

JOINT INSTITUTE FOR NUCLEAR RESEARCH
Meshcheryakov Laboratory of Information Technologies

FINAL REPORT ON THE

START PROGRAMME

Development of tools for visualization of
monitoring the state and usage of
computing nodes of the Heterogeneous
HybriLIT platform

Supervisors:
Dmitry Belyakov,
Maxim Zuev

Student:
Gennadiy Karpov, Russia,
Far Eastern Federal
University

Participation period:
March 03 – April 13,
Winter Session 2024

Dubna, 2024

Abstract

This work describes the development of a toolkit for monitoring the status and

usage of HybriLIT platform components. The heterogeneous hybrid platform is a

part of the Multifunctional Information and Computing Complex (MICC), at the

Laboratory of Information Technology, JINR, Dubna. When developing the

solution, the disadvantages of existing solutions and the preservation of the

design familiar to users of previous systems were taken into account. As a result,

a graphical web application with the display of data from the monitoring server in

real time was developed.

2

Table of contents
Introduction ... 3

Goals and targets ... 4

The purpose of the work ... 4

Tasks .. 4

The structure and functionality of the project .. 4

Project requirements ... 4

Project structure .. 4

User interface .. 4

Client-Server messaging protocol .. 5

Authorization ... 6

Used technologies ... 8

Project implementation .. 9

User Interface .. 9

Client-Server messaging protocol .. 12

Authorization ... 14

Conclusion ... 15

Acknowledgements ... 15

References ... 16

3

Introduction

The heterogeneous HybriLIT platform is part of the Multifunctional

Information and Computing Complex (MICC), Laboratory of Information

Technology, JINR, Dubna. The heterogeneous platform consists of the Govorun

Supercomputer and the HybriLIT training and test site [17]. HybriLIT contains a

large number of computing machines on which many calculations are performed.

Such a large-scale system needs constant monitoring in order to be able to monitor

the system status, system load and detect and fix anomalies in time.

The relevance of the work is due to the solution of the shortcomings of the

currently existing solutions. The «Home-HLIT» monitoring system based on «Salsa»

program code [1] has limited monitoring functionality and complex code, which

makes it problematic to support it and add new functionality. Grafana software [2]

requires the installation of Telegraf [3] and the development of a custom plug-in

for specific monitoring tasks. Also, the expansion of the functionality of the

Grafana+Telegraf combination is limited by the current architecture and

capabilities of these products, which reduces the flexibility of configuration in

comparison with a product developed for a specific platform.

4

Goals and targets

The purpose of the work

The purpose of the work is to create toolkit for visualizing the monitoring of

the state and usage of computing nodes of the Heterogeneous HybriLIT platform.

Tasks

To achieve this goal, it is necessary to solve the following tasks:

1. Define the structure and functionality of the product;

2. Choose technologies for the product implementation;

3. Implement the product.

The structure and functionality of the product

Product requirements

The visualization toolkit for monitoring the status and usage of computing

nodes should contain a user interface, a data exchange protocol with the server

[16] and the possibility of separate configuration for each user.

The design should be developed based on the design of the previous solution

to make it easier for the user to master the new platform.

Product structure

User interface

Taking into account the specified requirements, the product structure looks

as follows (Figure 1).

5

Figure 1. Product pages structure

The «User profile» page contains information about the user obtained from

the FreeIPA system.

The «Group nodes monitoring» page provides a list of groups of computing

nodes. When a group is selected, visual monitoring of the current state of its

computing nodes is displayed. Monitoring is presented in the form of charts or

tables to choose from.

The «Extended node monitoring» page contains a card about the

components of the computing node, their specification and tables with the status

and usage of components in real time. The tables are built on the same principle as

the monitoring table of the computing nodes of the group.

Client-Server messaging protocol

Data exchange with the server consists of two parts: HTTP requests for

authorization and static pages, and continuous data exchange via sockets to obtain

the state of computing nodes in real time.

6

The following protocol has been developed as a protocol for exchanging

requests between the server and the client via sockets: the client sends a message

with the data type «string», which contains a command and parameters (if

required), separated by the symbol «?». As an example, a request for data on the

specification of an individual computing node looks like this: «spec?group?name».

The server sends a JSON object in the following format:

{

 "header": "spec!group!name",

 "field1": {

 ...

 },

 "field2": {

 ...

 }
}

Using the key «header», the server transmits information about the response

type and parameters (if required), separated by a «!» sign. The remaining keys are

directly data on the required request from the client [16].

Authorization

At the initial login, the user enters his username and password, then the

server sends a request to FreeIPA and receives a response. In case of successful

authentication, the user receives a JWT token [14]. The scheme of initial

authorization through the FreeIPA is shown in the diagram (Figure 2).

