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Abstract

This report delves into the fundamental aspects of statistical ensembles used in thermody-
namics to describe macroscopic systems. We examine the microcanonical, canonical, grand
canonical, and isobaric ensembles, highlighting their defining parameters and key thermo-
dynamic relations. The study further explores the statistical distributions relevant to these
ensembles, including the Fermi-Dirac, Bose-Einstein, and Maxwell-Boltzmann distributions.
By understanding these concepts, we gain insights into the behavior of systems at equilibrium
and the partition functions that underlie thermodynamic properties. Theoretical derivations
are discussed to provide a comprehensive overview of these fundamental principles.
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Chapter 1

Introduction

Statistical mechanics bridges the microscopic and macroscopic worlds, providing a frame-
work to understand thermodynamic properties through statistical methods. In this report,
we explore the core statistical ensembles that describe systems in equilibrium. The mi-
crocanonical ensemble represents an isolated system with fixed energy, volume, and particle
number. The canonical ensemble considers a system in thermal equilibrium with a heat bath,
characterized by constant temperature, volume, and particle number. The grand canonical
ensemble extends this by allowing particle exchange with a reservoir, leading to constant
temperature, volume, and chemical potential. Lastly, the isobaric ensemble describes sys-
tems under constant pressure. Each ensemble provides unique insights into system behavior,
and understanding their associated distributions, such as the Fermi-Dirac, Bose-Einstein,
and Maxwell-Boltzmann distributions, is crucial for analyzing both classical and quantum
systems.

Statistical ensembles serve as a cornerstone for predicting and interpreting the proper-
ties of complex systems. The microcanonical ensemble is particularly relevant for isolated
systems, where its key feature is the conservation of energy. This ensemble is instrumental
in deriving the fundamental thermodynamic quantity of entropy and establishing the link
between microscopic states and macroscopic observables through the Boltzmann formula.
Conversely, the canonical ensemble is indispensable in systems in thermal equilibrium with
a reservoir, where it simplifies the treatment of temperature and introduces the concept of
free energy as a central thermodynamic potential. The canonical partition function, a piv-
otal concept in this ensemble, encapsulates all possible microstates and their probabilities,
thereby allowing the calculation of thermodynamic quantities like internal energy, entropy,
and specific heat.

The grand canonical ensemble extends the flexibility of the canonical ensemble by incor-
porating the exchange of particles with a reservoir, making it highly applicable to systems
where the number of particles is not fixed. This ensemble introduces the chemical potential
as a crucial parameter, leading to the derivation of the grand partition function, which facil-
itates the study of open systems in contact with a particle reservoir. The isobaric ensemble,
on the other hand, focuses on systems under constant pressure, often simplifying the analysis
of chemical reactions and phase transitions where volume changes are significant. The study
of these ensembles is complemented by understanding their associated distributions. The
Fermi-Dirac distribution applies to fermions, particles that obey the Pauli exclusion prin-
ciple, while the Bose-Einstein distribution describes bosons, particles that can occupy the
same quantum state. The Maxwell-Boltzmann distribution, applicable in the classical limit,
describes the distribution of particle energies in a system at equilibrium. Together, these
ensembles and distributions provide a comprehensive framework for analyzing the thermo-
dynamic properties of both classical and quantum systems.

This report aims to provide a detailed exploration of these ensembles and distributions,
elucidating their theoretical underpinnings and practical applications. Through a systematic
examination of the equations and relations that govern these statistical systems, we endeavor
to highlight the relevance and utility of these concepts in modern thermodynamics and
statistical mechanics.
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Chapter 2

Statistical Ensembles

2.1. Microcanonical Ensemble: (E,N, V )

The statistical entropy is defined as

S = −kB
∑
i

Pi lnPi, (2.1)

where kB is Boltzmann constant and Pi is the probability of the microstate of the system.
The mean value of any quantity is given by the following formula as

⟨A⟩ =
∑
i

PiAi. (2.2)

The probabilities of microstates are normalized to unity as

ϕ =
∑
i

Pi − 1 = 0. (2.3)

The probabilities Pi of microstates are unknown. They can be found from the principle
of maximum entropy:

Φ = S − λϕ, (2.4)

∂Φ

∂Pi

= 0, (2.5)

Φ = −kB
∑
i

Pi lnPi − λ

(∑
i

Pi − 1

)
, (2.6)

where λ is an arbitrary constant.

