JOINT INSTITUTE FOR NUCLEAR RESEARCH
Meshcheryakov Laboratory of Information Technologies

FINAL REPORT ON THE START PROGRAMME

Development of the server part of the system for monitoring the state of computing nodes of the
“HybriLIT” Heterogeneous Platform based on asyncronous data transfer technologies and the use
of web sockets

Supervisors: Dmitry Belyakov, Maxim Zuev
Student:

Far Eastern FU Maxim Skazkin
Participation period: 03 March - 13 April

Dubna, 2024

Abstract

The “HybriLIT” Heterogeneous Platform computing platform, used at the JINR, is de-
signed to solve various complex computational tasks. These include collecting and processing
data from experiments as well as simulation and modeling physical processes. ”Govorun”, the
main component of HybriLIT, consists of more than one hundred two-processor servers that
continuously run user programs and communicate with each other over a low latency network
fabric. Therefore, it is necessary to monitor the state of these computing nodes, including their
CPU loads, memory and storage usage, and network traffic. The purpose of this project was

to develop software that would provide a simple way to monitor all these aspects.

CONTENTS

INTRODUCTION ..ttt e ettt et e et e e e e e e e aaaas 4
[.1 Problem statement 4
REQUIREMENTS DEVELOPMENT ...t 5
2.1 Sensor software reqUITCIMENTSuee ettt e e et iiae e e e e eeiiaeeeaaaaans 5
2.2 Backend server reqUITCMENtSuuueeee ettt et e et iiaae e e e e eeiiiaaaee e 6
PROTOCOL DESIGNottt et 7
3.1 Communication between sensors and the servercoovviiieeiiiiiiiiinnnn... 7

3.1.1 Messages from the Server t0 SeNSOrviiieeeriiiiiiineeeeeiiiannn. 7

3.1.2 Messages from sensorto the Servercovvviiiiiiiiiiiiiiiiiiiinnnnn... 9
3.2 Communication between clients and the servercooiiiiiiiiiiiiin... .. 10
IMPLEMENTATION DETAILS ... e 12
4.1 Used technologies.ooviiiiii i 12
O N 74 o1 (0) 1 12
G I 41 1S3 14 6 1) 14 o 12
[0\ 115 [) 15
5.1 Acknowledgementsooiiiiiiiiii e e 15

1 INTRODUCTION

HybriLIT is a high-performance computing platform that comprises more than 100 physical
servers. When all the various virtual machines and services running on servers that support the
platform are taken into account, the total number of devices in the system is approximately double
that number. These devices have different technical specifications and are designed for different
purposes. The main component of HybriLIT is the ”Govorun” supercomputer. This supercomputer
1s used to process data from experiments and solve various scientific problems such as physical and
mathematical modeling, simulation, machine learning models training and numerous other types
of research that require significant computing power.

It is essential for HybriLIT administrators to be able to monitor resource usage in real-time
in order to effectively manage any anomalies or improper use of computing nodes that may arise.
While existing tools provide some level of monitoring, they are not sufficient for the specific use
cases there are in mind. Open source solutions like Telegraf [1] require development a custom
plugin for specific monitoring goals and the existing tools [2] are not maintained. Therefore, it
is proposed to create a custom monitoring system tailored to the existing requirements. These

requirements are extensively described in the chapter on requirement development 2.

1.1 Problem statement

The goal of this work was to design and develop backend side of the monitoring system,
that consists of two parts: software for sensors and for a server. The first one is intended to run
on each computing node and collect data such as CPU load, memory usage, storage usage, and
network traffic at regular intervals. The second one is intended to collect information from sensors
and send it to clients. The client application is an essential part of the monitoring system, and it is
not the least important component. It is described in Gennady Karpov’s [3] work dedicated to the
development of tools for visualizing usage data from HybriLIT computing nodes.

The main steps to achieving the stated goal include requirements development for the op-
eration of the sensors and server, defining the protocol used to communicate between all parts of
the system, and implementing a minimum viable product to create a working system that allows

for further modifications.

