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ABSTRACT

Generating events in large scintillator detectors like JUNO by tracking the path of
each scintillation photon from emission to capture is a slow process. Additionally, the gen-
erated data may not match the real data collected by the detector. To address these issues,
we propose an analytical approximation of the detector response based on the relative posi-
tions of the generated event and the PMTs in the detector. In this study, we establish the
parameters of the model and extract them from the data generated for the JUNO detector.
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INTRODUCTION

THE JUNO DETECTOR

JUNO (Jiangmen Underground Neutrino Observatory) is a large underground liquid
scintillator detector located in an underground laboratory under the Dashi hill (700 m un-
derground) in Jinji town in Guangdong province, China [1]. The primary physics goal of
the JUNO detector was proposed to be the determination of the neutrino mass ordering [2],
however other neutrino oscillation and astroparticle physics topics will be researched.

The Central Detector (CD) of JUNO will be a spherical acrylic vessel 35.4 m in
inner diameter and 120 mm thick containing 20 kton LAB-based (linear alkylbenzene) liquid
scintillator and supported by a spherical stainless steel (SS) structure (see fig. 1). The CD
volume will be watched by 17612 20-inch "large" PMTs (photomultiplier tubes) and 25600
3-inch "small" PMTs. The cylindrical Water Pool (WP), in which the CD will be contained,
will be filled with 35 ktons of ultrapure water and will be watched by 2400 20-inch PMTs
to create a Cherenkov detector for vetoing muons. Also a part of the veto, the Top Tracker
(TT) will be located above the main detector and will consist of plastic scintillating strips.

Fig. 1 — Schematic view of the JUNO detector [1]
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DETECTOR RESPONSE MODELING

Usually the response of a detector is modelled using toolkits such as Geant4, which
allow to simulate the geometry of the detector, its materials and the passage of particles
through it. Such methods are used ubiquitously: in high energy, nuclear and neutrino
physics, medical science, etc. It allows for detailed event generation, e.g. in a given scintilla-
tion event the path of each photon through matter is tracked from its emission to its capture
in the detector and then the response of detector electronics is also simulated. This way of
modeling, while being very thorough and giving large amounts of data for preliminary and
ongoing study of the detector, can be quite slow, taking seconds to generate a single event,
while in a real detector event frequency may easily measure in thousands per second.

A more «phenomenological» path of event generation was used in the CTF experiment
[3; 4] and discussed in [5]: it consists of defining an analytical approximation of the detector
response with some free parameters, evaluating their values from fitting the approximation
to real or generated data and then generating events based on the approximation. Here a
similar (albeit simplified) analysis is reported for the generated data of the JUNO detector.
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1 PHOTOMULTIPLIER TUBES

1.1 CD LPMT COORDINATES AND TYPES

In this analysis, we only consider the "large" (20-inch) PMTs (or LPMTs) of the CD.
The coordinates of these PMTs will be needed.

There are two types of LPMTs in the CD: Microchannel Plate Photomultipliers (MCP
PMTs) and dynode PMTs. The MCP PMTs from Northern Night Vision Technology Co. are
further divided into two categories: NNVT (2720 PMTs) and HighQENNVT (9825 PMTs).
Dynode PMTs from Hamamatsu Photonics K. number 4997 PMTs. In this analysis, we
divided the PMTs into these three types. In JUNO software, each of the LPMTs of the CD
is given an ID from 0 to 17611, and the coordinates and type of each PMT are also known
(see fig. 1.1). The distance between each PMT and the center of the detector is L0 = 19.4

m.

Fig. 1.1 — The arrangement of PMTs in JUNO CD by type: Hamamatsu (red), HighQEN-
NVT (green) and NNVT (blue). The coordinates are measured in mm.

To determine what the coordinates of a given PMT represent in the frame of refer-
ence of the PMT, a few electronic events were generated at the center of the CD and the
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positions where the scintillation photons hit the PMT surface were displayed along with
the coordinates of the PMT itself (see fig 1.2). As can be seen from the figure, the PMT
coordinates give the position of the geometric center of the PMT photocathode surface (a
point «inside» it). In our analysis, however, we used the coordinates of the «top» of the
photocathode surface. These can be calculated if the distance between the two points for
each PMT type is known: ∼190 mm for Hamamatsu and ∼184 mm for NNVT.