∂Φ

∂Pi

= −kB − kB lnPi − λ = 0, (2.7)

Pi = exp

(
− λ

kB
− 1

)
, (2.8)

∑
i

δ(Ei − E)δ(Vi − V )δNi,N exp

(
− λ

kB
− 1

)
= 1. (2.9)

Define
W =

∑
i

δ(Ei − E)δ(Vi − V )δNi,N , (2.10)

we have

exp

(
− λ

kB
− 1

)
=

1

W
. (2.11)

Hence,

Pi =
1

W
. (2.12)

S = −kB
∑
i

δ(Ei − E)δ(Vi − V )δNi,N
1

W
ln

1

W
(2.13)

S = kB lnW (Boltzmann formula) (2.14)
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2.2. Canonical Ensemble: (T, V,N)

From the first law of thermodynamics:

dE = TdS − PdV + µdN, (2.15)

dS =
1

T
dE +

P

T
dV − µ

T
dN, (2.16)

S = S(E, V,N), (2.17)

dS =

(
∂S

∂E

)
V,N

dE +

(
∂S

∂V

)
E,N

dV +

(
∂S

∂N

)
E,V

dN, (2.18)

(
∂S

∂E

)
V,N

=
∂S(E, V,N)

∂E
, (2.19)

(
∂S

∂E

)
V,N

=
1

T
,

(
∂S

∂V

)
E,N

=
P

T
,

(
∂S

∂N

)
E,V

= −µ

T
, (2.20)

1

T
= kB

∂ lnW

∂E
, (2.21)

P

T
= kB

∂ lnW

∂V
, (2.22)

µ

T
= −kB

∂ lnW

∂N
. (2.23)

2.2. Canonical Ensemble: (T, V,N)

S = −kB
∑
i

Pi lnPi, (2.24)

where kB is Boltzmann constant and Pi is the probability. The mean value of any quantity
is given by the following formula:

⟨A⟩ =
∑
i

PiAi. (2.25)

The normalized condition is given by:

φ =
∑
i

Pi − 1 = 0. (2.26)

The Free Energy of the canonical ensemble is given by:

F (T, V,N) = E − TS, (2.27)

∑
i

· · · =
∑
i

δNi,Nδ(Vi − V ) · · · (2.28)

Apply equation 2.26 for the energy we get:

E =
∑
i

PiEi, (2.29)

Hence,

F =
∑
i

PiEi + kBT
∑
i

Pi lnPi =
∑
i

Pi (Ei + kBT lnPi) , (2.30)

Φ = F − λφ, (2.31)
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2.2. Canonical Ensemble: (T, V,N)

∂Φ

∂Pi

= 0. (2.32)

So equation 2.32 can be written as:

Φ =
∑
i

Pi(Ei + kBT lnPi)− λ(
∑
i

Pi − 1). (2.33)

Substitute equation 2.34 in equation 2.33 we get

∂Φ

∂Pi

= Ei + kBT + kBT lnPi − λ = 0 (2.34)

and

Pi = exp(
λ

kBT
− 1) exp(

−Ei

kBT
), (2.35)

Pi =
1

Z
exp(

−Ei

kBT
), Z−1 = exp[

λ

kBT
− 1]. (2.36)

Now, substituting the last equation in equation 2.26,
∑

i Pi = 1, we get

Z =
∑
i

δNi,Nδ(Vi − V ) exp(
−Ei

kBT
), (2.37)

Where Z is the partition function for the canonical ensemble. Equation 2.30 can be
written as