2 REQUIREMENTS DEVELOPMENT

The desired system for monitoring the state of computing nodes should consist of three
main components: software for sensors, a backend server, and a client application. The scheme
is depicted on Figure 1. The software for sensors is a program that runs on each computing node
and collects data such as CPU load, memory usage, storage usage, and network traffic at regular
intervals. This information is then transmitted to the backend server for further processing. The
backend server is responsible for aggregating and storing the data received from the sensors. It
should be located on the same local network as the computing nodes to ensure fast and reliable
communication. When a server establishes a connection with a particular computing node, it col-
lects information about that node and waits for sensor data. Once the data is received, the server

aggregates it and sends it to the client application.

request query
client sensor
'sensor readings ‘'sensor readings
server
request query
client sensor
'sensor readings 'sensor readings

Figure 1 — System components

Next, the requirements for sensors and server operation will be discussed in detail.

2.1 Sensor software requirements

Since the sensor software runs on the computing nodes, it is the only component that has

access to the information that is important. This information is:

* General technical specifications

e Current hardware load

The sensor should collect information about general technical specifications at the start of
its operation and then send this information to the server when it is connected. After this, the sensor
can receive requests to send data about the current system load at regular intervals, until it receives
a signal to stop sending. The sending can then continue with the next request.

Sensors should be given with a name and associated with a group to make it easier to navi-
gate among them and distinguish between them.

The sensor software should not put a heavy load on the system it is running on. It is also

important not to use blocking calls to wait for the next time data needs to be sent or for a new

request to be received. Once the sensor is ready, it should attempt to connect to the server socket
on the specified port. If the connection is lost due to network issues or other problems, the sensor

should try to reconnect.

2.2 Backend server requirements

The backend server acts as a link in the communication between sensors and clients. First,
the server should constantly listen for connections from client applications. Once a connection is
established, the server must identify and authenticate the clients. Then, clients can send requests
for information about the computing nodes they are interested in. Because different clients may
not send the same requests, or may request different amount of information, even about the same
computing node, the server needs to aggregate these requests to form a single, optimal query for
each computing node. When the server receives a response from a sensor, it should define all the
clients who requested that information and send them the response.

Second, the server waits for connections from sensors on the specified port. When a sensor
connects, the server receives information about it, including its group, name, and technical specifi-
cations. When a request is received about a specific sensor, the server should update the query for
that sensor by sending a request. The server then waits for responses from the sensors and extracts
the information requested by clients. It sends the requested information to the clients. When no
one is interested in a particular computing node, the server should suspend its sensor activity.

The server does not need to store the history of client requests or sensor responses. Storing
information can be further achieved by adding a database as an additional client application.

The heavy-load optimization requirements apply to the server the same way as to sensors:
it should not use blocking calls to wait for the next time that data needs to be sent or for a new

request to be received.

3 PROTOCOL DESIGN

The described process is data streaming [4]. Streaming data has several unique characteris-
tics: it is unique, non-uniform, imperfect, and continuously flowing. This last characteristic means
that the overall system must have low latency, measured in seconds.

The non-uniformity and imperfection of the data mean that the processing service, in this
case the backend server, must be able to process it correctly. To achieve this, we can use an event-
driven architecture [5]. In this architecture, events are the triggers that keep the system running. If
there are no events due to some failure, the overall system will not fail, but will simply remain idle.

The only events in the monitoring system are sensor readings and client requests. These
events need to flow through the system in a way that follows a predefined protocol, which allows
different components to communicate with each other.

All communication is done using messages in JSON format, which maps fields to their

corresponding values in JavaScript-like way.