Fig. 1.2 — Three projections of the points where scintillation photons hit the PMT surface
(the color of bins marks the number of hits in each bin) and the PMT coordinates (box).
The coordinates are measured in mm.

1.2 CD LPMT SENSITIVITIES

Each of the LPMTs of the CD of JUNO responds somewhat differently to the scin-
tillation photons hitting its photocathode and the photo electrons (p.e.) emitted from it
— the average collected charge will not be the same for all the PMTs. Owing to spherical
symmetry of the JUNO CD, we normalized all values to the center of the detector. First,
we must calculate the average charge ⟨Q0⟩ (in p.e.) collected per event located in the center
of the detector and divide it by the number of PMTs [5]:

µ0 =
⟨Q0⟩
NPMT

(1.1)

As there are 17612 LPMTs in the CD and the expected yield of photons in a scintil-
lation event is ∼ 1600 p.e.

MeV [1], the value of µ0 is ≈ 0.1 p.e.
MeV·event·PMT .

To extract µ0, Nev = 105 events of a 1 MeV single electron at the center of the
detector were generated, and the response of the LPMTs was analyzed. From the obtained
data files, two branches were taken for analysis: «Charge», a branch with a data type
double, and «nPE_perPMT» (number of p.e.) with a data type integer. The values of µ0

were calculated for all PMTs together and then for the three PMT types separately (Tab.
1.1). As shown in the table, the different PMT types have distinctly different values of µ0.
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Moreover, to correctly calculate the error of each µ0 value, we must account for the
variance of signal multiplication in PMTs due to its statistical nature. Each photoelectron,
multiplied by the PMT dynode system, creates a slightly different signal in the outer circuit.
This results in an increase in the variance of the output signals relative to the input signals.
The factor by which the variance increases is called the excess noise factor (ENF), which
has been measured for the PMTs of the JUNO detector [6]. The measured ENF is 1.19 for
Hamamatsu PMTs and 1.58 for NNVT PMTs (see fig. 1.3).

Fig. 1.3 — Excess noise factor (ENF) distribution for the PMTs of the JUNO detector [6]

The distribution of the number of photoelectrons follows Poisson’s law; therefore, the
error of µ0 values can be calculated as follows:

∆µ0 = ∆

(
⟨Q0⟩
NPMT

)
=

∆ ⟨Q0⟩
NPMT

=
1

NPMT

√
ENF · ⟨Q0⟩

Nev

(1.2)

Another way of interpreting µ0 is to consider it as the mean value of the Poisson
distribution of the number of p.e. that are emitted from the surface of a single PMT in
an event. Given this, its value can also be extracted from the number N of PMTs that
registered at least one p.e. This branch of analysis is called «N PMT».

The probability of 0 p.e. emission is P (0) = e−µ0 . Then, a nonzero amount of p.e. is
emitted with a probability of P (> 0) = 1 − P (0) = 1 − e−µ0 . Experimentally, P (> 0) can
be determined as the ratio of N to Ntrig = Nev ·NPMT — the total number of triggers (the
number of times a PMT could have registered a signal). Thus, µ0 can be calculated as

µ0 = −ln

(
1−

N

Ntrig

)
(1.3)

The value N follows a binomial distribution with p = P (> 0) («success» — PMT
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registered a signal) and q = 1 − P (> 0) = P (0) («failure» — PMT has not registered
anything). From the dispersion of this binomial distribution D[N ] = Ntrigpq, we can evaluate
the error of the µ0 value as:

∆µ0 = ∆

(
−ln

(
1−

N

Ntrig

))
=

Ntrig

Ntrig −N

∆N

Ntrig

=

√√√√ N

Ntrig(Ntrig −N)
(1.4)

Branch Average µ0
µ0 by PMT type

Hamamatsu HighQENNVT NNVT
Charge 0.10617±0.00001 0.08621±0.00001 0.11495±0.00001 0.11094±0.00001

nPE_perPMT 0.11819±0.00001 0.10015±0.00002 0.12627±0.00001 0.12194±0.00003
N PMT 0.10337±0.00001 0.09226±0.00001 0.10862±0.00001 0.10481±0.00002

Table 1.1 — The average charge µ0 per event (1 MeV electron in the center of the detector)
per PMT for different branches of the analysis and different PMT types