E =
1

Z

∑
i

δNi,Nδ(Vi − V ) exp(
−Ei

kBT
)Ei. (2.38)

Hence, eq. 2.28 is calculated as

F =
1

Z

∑
i

δNi,Nδ(Vi − V ) exp(
−Ei

kBT
)(Ei + kBT ln(

1

Z
exp(

−Ei

kBT
))). (2.39)

Then,
F = −kBT lnZ. (2.40)

From the first law of thermodynamics:

dE = TdS − PdV + µdN (2.41)

and
F (T, V,N) = E − TS, (2.42)

d =
∂

∂T
dT +

∂

∂V
dV +

∂

∂N
dN, (2.43)

we have
dF = TdS − PdV + µdN − TdS − SdT, (2.44)

dF = −PdV + µdN − SdT, (2.45)

dF = (
∂F

∂T
)V NdT + (

∂F

∂V
)TNdV + (

∂F

∂N
)TV dN. (2.46)

By comparing the last two equations we get,

S = −
(
∂F

∂T

)
V N

, (2.47)

µ = −
(
∂F

∂V

)
TN

, (2.48)

P = −
(
∂F

∂N

)
TV

, (2.49)
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2.3. Grand Canonical Ensemble (T, V, µ)

E = F + TS = F − T (
∂F

∂T
)V N . (2.50)

Then

E = −T 2 ∂

∂T
(
F

T
). (2.51)

So, these quantities entropy S, chemical potential µ, pressure P, and energy E are the ther-
modynamic relations of the canonical ensemble.

2.3. Grand Canonical Ensemble (T, V, µ)

S = −kB
∑
i

Pi lnPi, (1)

⟨A⟩ =
∑
i

PiAi, (2)

Φ =
∑
i

Pi − 1 = 0 ,
∑
i

Pi = 1, (3)

Ω = E − TS − µN, (4)

Φ = Ω− λΦ, (5)

∂Φ

∂Pi

= 0, (6)

E =
∑
i

PiEi , N =
∑
i

PiNi,

∑
... =

∑
δ(Vi − V ) ...

Substituting equations (3) and (4) into (5), we obtain

Φ = E − TS − µN − λ

(∑
i

Pi − 1

)

=

[∑
i

PiEi − T

(
−kB

∑
i

Pi lnPi

)
− µ

(∑
i

PiNi

)]
− λ

(∑
i

Pi − 1

)
,

∂Φ

∂Pi

= Ei + TkB lnPi + kBT − µNi − λ = 0. (7)

Using eq.(6) and eq.(7), we have

Pi = exp[
λ

kBT
+

µNi

kBT
− Ei

kBT
− 1]. (8)

substituting (8) in (3) we get

Z =
∑
i

δ(Vi − V ) exp[
µNi

kBT
− Ei

kBT
], Z−1 = exp[

λ

kBT
− 1], (9)

where Z is the grand partition function. So, Pi can be written as,

Pi =
1

Z
exp[

µNi

kBT
− Ei

kBT
]. (10)
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2.4. Isobaric Ensemble (T, P,N)

Then, applying Eq.(10) to Eq.(1) and after simplifying the result, we get

S =
E

T
− µN

T
− kB ln

1

Z
, (11)

Substituting into Eq.(4) so, we obtain the grand thermodynamic potential as

Ω = −kBT lnZ, (12)

2.3.1. Thermodynamic Relations of Grand Canonical Ensemble

From the first law of thermodynamics:

dE = TdS − PdV + µdN,

Ω = E − TS − µN,

d =
∂

∂T
dT +

∂

∂V
dV +

∂

∂N
dN,

dΩ = dE − TdS − SdT,

dΩ = TdS − PdV + µdN − TdS − SdT,

dΩ = −PdV + µdN − SdT,

dΩ = (
∂Ω

∂T
)V µdT + (

∂Ω

∂V
)TµdV + (

∂Ω

∂N
)TV dN.