3.1 Communication between sensors and the server

3.1.1 Messages from the server to sensor

The only kind of message the server send to the sensors is the queries on what clients want
to obtain from them. The server generates a query to each sensor, specifying the names of the fields
that need to be filled out. These field names are predefined and can’t be changed while the system
is running. The server can also specify, for each category of CPU, network, memory, and disks,
whether it wants extended sensor readings, i.e., per each core, network interface card, or disk. In
the query header, the server provides information about it, including the mark, the time interval for
taking readings, and the preferred unit of measurement. Using the query mark server can further
distinguish between different responses from the one sensor if they come with some latency. The
structure of JSON query looks like this:

* "mark" - a mark for each query (or just its name) that the sensor sends in its response. This way
the server will know that this is the current response and not the previous one, which may have
come with delay due to latency,

* "interval" - a time interval in seconds that the sensor will delay the next response,

* "measure" - a unit of measurement in which the sensor should present data. Only the values
"b", "kb", "mb" are supported,

* "cpu_fields" - the names of the fields related to CPU that need to be filled out. It is the list of
the following possible values:

— "freq" - current frequency,

— "user" - percentage of time spent by normal processes executing in user mode since last
call,

— "system" - percentage of time spent by processes executing in kernel mode since last
call,

— "nice" - percentage of time spent by niced processes executing in user mode since last
call,

— "iowait" - percentage of time spent waiting for I/O for complete since last call,

— "irq" - percentage of time spent for servicing hardware interruptions since last call,

— "softirq" - percentage of time spent for servicing software interruptions since last call,

— "steal" - percentage of time spent by other operating systems running in a virtualized
environment since last call,

— "guest" - percentage of time spent running a virtual CPU for guest operating systems
since last call,

— "guest_nice" - percentage of time spent running a niced guest since last call,

— "idle" - percentage of time spent being idle since last call,

"cpu_extended" - boolean means whether to send CPU usage data per each core,
"net_fields" - the names of the fields related to network interfaces that need to be filled out.

It is the list of the following possible values:

— "recv" - amount of data received,
— "sent" - amount of data sent,
— "dropin" - number of dropped packets while receiving,

— "dropout" - number of dropped packets while sending,

"net_extended" - boolean means whether to send network usage data per each network inter-
face,
"mem_fields" - the names of the fields related to memory that need to be filled out. It is the list

of the following possible values:

— "used" - amount of used RAM,
— "shared" - amount of shared memory,
— "cached" - amount of cached memory,

— "swap" - amount of used swap memory,

"mem_extended" - boolean means whether to send memory usage data counted as percentage
or as number of bytes (or kilobytes or megabytes according to the "measure"),
"dsk_fields" - the names of the fields related to disks that need to be filled out. It is the list of

the following possible values:

— "used" - amount of used storage,
— "read" - number of reads,

— "write" - number of writes.

"dsk_extended" - boolean means whether to send disks usage data per each disk.

Thus, the sensor is not dependent on who makes requests to it or why. Its functions are

abstracted from the rest of the system.

3.1.2 Messages from sensor to the server

Each sensor sends two types of messages to the server: one that contains information about
the computing node’s technical specifications with header spec and the other that contains sensor
readings with header resp. These two types of messages are distinguished by the type of informa-
tion they contain, which is specified in the header of each message. The headers of both messages
also contain information about the group and name of the sensor, which helps the server distinguish
between different sensors.

The message about the technical specifications is only sent when the sensor first connects
to the server, while the message with sensor readings is sent continuously. The structure of JSON

is as follows:

* "header" - string "spec!group!name" where group and name are actual for computing node,

PONT] cpu ".
— "cores_phys" - number of physical cores,
— "cores_logic" - number of logical cores,
— "min_freq" - list of minimal frequencies per each physical core,
— "max_freq" - list of maximal frequencies per each physical core,
e "net":
— "nics" - list of network interface card names,
* "mem":

— "mem_total" - total amount of RAM,

— "swp_total" - total amount of swap memory,
» "dsk" - list of devices described as follows:

— "name" - name of device,
— "mountpoint" - mountpoint of device,

— "total" - total volume of device.