Using the acquired values of µ0 we can extract the sensitivities si of each PMT. Using
the same generated data sample, we calculate the average charge µi collected by the i-th
PMT per event and divide it by the respective µ0 [5]:

si =
µi

µ0

(1.5)

The value of µi can be calculated either by taking the ratio of the charge Qi collected
by the i-th PMT to the number of events Nev or by taking the mean value of the Poisson
distribution of the p.e. counts in each event, in which case the number of triggers is Ntrig =

Nev, because the calculation is performed for each PMT separately. The errors of si can also
be calculated as:

∆si =

√√√√(∆µi

µ0

)2

+

(
µi∆µ0

µ2
0

)2

(1.6)

where ∆µ0 is the error in µ0 (Eq. 1.2, 1.4) and the errors ∆µi are calculated the same
way.

When the calculation of si is performed using the average values for µ0, the distinction
between the sensitivities of different PMT types is easily visible (compare fig. 1.4 and 1.5).
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Fig. 1.4 — PMT sensitivities si calculated using the average µ0 values for the respective
branches: «Charge» (left), «nPE_perPMT» (center) and «N PMT» (right)

Fig. 1.5 — PMT sensitivities si calculated using µ0 values corresponding to each PMT type for
the respective branches: «Charge» (left), «nPE_perPMT» (center) and «N PMT» (right)
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2 PMT LIGHT COLLECTION FUNCTION

Previously, all analysis was conducted for events generated in the center of the de-
tector. However, it is only logical that events closer to a given PMT will produce a greater
output signal, whereas farther ones may not even be registered. This effect can be considered
by introducing a factor that depends on the event position relative to the PMT. We call this
factor the PMT light collection function fPMT .

2.1 GEOMETRY

The position of each event can be described using the coordinates r = {x, y, z} (in
the detector frame of reference) or the coordinates in the frame of reference of the i-th PMT:
the distance Li between the PMT and event and the polar angle θ′i at which the PMT «sees»
the event. We assume axial symmetry of the photocathode sensitivity, thus we do not need
a third coordinate (the azimuthal angle) for the PMT frame of reference. Another pair of
coordinates can be introduced to describe the event position: the distance from the center
of the detector r =

√
x2 + y2 + z2 (which is the same for all the PMTs) and the angle θi

between r and Ri (the position of the i-th PMT in the detector frame of reference).

Fig. 2.1 — Positions of a PMT, of an event, and the coordinates used to describe them:
{r, cos θi} and {Li, cos θ′i}. The shaded volume shows the CD filled with scintillator: a
sphere with the radius of R = 17.7 m [5]
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All the coordinate transformations can be easily drawn from geometry (Fig. 2.1):

cos θi =
Ri · r
Ri r

(2.1)

Li(r, cos θi) =
√

r2 +R2
i − 2rRicos θi (2.2)

cos θ′i(r, cos θi) =
Ri − r cos θi
Li(r, θi)

(2.3)

2.2 EXTRACTING THE PMT LIGHT COLLECTION

FUNCTION

Let us define the PMT light collection function fPMT (r, cos θi) as the factor that
relates the average charge µi collected by the i-th PMT for an event in the center of the
detector to the average charge µi(r, cos θi) collected by the same PMT for an event with
coordinates {r, cos θi}:

µi(r, cos θi) = µi · fPMT (r, cos θi) = µ0 · si · fPMT (r, cos θi) (2.4)

To determine the PMT light collection function, we first must to generate events
evenly distributed in the volume of the detector. We allocate events into the cells of an
r × cos θi histogram, and all cells must contain an equal volume (≈ 1 m3) of the liquid
scintillator to ensure that the events are evenly distributed between them. Thus, the cell
boundaries must be equidistant on a grid of r3 × cos θi = [0; 173] m3 × [−1; 1].

To obtain sufficient statistics (at least ≈ 104 events per cell) for each PMT type,
400000 events of a 1 MeV single electron were generated in the volume of the detector. The
«Charge» and «nPE_perPMT» branches were put into respective histograms (after dividing
them by µ0 and si), and an additional histogram was created to record the number of PMTs
that collected a non-zero charge for an alternative charge calculation (see eq. 1.3).