Figure 2. Initial login scheme.

7

Upon re-authorization, a JWT token is automatically sent from the client, and

its correctness is checked on the server. In case of successful authentication, the

server returns the user data associated with this JWT token to the client. The

scheme of re-authorization is shown in the diagram (Figure 3).

Figure 3. JWT token re-authorization.

8

Used technologies

To develop interactive components, the Vue.js 3 JavaScript framework was

used. Vue.js 3 has support for reactivity, global storage, and the creation of

reusable components [4]. Pinia is used as the global state management library,

currently the official state management library for Vue.js 3 [5].

To create charts components, the vue-chartjs library was used, which is a

library adapted to the Vue.js 3 component approach Chart.js [18, 19].

The design of web pages was created using the Bootstrap 5 library. Bootstrap

is a set of ready-made templates and tools for creating a web application interface

written in HTML, CSS and JavaScript languages [6].

HTTP requests to the server were made through the Axios library [11]. It

allows to write compact code for sending, receiving and verifying HTTP requests.

To communicate with the server via sockets, the JavaScript built-in

implementation of the web sockets protocol was used [7].

Authorization via the FreeIPA system was implemented on the server using

the python-freeipa library [12].

9

Product implementation

User Interface

The user interface is a web application consisting of several pages and

components.

The «User profile» page contains information about the user obtained from

the FreeIPA system. The design of the page is shown in the Figure 4.

Figure 4. User profile page design.

The monitoring page contains a list of buttons with the names of groups of

computing nodes. When the group button is clicked, a visual monitoring of the

current state of the computing nodes contained within the selected group is

displayed. Monitoring is presented in the form of Pie-type charts and table.

Chart components display the average real-time load of a parameters of all

computing nodes of the group. The design of charts is shown in the Figure 5.

10

Figure 5. Chart components design.

The table component of the computing nodes of the group is a component

consisting of three parts: header, body, footer. The header displays the categories

and subcategories of computing node components. The footer displays the average

and total usage by subcategory, if statistics are informative for a type of such data.

The body directly displays information about each computing node in the group.

By clicking on the name of the computing node, the view is switched to extended

monitoring with more detailed information about its specification and loading. The

table has a fixed height and always fits completely on the screen, which increases

the convenience of viewing data relative to the table implemented in the previous

«Home-HLIT» monitoring system [1], since the category names indicated in the

header and data on the average and total load of the subcategory for all computing

nodes are always visible. If the number of computing nodes does not fit into the

table, it is possible to scroll through the «body» part of the table. The design of the

table is shown in the Figure 6.

11

Figure 6. Table component design.

The «Extended node monitoring» page contains two components: a card

with the specification of the computing node and a table with the status and usage

of components in real time.

The specification card of the computing node contains information about the

components of the computing node and their specification. The design of the

specification card is shown in the Figure 7.

Figure 7. Specification card design.

The tables are built on the same principle as the monitoring table for

computing nodes in the group. The design of the tables is shown in the Figure 8.

12

Figure 8. Extended monitoring tables design.

Monitoring components are not fixed, the number of charts and categories

in the tables change depending on the data received from the server.

To test the interface, virtual computing nodes and their groups were created.

Client-Server messaging protocol

The client to server messaging protocol has the following commands:

• «lsob» — get a list of groups of computing nodes;

• «head?group» — get a list of categories and subcategories of components of

computing nodes in a group of computing nodes;

• «mstd?group» — subscribe to receive data for each computing node in the

group;

• «spec?group?name» — get the specification of a selected computing node;

• «desc?group?name» — get categories and subcategories based on

components of a selected computing node;

• «mext?group?label» — subscribe to receive data of components of a

selected computing node.

The server to client messaging protocol has the following commands:

• «lsob» — send a list of groups of computing nodes;

13

• «head!group» — send a list of categories and subcategories of computing

node components in a group of computing nodes;

• «mstd!group» — subscribe the client to receive data for each computing

node in the group;

• «spec!group!name» — send the specification of a selected computing node;

• «desc!group!name» — send categories and subcategories based on

components of a selected computing node;

• «mext!group!label» — subscribe the client to receive data of components of

a selected computing node.

After receiving the data from the server, it is stored in the global state store [5].

After that, upon request from the page, the data is provided, preprocessed and

transferred to the component. The scheme of data communication within the web

application and with the server is shown in the Figure 9.

Figure 9. The scheme of data communication.

14

Authorization

Authorization in the web application is performed using a JWT token, which

is generated when user logs in using an account registered in the FreeIPA and

contains information about the user. This approach allows to synchronize access to

the web application with employee account and configure access to various parts

of the web application depending on the rights of a particular employee.