The sensor readings follow the server queries as soon as they are received and processed by

the sensor. The structure of JSON is as follows:

* "header" - string "resp!group!name !mark!timestamp" where group and name are actual for
computing node and mark is actual for the query the sensor answers,
e "cpu" -if "cpu_extended" was false then this is list of fields given in "cpu_fields" with its

values. If "cpu_extended" was true then these fields with values is listed for each core,

* "net" - if "net_extended" was false then this is list of fields given in "net_fields" with
its values. If "net_extended" was true then these fields with values is listed for each network
interface,

* "mem" - it is list of fields given in "mem_fields" with its values,

* "dsk" -if "dsk_extended" was false then this is list of fields given in "dsk_fields" with its

values. If "dsk_extended" was true then these fields with values is listed for each disk.

3.2 Communication between clients and the server

The main purpose of the server is to provide each client with the information they need
about a particular computing node or group of nodes. Therefore, if a client does not know what
sensors exist, the server should first provide him with a list of sensor groups. This can be done
via a request 1sob from a client. The server receives that message and responses with the JSON

having following structure:

* "header" - string "1sob",

* "groups" - list of groups available that the server is aware of.

After receiving a list of groups a client may then want to know which fields are present
in the sensors readings in the specified group collected by the server so far. So a client can send

request head ! group and the server will response with the JSON having following structure:

* "header" - string "head!group",

» "cpu" - list of all fields received from sensors within the specified group in "cpu" block of their
responses and the units of measurement for each field as a string,

* "net" - list of all fields received from sensors within the specified group in "net" block of their
responses and the units of measurement for each field as a string,

* "mem" - list of all fields received from sensors within the specified group in "mem" block of their
responses and the units of measurement for each field as a string,

» "dsk" - list of all fields received from sensors within the specified group in "dsk" block of their

responses and the units of measurement for each field as a string.

Sending request desc ! group !name will provide a client with the description of fields the
server collected from single sensor in the same form.

This information can be used for rendering a web application, creating a database schema,
or other purposes.

And last but not least, a client can request the latest sensor readings interested to it.
This can be done by sending request mstd!group for all sensors in the specified group, or
mext!group!name for a single sensor with the specified name and group. After receiving the
request, the server will start sending a client the responses over a certain time interval, but as soon
as readings are received from the sensors. So it fits the publisher-subscriber model. More on it is

presented in the next chapter 4.

10

The structure of JSON response on these requests is as follows:

* "header" - string "mstd!group!name!timestamp" or "mext!group!name!timestamp",

* "cpu" - fields that listed in "cpu_fields" and their values averaged for all cores in case
of the request mstd!group and listed for each core independently in case of the request
mext!group!name,

* "net" - fields that listed in "net_fields" and their values summed up for all network interfaces
in case of the request mstd ! group and listed for each network interface independently in case of
the request mext ! group ! name,

* "mem" - fields that listed in "mem_fields" and their values,

» "dsk" - fields that listed in "dsk_fields" and their values summed up for all disks in case
of the request mstd!group and listed for each disk independently in case of the request

mext!group!name.

The client can suspend this subscription by sending request stop and no more sensor read-

ings will be sent.

11

4 IMPLEMENTATION DETAILS

4.1 Used technologies

When it comes to selecting the appropriate technology, Python (> v. 3.10) is a great choice
due to its ease of maintenance and portability. FastAPI, a web framework, is used because of its
high performance, flexibility, asynchronous capabilities, and support for WebSockets. Another
valuable tool in the Python ecosystem is the psutil library. This library provides access to infor-
mation about running processes, system utilization, and various system resources such as CPU,
memory, network, and disks. It is an essential component of sensor software running on comput-

ing nodes.