To correctly normalize the histograms, we must record not only the charge collected
in each cell but also the number of triggers in each cell. This means that with each generated
event, we must record a trigger for each PMT (increase the number of entries in the cell of a
«trigger» histogram by 1), regardless of whether or not the PMT has «seen» the event. We
accounted for the pseudo-random nature of the generation of events distributed uniformly
in the detector volume by dividing the charge by the number of triggers in each cell.

As a result, each cell of the «Charge» and «nPE_perPMT» histograms contains the
value
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Q

µ0Ntr

=

Nev∑
k=0

NPMT∑
i=0

µ
(k)
i

siµ0

Nev∑
k=0

NPMT∑
i=0

1

(2.5)

where Q is the total charge (p.e.) collected in the cell, Ntr is the number of triggers
in the cell, µ(k)

i is the charge (p.e.) collected in the k-th event by the i-th PMT (which can
be 0 if a PMT did not register an event), si is the sensitivity of the i-th PMT, NPMT is the
number of PMTs of a given type, Nev is the number of generated events.

Each cell of the «N PMT» histogram contains the value

−ln

(
1−

N

Ntr

)
= −ln

1−

Nev∑
k=0

NPMT∑
i=0

1

si
· H(µ

(k)
i )

Nev∑
k=0

NPMT∑
i=0

1

 (2.6)

Here N is the total number of PMTs that have collected a non-zero charge, H(x) is
the Heaviside step function.

The errors for each cell of the «Charge» and «nPE_perPMT» histograms are then
calculated as follows:

∆

(
Q

Ntr

)
=

√
Q · ENF
Ntr

(2.7)

The errors of the «N PMT» histogram are calculated using Eq. 1.4.

2.3 FITTING THE PMT LIGHT COLLECTION FUNCTION

An analytical approximation for the PMT light collection function was used to fit the
histograms [5]:

fPMT (r, cos θ) = f0 ·

(
L(r, cos θ)

L0

)m

· cosn θ′(r, cos θ) · exp

(
−
L(r, cos θ)− L0

Latt

)
+D (2.8)

Here, r and cos θ are the coordinates of an event relative to the PMT (Fig. 2.1), f0
is the normalizing parameter (in order of ≈ 1), L(r, cos θ) and cosn θ′(r, cos θ) are defined
in 2.1-2.3, m is a parameter that is either fixed at m = 2 (accounts for the solid angle, the
light propagation is considered to be isotropic) or is close to 2 (for a slightly better fit),
n is a parameter of the fitting function that describes the angular dependancy, Latt is the
parameter representing the attenuation length in the liquid scintillator (in order of ≈ 20 m
[7]) and D is the constant that accounts for the dark noise of the PMTs. Note that without
the dark noise of PMTs (D = 0) and with f0 set to 1, the PMT light collection function is
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equal to 1 at the center of the detector.
To estimate the dark noise constant D and fit the histograms we require the trigger

window for each event Ttr = 300 ns and the dark rate of each PMT νDR = 30000 s−1, which
is the same for every PMT type. The distribution of dark pulses in a PMT follows a Poisson
distribution, with a mean of µ = Ttr νDR = 0.009 dark p.e.

PMT·event . To fit each histogram, we must
divide this value by the respective µ0: D = 0.009

µ0
.

The fitting of the «Charge» and «N PMT» histograms was performed. One result of
a fit (for the Hamamatsu PMT type and «Charge» branch of analysis) is shown in Figure
2.2.

Fig. 2.2 — Histogram and the function (red) used to fit it. 3D view (left), 2D view (center)
and the residuum histogram (in each bin the difference between the histogram value and
fitting function is divided by the error of the same bin)

At high values of fPMT the number of PMTs («N PMT» branch) badly represents
the charge collected (and, consequently, the particle energy); if an event happens very near
a PMT, it will likely collect multiple p.e. of charge; however, that would still only count as
one PMT in Eq. 2.6 as the step function H(x) can either be equal to 0 or to 1. This implies
that we must to restrict our region of fitting to the area where fPMT · µ0 ≪ 1 or fPMT < 1.
Such restrictions were applied to the fit (for example, Fig. 2.3).

14



Fig. 2.3 — Histograms «Charge» (left) and «N PMT» (right) for Hamamatsu PMT, fitted
in the region, where the bin contents don’t exceed 1

The zone that stands out significantly in the fit is the marginal zone near the PMT:
r ≲ R, cos θ ∈ (0.5; 0.9). This zone forms because of the total internal reflection at the
boundary between the liquid scintillator (refractive index nLS ≈ 3

2
[8]) and water (refractive

index nH2O ≈ 4
3
), as shown in Appendix A.

