnTe detector in ROOT CERN are
shown in Figure 9. The Root CERN code for the signal and time is presented in
Appendix 1.

Fig. 9. Fitting of duration

To determine μ, we use the formula μ= d2

par [0] .

12

The thickness of our CdZnTe is 900 μm, and the time is measured in nanoseconds.

Therefore: μ= 0 ,092

16170 ⋅ 10−9
=500,927 { cm2V ⋅ s }

Now, to find τ, we need par[0] for the signal, with the fitting shown in Figure 10.

Fig. 10. Fitting of signal

τ= d2

μ ⋅ par [0]
= 0 ,092

500 ,927 ⋅ 6998
=2,31 {ns }

Following this approach, the remaining detectors, Si and GaAs, can also be
evaluated, as well as the Si detector for hole carriers (charge carriers). The results
of these calculations are presented in Table 2.

Detector GaAs 500μm
for electrons

Si 500μm
for electrons

Si 500μm for
holes

Si 500μm for
holes

Am241
alpha

CdZnTe
900μm for
electrons

Charge
Carrier

Mobility,

{ cm2V ⋅ s }

9920,005 648,624 632,608 601,279 500,927

Charge
Carrier

Lifetime, ns

4,425 16,996 18,611 182,547 2,31

Tab. 2. Calculation results

13

GaAs exhibits very high charge carrier mobility and short lifetime, indicating fast
charge movement and rapid recombination.

The charge carrier mobility in silicon is lower than in GaAs, but the longer lifetime
indicates a slower recombination process. The hole mobility is almost the same as
that of electrons, but the lifetime is slightly longer, which is typical for silicon.
When measured with americium, the hole mobility slightly decreases, but the
charge carrier lifetime significantly increases, which is due to the effect of the
radiation.

CdZnTe has the lowest mobility and charge carrier lifetime, which is typical for this
material used in detectors.

These results highlight the differences in charge carrier behavior across various
materials. GaAs exhibits high mobility and a short lifetime, silicon has lower
mobility but a longer lifetime, while CdZnTe shows the lowest values for both
parameters.

14

4 Conclusion

In this work, we measured and analyzed the characteristics of semiconductor
detectors (GaAs, Si, CdZnTe) using an LED setup and an oscilloscope. We focused
on signal amplitude, duration, and delay to calculate charge carrier mobility and
lifetime.

Our results demonstrate significant differences in charge carrier behavior across

different materials. GaAs exhibits high mobility(9920,005 { cm2V ⋅ s }) and short

lifetime(4,425 ns), indicating rapid charge movement and quick recombination.

Silicon shows lower mobility(648,624 { cm2V ⋅ s }) but a longer lifetime(16,996 ns),

suggesting a slower recombination process. CdZnTe has the lowest values for both

parameters(500,927 { cm2V ⋅ s }, 2,31 ns), which is typical for this detector material.

Alpha irradiation by Am241 notably increases the charge carrier lifetime in

silicon(182,547 ns), although it slightly reduces the hole mobility(601,279 { cm2V ⋅ s }).
Additionally, we conducted I-V measurements of GaAs wafers to verify thematrix
integrity. The I-V measurements of wafer pads were conducted using a ready-
made setup, and the data was processed through a custom program. The
program calculated the resistance of each pad and saved the results, confirming
the functionality and reliability of the wafer matrices(ranging from 109 to 1010,
whereas we have around 24*109).

15

5 References

[1] e-document: URL:
https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuideA4.pdf

[2] e-document: URL:
https://www.mitsubishielectric.com/semiconductors/hf/products/datasheet/
rd01mus2b.pdf

[3] e-document: URL: https://root.cern/doc/master/group__tutorial__fit.html

[4] Semiconductor Detectors for Nuclear Radiation" by Yu.K. Akimov

16

Appendix 1 ROOT CERN commands for fitting

For signal:
float x[32] =
{30,35,40,45,50,60,70,80,90,100,110,120,130,140,150,160,170,180,
190,200,210,220,230,240,250,260,270,280,290,300,310,320};
float y[32] =
{22,25.2,32.9,41.7,52.4,74.4,97.1,120,150,174,201,230,258,302,32
7,357,383,424,449,475,506,535,556,586,610,641,665,703,722,748,77
2,792};
double fitfunc(double *x, double *par) { return
(par[1]*x[0]/par[0])*(1-exp((-par[0])/x[0])); }
TF1* ff = new TF1("ff", fitfunc, 30.0, 320.0, 2);
ff->SetParameter(0,1);
float yerr[32] =
{0.9,0.7,0.2,0.4,0.3,0.4,0.4,0.5,0.5,0.7,0.7,0.6,0.8,1.1,1,0.7,0
.5,1.1,0.9,0.7,1,0.7,1,0.9,0.7,0.8,0.6,0.8,0.9,1.1,1.2,1.3};
TGraphErrors *grapherr = new TGraphErrors(32,x,y,0,yerr);
grapherr->Fit("ff");
grapherr→Draw("AC*");