By comparing the last two equations we get,

• Entropy S

S = −(
∂Ω

∂T
)V,µ. (13)

• Pressure P

P = −(
∂Ω

∂V
)T,µ. (14)

• Number of Particles N

N = −(
∂Ω

∂µ
)T,V . (15)

• Energy of the system E

E = Ω− T (
∂Ω

∂T
)V,µ − µ(

∂Ω

∂µ
)T,V . (16)

2.4. Isobaric Ensemble (T, P,N)

S = −kB
∑
i

Pi lnPi, (1)

⟨A⟩ =
∑
i

PiAi, (2)

ϕ =
∑
i

Pi − 1 = 0 ,
∑
i

Pi = 1, (3)

G = E − TS + PV, (4)

Φ = G− λϕ, (5)

∂Φ

∂Pi

= 0, (6)

V =
∑
i

PiVi,
∑
i

... =
∑
i

δNi,N ,
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2.4. Isobaric Ensemble (T, P,N)

∂Φ

∂Pi

= Ei + kBT + kBT lnPi + PVi − λ = 0.

After substitution and simplifying calculations the probability Pi is given by:

Pi =
1

Z
. exp[− Ei

kBT
− PVi

kBT
], (7)

where Z is the Isobaric Partition Function and is given by

Z =
∑
i

δNi,N exp[− Ei

kBT
− PVi

kBT
]. (8)

Hence,

S = kB lnZ +
E

T
+

PV

T
, (9)

and
G = −kBT lnZ. (10)

2.4.1. Thermal Relations

From the first law of thermodynamics:

dE = TdS − PdV + µdN,

G = E − TS + PV,

d =
∂

∂T
dT +

∂

∂P
dP +

∂

∂N
dN,

dG = dE − TdS − SdT + PdV + V dP,

dG = V dP + µdN − SdT,

dG = (
∂G

∂T
)NPdT + (

∂G

∂N
)TPdN + (

∂G

∂P
)TNdP.

By comparing the last two equations we get,

• Chemical Potential µ

µ = −(
∂G

∂N
)T,P . (11)

• Entropy S

S = −(
∂G

∂T
)N,P . (12)

• Volume V

V = −(
∂G

∂P
)T,N . (13)

• Energy of the system E

E = G− T (
∂G

∂T
)N,P − P (

∂G

∂P
)T,N . (14)

9



Chapter 3

Statistical Distributions for Grand Canonical Ensemble

3.1. Fermi-Dirac Distribution (Fermions)

3.1.1. Grand Partition Function for Fermions

The grand partition function is given by:

Z(T, V, µ) =
∑
i

δ(Vi − V ) exp[β(µNi − Ei)] (3.1)

and
Ei =⇒

∑
p

npϵp,

Ni =⇒
∑
p

np,

ϵp =
√

p⃗2 +m2,

pj =
2πℏ
L

nj, nj = 0,±1,±2, . . . , j = 1, 2, 3, L = V
1
3 .

Hence, after substitution and simplification the grand partition function can be written as

Z =
∑
{np}

exp[β
∑
p

np(µ− ϵp)], np = 0, 1. (3.2)

Simplifying, we get

Z =
∏
p

1∑
np=0

exp(β(µ− ϵp)np). (3.3)

Then,

Z =
∏
p

[1 + exp(β(µ− ϵp))] (3.4)

And the grand potential is

Ω = − 1

β
lnZ (3.5)

Substitute Z in Ω we get:

Ω = − 1

β
ln

[∏
p

[1 + exp(β(µ− ϵp))]

]
. (3.6)

After simplifying we get,

Ω = − 1

β

∑
p

ln[1 + exp(β(µ− ϵp))] (3.7)

Where Ω is the thermodynamic potential for ideal gas for Fermions.