4.2 Asyncrony

As stated in the chapter on requirements 2, the system relies heavily on input-output op-
erations. To ensure optimal performance and minimize CPU usage, it is essential to avoid using
blocking calls to wait for I/O operations to complete. So it needs to run I/O operations concurrently.
One way to address this issue is by using multiple threads, however, this approach can lead to per-
formance degradation due to Python’s Global Interpreter Lock and frequent context switching [6].
It can also be a source of errors, as the context switching is managed by the operating system and
cannot be fully controlled. To avoid data corruption, it is necessary to use locks and other syn-
chronization mechanisms. Another approach is to use the systems select calls [7] or even Python
built-in selectors module [8], which allows for efficient multiplexing of I/O by selecting from a
list of sockets that are ready for reading or writing. This approach avoids blocking and helps opti-
mize performance. However, due to the nature of WebSockets in the FastAPI framework [9], this
option is not available. In such cases, asynchrony becomes a useful tool. It is inexpensive, it does
not require the use of the GIL, and does not necessitate the use of multiple interpreter instances
or message passing channels. Additionally, context switching can be performed predictably and
controlled from the program. Python provides asynchrony through the built-in asyncio module
[10].

4.3 System design

The server uses two main event loops. The first one is the FastAPI event loop, which handles
requests received over HTTPS or through WebSockets. The second loop is used for communicating
with sensors and is started with asyncio.start_server coroutine [11].

Communication between the server and clients is based on the Publisher-Subscriber behav-
ioral design pattern. Each client subscribes to updates from sensor readings that it is interested in.

The server is not aware of each individual subscriber, but it provides an interface through which a

12

client can become a subscriber [12]. This interface uses requests with the mext and mstd headers
to request subscription for either a whole group of sensors or a specific sensor. Clients can unsub-
scribe by sending a response with a stop header. When the server receives updates from sensors,
it iterates through the list of subscribers and sends them the received updates.

The server assumes that monitoring for a whole group of sensors requires fewer sensor
readings than monitoring a single sensor. Therefore, the server has predefined query templates
for these two scenarios. The template for the entire group uses fewer fields and does not request
extended readings, such as per each CPU core, network interface, or disk. In contrast, the query
template for a single sensor requests more extended information.

It is worth noting that clients can choose different levels of monitoring for a single com-
puting node. In this case, the server does not send both queries for that sensor, but only requests
extended readings. Upon receiving them, it checks whether any clients have subscribed for mon-
itoring of the group in which that sensor is located. If so, the server reduces the amount of infor-
mation sent to those clients. The server removes unnecessary data from the readings, averages it
across the CPU cores, and sums it up through the network interfaces and disks.

Communication between two beforementioned event loops is not done directly. Instead, it
follows the Mediator behavioral design pattern [12]. A set of objects store the global system state
and help to communicate between clients and sensors. These objects, which are used to manage
clients, sensors, queries, and responses, are called ClientsRepo, SensorsRepo, QueriesRepo,

and ResponsesRepo, respectively. The overall system workflow is as follows:

1. Sensors connect to the server and corresponding socket streams StreamReader and
StreamWriter [11] and computing nodes specifications is stored in SensorsRepo.

2. Client connects to the server and subscribes for monitoring for some group of sensors or one
single sensor. His WebSocket and subscription is stored in ClientsRepo. The query is added
to QueriesRepo if'it is not presented yet.

3. Adding query to QueriesRepo triggers sending it to the corresponding sensors.

4. Receiving sensor readings triggers adding it to ResponsesRepo.

5. Adding new sensor readings triggers looking for subscribers in ClientsRepo and sending them

the requested data.

The bunch of the last triggers is the key feature of event-driven architecture. Only events
like receiving requests or data can trigger the system for further processing. This is depicted on the

Figure 2:

13

Server

i Sensor's
WebSocket S
reader request query Writer
e auery
Client Sensor
ResponsesRepo Sensor
response Client's _ readings
WebSocket readings Sensor's
writer StreamReader

Figure 2 — Event triggers

Sensor software also makes use of asynchronous features. The receiving, processing, and
sending of sensor readings are all done concurrently as coroutines. When a new query is received,
the global Query object is updated, following the Singleton design pattern [12]. Since it is used
every time the sensor reads the system’s resource usage, this object also serves as a Mediator [12].