The JWT token is stored in HTTP-only cookies, which provides additional

protection. There is no access to HTTP-only from JavaScript, it helps to avoid XSS

hacks [13].

The «Authorization» page is shown in the Figure 10.

Figure 10. Authorization page design.

15

Conclusion

The developed toolkit provides the solution to the given task.

The developed solution has extended monitoring capabilities: it is possible

to view both the status and usage of the whole computing group and separately of

a specific computing node.

Web application design has retained the concept of the old solution used,

but has received important improvements that will simplify the system usage.

The developed solution has the ability to scale in the future. In the future, it

is possible to increase the number of different types of data representation: add

more different charts, display data not only at the moment, but also for a period of

time, add a display of network traffic sources and destinations. Also, by

synchronizing with third-party authorization systems, it will be possible to

customize the displayed data depending on the user's rights.

Acknowledgements

I would like to extend my heartfelt gratitude to the entire START and JINR

teams for making my participation in this event possible. I am also thankful to our

supervisors at JINR, Belyakov Dmitry Viktorovich and Zuev Maxim Igorevich, for

their extensive support, and to Sushchenko Andrey Andreevich from FEFU for the

opportunity to work outside my university walls and improve my skills. Additionally,

Maxim Skazkin deserves a special mention for his productive work and

collaboration on the project.

16

References
1. SALSA. — 2017. — URL: https://home-hlit.jinr.ru/#/ (visited on 03/05/2024).

2. Grafana. — 2024. — URL: https://grafana.com/ (visited on 03/05/2024).

3. Telegraf | InfluxData. — 2024. — URL: https://www.influxdata.com/time-

series-platform/telegraf/ (visited on 03/05/2024).

4. Vue.js 3. — 2024. — URL: https://v3.ru.vuejs.org/ru/ (visited on

03/12/2024).

5. Pinia. — 2024. — URL: https://pinia.vuejs.org/ (visited on 03/13/2024).

6. Bootstrap. — 2024. — URL: https://getbootstrap.com/ (visited on

03/10/2024).

7. WebSockets docs. — 2024. — URL:

https://developer.mozilla.org/ru/docs/Web/API/WebSockets_API (visited

on 03/20/2024).

8. JavaScript docs. — 2024. — URL: https://developer.mozilla.org/en-

US/docs/Web/JavaScript (visited on 03/11/2024).

9. HTML docs. — 2024. — URL: https://developer.mozilla.org/en-

US/docs/Web/HTML (visited on 03/10/2024).

10.CSS docs. — 2024. — URL: https://developer.mozilla.org/en-

US/docs/Web/CSS (visited on 03/10/2024).

11.Axios docs. — 2024. — URL: https://axios-http.com/ru/docs/intro (visited on

03/18/2024).

12.Python FreeIPA client docs. — 2024. — URL: https://python-

freeipa.readthedocs.io/en/latest/ (visited on 03/21/2024).

13.Cookies docs. — 2024. — URL: https://developer.mozilla.org/en-

US/docs/Web/HTTP/Cookies (visited on 03/12/2024).

14.JWT-token. — 2024. — URL: https://jwt.io/ (visited on 03/23/2024).

15.Фримен Эрик, Робсон Элизабет. Изучаем программирование на

JavaScript. — O‘Reilly Media, Inc, 2022.

https://home-hlit.jinr.ru/%23/
https://grafana.com/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/
https://v3.ru.vuejs.org/ru/
https://pinia.vuejs.org/
https://getbootstrap.com/
https://developer.mozilla.org/ru/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://axios-http.com/ru/docs/intro
https://python-freeipa.readthedocs.io/en/latest/
https://python-freeipa.readthedocs.io/en/latest/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://jwt.io/

17

16. Maxim Skazkin. Development of the server part of the system for monitoring

the state of computing nodes of the Heterogeneous HybriLIT platform based

on asyncronous data transfer technologies and the use of web sockets. —

Dubna, 2024.

17. Heterogeneous platform “HybriLIT”. — 2024. — URL: http://hlit.jinr.ru/en/

(visited on 03/04/2024).

18. Vue-chartjs docs. — 2024. — URL: https://vue-chartjs.org/ (visited on

04/01/2024).

19. Chart.js docs. — 2024. — URL: https://www.chartjs.org/ (visited on

04/01/2024).

20. Fastapi. — 2024. — URL: https://fastapi.tiangolo.com/ (visited on

03/14/2024).

http://hlit.jinr.ru/en/
https://vue-chartjs.org/
https://www.chartjs.org/
https://fastapi.tiangolo.com/