3.1.2. Mean Occupation Numbers

From the grand partition function eq.(3.4) and the mean value equation, the mean occu-
pation numbers for Fermions can be calcultes as

< np′ >=
1

Z

∑
{np}

exp[β
∑
p

np(µ− ϵp)]np′ (3.8)

Then,

< np >=

1∑
np=0

exp[β
∑
p

np(µ− ϵp)]np

1∑
np=0

exp[β
∑
p

np(µ− ϵp)]

, (3.9)
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3.2. Bose-Einstein Distribution (Bosons)

by simplifying the equation, we have

< np >=
1

exp[β(ϵp − µ)] + 1
. (3.10)

3.1.3. Thermodynamic Quantities for Grand Canonical Ensemble for Fermions

Entropy can be drived from the following equation:

S = −(
∂Ω

∂T
)V,µ. (3.11)

So, substitute and simplify we get,

S = kB
∑
p

ln[1 + exp(β(µ− ϵp))]−
1

T

∑
p

(µ− ϵp)

exp(β(ϵp − µ)) + 1
. (3.12)

Then,
Ω = E − TS − µN. (3.13)

The pressure can be derived from the following equation:

P = −(
∂Ω

∂V
)T,µ. (14)

So, substitute Ω and simplify the equation, we get

P =
1

3V

∑
p

p2c2

ϵp
< np >, (3.14)

where p is the momentum.
The number of particles for Fermions can be calculated from the following equation:

N = −(
∂Ω

∂µ
)T,V . (3.15)

So,

N =
∑
p

1

exp(β(ϵp − µ)) + 1
=
∑
p

< np > . (3.16)

The energy of the system for Fermions is given by

E = Ω− T (
∂Ω

∂T
)V,µ − µ(

∂Ω

∂µ
)T,V . (16)

By substitution and simplification, the final form of the energy is given by

E =
∑
p

ϵpnp. (3.17)

3.2. Bose-Einstein Distribution (Bosons)

3.2.1. Grand Partition Function for Bosons

Z =
∑
{np}

exp[β
∞∑
p

np(µ− ϵp)], np = 0, 1, 2, ...,∞, (3.18)

Z =
∏
p

∞∑
np=0

exp[βnp(µ− ϵp)]. (3.19)

This sum is in the form of geometric series.

∞∑
k=0

rk =
1

1− r
. (3.20)
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3.2. Bose-Einstein Distribution (Bosons)

Thus,
∞∑

np=0

exp[βnp(µ− ϵp)] = [1− exp[β(µ− ϵp)]
−1. (3.21)

So, the partition function can be calculated as:

Z =
∏
p

[1− exp(β(µ− ϵp))]
−1. (3.22)

So, the thermodynamic potential for an ideal gas for Bosons is given by

Ω =
1

β

∑
p

ln[1− exp(β(µ− ϵp))]. (3.23)

3.2.2. Mean Occupation Numbers

< np′ >=
1

Z

∑
{np}

exp[β
∑
p

np(µ− ϵp)]np′ , (3.24)

< np >=

∞∑
np=0

np exp[βnp(µ− ϵp)]

∞∑
np=0

exp[βnp(µ− ϵp)]
, (3.25)

< np >=
1

exp[β(ϵp − µ)]− 1
(3.26)

and

N =
∑
p

< np >=
∑
p

1

exp[β(ϵp − µ)]− 1
(3.27)

where N is the main occupation number for Bosons.

3.2.3. Thermodynamic Quantities for Grand Canonical Ensemble for Bosons

Entropy can be derived from the following equation:

S = −(
∂Ω

∂T
)V,µ. (3.28)

So, substitute Ω and simplify we get,

S = −kB
∑
p

ln[1− exp(β(µ− ϵp))]−
E

.
T +

µN

T
(3.29)

Then,
Ω = E − TS − µN. (3.30)

The pressure can be derived from the following equation:

P = −(
∂Ω

∂V
)T,µ. (3.31)

So, substitute Ω and simplify the equation, we get

P =
1

3V

∑
p

< np >
p2c2

ϵnp

. (3.32)

Where c is the speed of light and p is the momentum. The number of particles for Bosons
can be calculated from the following equation:

N = −(
∂Ω

∂µ
)T,V . (3.33)
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3.3. Maxwell-Boltzmann Distribution