For time:
float x[32] =
{30,35,40,45,50,60,70,80,90,100,110,120,130,140,150,160,170,180,
190,200,210,220,230,240,250,260,270,280,290,300,310,320};
float y[32] =
{875,798,702,619,566,493,447,428,395,372,356,343,327,321,313,305
,298,290,286,283,280,276,274,274,273,269,269,266,265,263,262,261
};
float y2[32] =
{916,975,1032,1098,1159,1241,1295,1325,1362,1394,1413,1432,1452,
1463,1475,1486,1496,1506,1513,1519,1524,1530,1534,1535,1540,1545
,1547,1551,1554,1557,1559,1561};
float yerr1[32] =
{4.6,3.9,4.8,1.6,1.1,1.4,0.6,0.8,0.4,0.7,0.8,0.2,0.3,0.3,0.2,0.1
,0.5,0.3,0.2,0.2,0.2,0.2,0.3,0.2,0.2,0.3,0.2,0.2,0.2,0.1,0.1,0.1
};
float yerr2[32] =
{4.2,2.9,3.2,2.7,2.9,1.4,0.4,0.5,0.5,0.7,0.3,0.3,0.5,0.4,0.2,0.2
,0.6,0.2,0.2,0.2,0.2,0.2,0.2,0.3,0.2,0.2,0.2,0.2,0.2,0.1,0.1,0.2
};
TGraphErrors *widtherr = new TGraphErrors(32,x,y,0,yerr1);
TGraphErrors *delayerr = new TGraphErrors(32,x,y2,0,yerr2);
double fitfunc(double *x, double *par) { return
(par[0]/x[0]+par[1]); }
TF1* ff = new TF1("ff", fitfunc, 30.0, 320.0, 2);

17

widtherr->Fit("ff");
delayerr->Fit("ff");
widtherr->Draw("AC*");
delayerr->Draw("AC*");

18

Appendix 2 Program for calculating wafer resistances

#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <string>
#include <filesystem>
#include <iomanip>
#include <algorithm>
#include <regex>

namespace fs = std::filesystem;

struct ResistanceData {
 double positiveSum = 0.0;
 double negativeSum = 0.0;
 int positiveCount = 0;
 int negativeCount = 0;
};

ResistanceData processFile(const std::string& filename) {
 std::ifstream file(filename);
 if (!file) {
 std::cerr << "Не удалось открыть файл: " << filename <<
std::endl;
 return {};
 }

 ResistanceData data;

 std::string line;
 while (std::getline(file, line)) {
 std::istringstream iss(line);
 double voltage, current;
 if (iss >> voltage >> current) {
 if (current != 0) {
 double resistance = voltage / current;
 if (voltage > 0) {
 data.positiveSum += resistance;
 data.positiveCount++;
 } else if (voltage < 0) {
 data.negativeSum += resistance;
 data.negativeCount++;
 }
 }
 }
 }

19

 file.close();
 return data;
}

bool isValidFile(const std::string& filename, const std::string&
suffix) {
 size_t pos1 = filename.find(suffix);
 size_t pos2 = filename.find("_500V_");
 size_t pos3 = filename.find(".txt");
 return (pos1 != std::string::npos && pos2 !=
std::string::npos && pos3 != std::string::npos && pos2 > pos1 &&
pos3 > pos2);
}

std::vector<std::string> splitString(const std::string& str) {
 std::regex re(R"(\d+|\D+)");
 std::sregex_token_iterator it(str.begin(), str.end(), re);
 std::vector<std::string> parts(it, {});

 return parts;
}

bool naturalSortCompare(const std::string& a, const std::string&
b) {
 std::vector<std::string> partsA = splitString(a);
 std::vector<std::string> partsB = splitString(b);

 auto itA = partsA.begin();
 auto itB = partsB.begin();

 while (itA != partsA.end() && itB != partsB.end()) {
 if (std::isdigit((*itA)[0]) && std::isdigit((*itB)[0]))
{
 int numA = std::stoi(*itA);
 int numB = std::stoi(*itB);
 if (numA != numB) {
 return numA < numB;
 }
 } else {
 if (*itA != *itB) {
 return *itA < *itB;
 }
 }
 ++itA;
 ++itB;
 }

 return partsA.size() < partsB.size();

20

}

void processFilesWithSuffix(std::ofstream& outFile, const
std::string& path, const std::string& suffix) {
 std::vector<std::string> validFiles;
 std::string baseName;

 for (const auto& entry : fs::directory_iterator(path)) {
 if (entry.is_regular_file()) {
 std::string filename =
entry.path().filename().string();
 if (isValidFile(filename, suffix)) {
 validFiles.push_back(filename);
 if (baseName.empty()) {
 baseName = filename.substr(0,
filename.find(suffix));
 }
 }
 }
 }

 std::sort(validFiles.begin(), validFiles.end(),
naturalSortCompare);

 for (const std::string& filename : validFiles) {
 ResistanceData data = processFile(filename);

 double positiveAverage = (data.positiveCount > 0) ?
data.positiveSum / data.positiveCount : 0.0;
 double negativeAverage = (data.negativeCount > 0) ?
data.negativeSum / data.negativeCount : 0.0;

 outFile << "Файл: " << filename << std::endl;
 outFile << "R+: " << positiveAverage << " Ом" <<
std::endl;
 outFile << "R-: " << negativeAverage << " Ом" <<
std::endl;
 outFile << std::endl;
 }
}

int main() {
 std::string path = ".";
 std::string resultFileName;

 for (const auto& entry : fs::directory_iterator(path)) {
 if (entry.is_regular_file()) {
 std::string filename =
entry.path().filename().string();

21

 if (filename.find("_s") != std::string::npos ||
filename.find("_b") != std::string::npos) {
 resultFileName = filename.substr(0,
filename.find_first_of("_")) + "_Result.txt";
 break;
 }
 }
 }

 if (resultFileName.empty()) {
 std::cerr << "Не удалось определить имя выходного
файла." << std::endl;
 return 1;
 }

 std::ofstream outFile(resultFileName);
 if (!outFile) {
 std::cerr << "Не удалось создать файл для вывода: " <<
resultFileName << std::endl;
 return 1;
 }

 outFile << std::fixed << std::setprecision(2);

 processFilesWithSuffix(outFile, path, "_s");
 processFilesWithSuffix(outFile, path, "_b");

 outFile.close();

 std::cout << "Результаты сохранены в файл: " <<
resultFileName << std::endl;

 return 0;
}

22