To determine the «best» radial region of fit, a series of fits with varied higher radial
limits was conducted for the «Charge» and «N PMT» branches and for each of the PMT
types. The results of the fit (reduced χ2 and parameters of the analytical approximation)
are displayed in fig. 2.4 and 2.5. The «best» fit corresponds to a higher radial limit ≈ R

2
.

The results are inconsistent across PMT types: the values of Latt are very different.
The closest to the expected value is the result of the Hamamatsu PMT with a non-fixed
parameter m: the parameter values span Latt ∈ (20.1; 23.9) m.
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Fig. 2.4 — The results of the «Charge» histogram fit by the analytical function (see Eq.
2.8) for each PMT type: Hamamatsu (red), HighQENNVT (green) and NNVT (blue). The
graphs include the reduced χ2 (upper right) and parameters of the fit: n (upper left), Latt

(lower left) and m (lower right). If the parameter m of the fit is fixed at m = 2, the line is
solid, if m is not fixed, then the line is dashed

Fig. 2.5 — The results of the «N PMT» histogram fit by the analytical function (see Eq.
2.8) for each PMT type: Hamamatsu (red), HighQENNVT (green) and NNVT (blue). The
graphs include the reduced χ2 (upper right) and parameters of the fit: n (upper left), Latt

(lower left) and m (lower right). If the parameter m of the fit is fixed at m = 2, the line is
solid, if m is not fixed, then the line is dashed

For a more precise determination of Latt we studied the bins of the histograms that are
close to the PMT axis of symmetry: cos θ ≈ ±1, thus eliminating the angular dependency.

16



From the content of each of these bins, the D parameter (dark noise) was subtracted, and
the content was multiplied by the distance L to the PMT squared (away with the (L0

L
)2

dependency). Finally, they were normalized by the value of the central bin (Fig. 2.6). The
region of large distances between event and PMT (26 ÷ 33 m) was fitted with an exponential
function (the results in tab. 2.1).

Fig. 2.6 — Bins of «Charge» and «N PMT» histograms corresponding to cos θ = ±1, with
contents modified to extract pure exponential function exp(L−L0

Latt
)

Branch Latt (m) by PMT type
Hamamatsu HighQENNVT NNVT

Charge 21.6±0.6 137.9±14.7 131.2±26.0
N PMT 22.9±0.6 131.5±11.2 117.1±17.3

Table 2.1 — The parameter Latt for different PMT types taken from the fit of «Charge» and
«N PMT» histograms 2.5
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3 CONCLUSION

In the present study
1) the coordinates of all 20-inch photomultiplier tubes of the JUNO detector were ex-

tracted, and their characteristics were evaluated;
2) a dataset of events was generated and analyzed using software developed by JUNO

collaboration;
3) a comprehensive fitting procedure was employed to estimate the values of parameters

in analytical approximation of the detector response;
4) a method for the fast event generation was studied and the basic groundwork was done

for its implementation in JUNO.
However, issues with the evaluated parameters (attenuation length Latt in particular)

remain: for two out of three PMT types the analysis yielded Latt values much greater than
expected. The issue may lie in the present analysis (e.g. an error in the code) or in one of
the steps of data generation.

18



ACKNOWLEDGMENTS

I thank JINR and the organizing committee of the START program for providing
accommodation and paying for all needs during my stay in Dubna. Special thanks to Elena
Karpova for helping resolve any arising problems and answering my incessant questions.

I am grateful to my supervisor Oleg Smirnov for his guidance and support throughout
my time at Dzhelepov Laboratory of Nuclear Problems and the whole laboratory team for
insightful conversations and help, which is much appreciated.

19



A TOTAL INTERNAL REFLECTION

In this appendix, we discuss the effect of total internal reflection (TIR) on the PMT
light collection function.

Total internal reflection is the phenomenon of complete reflection of light at a bound-
ary between media, if the refractive index n1 of the first medium is larger than the refractive
index n2 of the second and the angle of incidence of the light ray is greater than the critical
angle θc = arcsinn2

n1
. It just so happens that such conditions can be satisfied in some events

in the JUNO detector: the refractive indices are nLS = n1 ≈ 3
2

for the liquid scintillator in
the CD and nH2O = n2 ≈ 4

3
for the water in the WP.