Then,

N =
∑
p

< np >=
∑
p

1

exp[β(ϵp − µ)]− 1
. (3.34)

The energy of the system for Bosons is given by

E = Ω− T (
∂Ω

∂T
)V,µ − µ(

∂Ω

∂µ
)T,V . (3.35)

By substitution and simplification, the final form of the energy is given by

E =
∑
p

ϵpnp. (3.36)

3.3. Maxwell-Boltzmann Distribution

3.3.1. Grand Partition Function for Maxwell-Boltzmann Statistics

Z =
∑
{np}

1∏
p

np!
exp[β

∞∑
p

np(µ− ϵp], np = 0, 1, 2, . . . ,∞, (3.37)

Z =
∏
p

∞∑
np=0

1

np!
exp[βnp(µ− ϵp)] (3.38)

and

exp(x) =
∞∑
k=0

xk

k!
. (3.39)

After simplification, the grand partition function for Maxwell-Boltzmann is given by:

Z =
∏
p

[exp(exp(β(µ− ϵp)))]. (3.40)

So, the thermodynamic potential for an ideal gas for Maxwell-Boltzmann is given by

Ω = − 1

β

∑
p

exp(β(µ− ϵp)). (3.41)

3.3.2. Mean Occupation Numbers

< np′ >=
1

Z

∑
{np}

1∏
p

np!
exp[β(µ− ϵp)]np′ , (3.42)

< np >=

∞∑
np=0

1
np!

exp[βnp(µ− ϵp)]np

∞∑
np=0

1
np!

exp[βnp(µ− ϵp)]
, (3.43)

∞∑
np=0

1

np!
exp[βnp(µ− ϵp)]np = exp[β(µ− ϵp)]

∞∑
m=0

exp[βm(µ− ϵp)]

m!
, (3.44)

< np >= exp(β(µ− ϵp)) (3.45)

and

N =
∑
p

< np >=
∑
p

exp(β(µ− ϵp)) (3.46)

.
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3.4. Conclusion

3.3.3. Thermodynamic Quantities for Grand Canonical Ensemble for Maxwell-
Boltzmann

Entropy can be derived from the following equation:

S = −(
∂Ω

∂T
)V,µ. (3.47)

So, substitute Ω and simplify we get,

S = kB
∑
p

exp(β(µ− ϵp))−
1

T
[−E + µN ]. (3.48)

Thus,
Ω = E − TS − µN. (3.49)

The pressure can be derived from the following equation:

P = −(
∂Ω

∂V
)T,µ. (3.50)

So, substitute Ω and simplify the equation we get,

P =
1

3V

∑
p

< np >
p2c2

ϵp
. (3.51)

The number of particles for Bosons can be calculated from the following equation:

N = −(
∂Ω

∂µ
)T,V . (3.52)

Then,

N =
∑
p

exp(β(µ− ϵp)) =
∑
p

< np > . (3.53)

The energy of the system for Maxwell-Boltzmann is given by

E = Ω− T (
∂Ω

∂T
)V,µ − µ(

∂Ω

∂µ
)T,V . (3.54)

By substitution and simplification, the final form of the energy is given by

E =
∑
p

ϵpnp. (3.55)

3.4. Conclusion

This report has outlined the fundamental statistical ensembles that are pivotal in the
field of thermodynamics and statistical mechanics. By analyzing the microcanonical, canon-
ical, grand canonical, and isobaric ensembles, we have provided a detailed understanding
of their thermodynamic relations and the partition functions essential for describing system
properties. The study of Fermi-Dirac, Bose-Einstein, and Maxwell-Boltzmann distributions
has revealed how different particles obey different statistical laws, influencing their ther-
modynamic behavior. The theoretical formulations and derived equations underscore the
significance of these ensembles and distributions in predicting and interpreting the physical
properties of various systems. As we continue to explore complex systems, the principles
discussed here remain foundational to advancements in statistical mechanics.
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