Additionally, sensors will attempt to reconnect to the server if the connection has been lost.

14

5 CONCLUSION

As a result of this work, the server component of the application has been implemented to
monitor the status and workload of the computing nodes in the “HybriLIT” Heterogeneous Plat-
form. The flexible architecture allows for easy extension and modification of the application. In
the next phase of the project, the following features will be introduces: GPU status monitoring,
identifying users who generate the majority of local network traffic, add a database to store sensor

readings, and conduct further analytics.

5.1 Acknowledgements

I would like to express my sincere gratitude to the entire JINR team and the START team
for making my participation in this event possible. I am also grateful to our supervisors, Dmitry
Belyakov and Maxim Zuev, for their comprehensive support. Gennady Karpov deserves special
thanks for his productive cooperation on the project. Additionally, I would like to extend my grati-
tude to Andrey Andreevich Sushchenko from the Far Eastern Federal University for providing me
with the opportunity to work outside the walls of my university and develop my skills. The one-
and-a-half-month program allowed to deepen my knowledge in programming and system design,

and master new technologies.

15

10.

11.

12.

REFERENCES

Telegraf | InfluxData. — 2024. — URL: https://www.influxdata.com/time-series—
platform/telegraf (visited on 03/11/2024).

SALSA.—2017. — URL: https://home-hlit.jinr.ru/#/ (visited on 03/06/2024).

Karpov G. Development of tools for visualization of monitoring the state and usage of com-
puting nodes of the Heterogeneous HybriLIT platform. — 2024.

What is streaming data? — 2024. — URL: https : //aws . amazon . com / what - is /
streaming-data/ (visited on 03/18/2024).

Tappu Ilepcusany B.I' ITlartepusl pa3pabotkun Ha Python TDD, DDD wu coOGwiTHiiHO-

opueHTupoBaHHas apxutekrypa. — O‘Reilly Media, Inc, 2022.

Ramalho L. Fluent Python: Clear, Concise and Effective Programming. — O‘Reilly Media,
Inc, 2022.

select - Waiting for I/O completion - Python 3.12.2 documentation. —2024. — URL: https:
//docs.python.org/3/library/select.html (visited on 03/26/2024).

selectors - High-level I/O multiplexing - Python 3.12.2 documentation. — 2024. — URL:
https://docs.python.org/3/library/selectors.html (visited on 03/26/2024).

WebSockets - FastAPI. —2024. — URL: https://fastapi.tiangolo.com/reference/
websockets/ (visited on 04/07/2024).

asyncio - Asynchronous I/O - Python 3.12.2 documentation. — 2024. — URL: https://
docs.python.org/3/library/asyncio.html (visited on 03/26/2024).

Streams - Python 3.12.2 documentation. — 2024. — URL: https://docs.python.org/
3/library/asyncio-stream.html (visited on 03/28/2024).

Lllsey A. Ilorpyxenue B naTTepHbl IpoekTupoBanus. — 2021.

16

https://www.influxdata.com/time-series-platform/telegraf
https://www.influxdata.com/time-series-platform/telegraf
https://home-hlit.jinr.ru/#/
https://aws.amazon.com/what-is/streaming-data/
https://aws.amazon.com/what-is/streaming-data/
https://docs.python.org/3/library/select.html
https://docs.python.org/3/library/select.html
https://docs.python.org/3/library/selectors.html
https://fastapi.tiangolo.com/reference/websockets/
https://fastapi.tiangolo.com/reference/websockets/
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio-stream.html
https://docs.python.org/3/library/asyncio-stream.html

	Introduction
	Problem statement

	Requirements development
	Sensor software requirements
	Backend server requirements

	Protocol design
	Communication between sensors and the server
	Messages from the server to sensor
	Messages from sensor to the server

	Communication between clients and the server

	Implementation details
	Used technologies
	Asyncrony
	System design

	Conclusion
	Acknowledgements