First, let’s find the distance from the center of the detector, at which the effect
appears. The geometry of the problem is displayed below:

Fig. A.1 — Geometry of total internal reflection of scintillation light in a spherical detector

In Fig. A.1 O is the center of the detector, E is the event (scintillation) position, B is
the border between liquid scintillator and water, R is the detector radius, r is the distance
between the detector center and the event, φ′ is the angle of incidence.

From Snell’s law for total internal reflection, we get sinφ′ =
nH2O

nLS
=
√

1− cos2 φ′.
Calculating the cosφ′ from the cosine theorem, and solving the quadratic equation for cosφ,
we get
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cosφ±(r) =
R

r

(
nH2O

nLS

)2

±

√√√√√
1−

(
nH2O

nLS

)2
 ·

1−

(
R

r
·
nH2O

nLS

)2
 (A.1)

Eq. A.1 gives for each event at the distance r from the center of the detector the
borders of a «belt» on the surface of the detector, which will completely reflect the light
back into the liquid scintillator. The minimal distance from the center rmin, where TIR
of scintillation light is possible, corresponds to Eq. A.1 having a single solution. Thus,
rmin = R · nH2O

nLS
, which for JUNO gives rmin ≈ 15.7 m.

The LPMTs around the liquid scintillator, however, are mounted on the spherical
stainless steel structure with a radius L0 = 19.4 m. This means that the angles φ and θ (see
Fig. 2.1) are not the equal, same for the angle of incidence φ′ and polar angle θ′ of the event
in PMT frame of reference:

Fig. A.2 — Geometry of total internal reflection and PMT in a spherical liquid scintillator
detector

Here P is the PMT position, θ, θ′ and L bear the same meaning as in Fig. 2.1 and
Eq. 2.1-2.3 (without the PMT numeration).

To find the relation between cos θ and cosφ, let us consider the ratio of areas of
triangles ∆OBE and ∆OPE. On one hand, this ratio may be calculated as l

L
, because the

triangles share the same altitude. On the other hand, the areas can be computed using sin θ

and sinφ. Substituting L and l for their expressions from the cosine theorem, we get

l

L
=

√
r2 +R2 − 2rRcosφ√
r2 + L2

0 − 2rL0cos θ
=

1
2
rRsinφ

1
2
rL0sin θ

(A.2)

From Eq. A.2 a quadratic equation for cos θ can be derived, the solution to which:
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cos θ±(r) =
rL0R

2sin2 φ±(r)±
√

D±(r)
4

L2
0(r

2 +R2 − 2rRcosφ±(r))
(A.3)

where

D±(r)

4
= r2L2

0R
4sin4 φ±(r)− L2

0(r
2 +R2 − 2rRcosφ±(r))×

×
(
R2sin2 φ±(r)(r

2 + L2
0)− L2

0(r
2 +R2 − 2rRcosφ±(r))

)
(A.4)

The solution A.3 gives the borders of a «blindness» belt: the PMTs cannot see events
with coordinates r and cos θ−(r) < cos θ < cos θ+(r). To use this solution in the fit of
the margin region of histograms, we need a continuous function FM(r, cos θ), which would
be an additional factor in Eq. 2.8 (multiplied only by the first term in fPMT , because the
dark noise constant is geometry-independent), equal to FM = 1 in the central part of the
detector volume and FM < 1 in the margin region of interest. Usage of a sigmoid function
was considered:

FM(r, cos θ) = 2−
1

1 + exp
(
− cos θ−cos θ−(r)

d

)− 1

1 + exp
(
− cos θ+(r)−cos θ

d

) (A.5)

where d is an «abruptness» parameter, which measures the steepness of the curve and
the size of the «transitional» region (if d = 0, the sigmoid function becomes a non-continuous
step-function). Both the solution A.3 and the factor A.5 are displayed below:

Fig. A.3 — Solution A.3, representing a «blindness» belt for the PMTs on the fitted his-
tograms (left), and the factor FM for the margin fit (right)

Unfortunately, the fitting was unsuccessful. Therefore, we leave the search for a
suitable fitting function for future work.
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