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1 Abstract
The modern theory of gravity is described by the general relativity, which is mathematically

based on the idea of our physical space as spacetime - a four-dimensional manifold. The basic
principle of the theory is described by Einstein’s field equations. They can be popularly explained
as follows - mass tells space how to bend, and curved space tells matter how to move. From the
special relativity we know that equations are invariant under Lorentz transformations.

But the definition of the inhomogeneous Lorentz group (Poincaré group) as a symmetry group
breaks down in the presence of gravitational fields, even if the dynamic effects of gravity are
negligible.

In 1962, R. Sachs tried to derive the Lorentz group as an "asymptotic symmetry group" that
leaves unchanged the form of boundary conditions suitable for asymptotically flat gravitational
fields. After analyzing the work of Bondi and Metzner on gravitational radiation, R. Sachs showed
that for reasonable boundary conditions, not the Lorentz group is obtained, but a broader group,
which is now commonly called the Bondi-Metzner-Sachs group. The practice is devoted to ac-
quaintance with the BMS group and asymptotic symmetries.

2 Lorentz transformations
To define Lorentz transformations, let’s recall some facts from differential geometry. Further,

the summation is performed according to Einstein’s rule and the speed of light is assumed to be
normalized 𝑐 = 1. The interval (distance between two infinitely close points in the spacetime) can
be written using a metric tensor 𝑔𝛼𝛽:

𝑑𝑠2 = 𝑔𝛼𝛽𝑑𝑥
𝛼𝑑𝑥𝛽, 𝛼,𝛽 = 0,...,3,

where the coordinates are indicated 𝑥0 = 𝑡, 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧. In a locally inertial reference
frame, the metric tensor 𝑔𝛼𝛽 is equal to the Minkowski metric 𝜂𝛼𝛽:

𝑔𝛼𝛽 = 𝜂𝛼𝛽 =

⎛⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ .

Lorentz transformations are a transition from one coordinate system 𝑥𝛼 to another system 𝑥′𝛼,
defined according to the rule:

𝑥′𝛼 = Λ𝛼𝛽𝑥
𝛽 + 𝑎𝛼,

where Λ - an element of the Lorentz group defined by the condition:

𝑑𝑠′2 = 𝜂𝛼′𝛽′𝑑𝑥𝛼
′
𝑑𝑥𝛽

′
= 𝜂𝜇𝜈Λ

𝜇
𝛼′Λ

𝜈
𝛽′𝑑𝑥𝛼

′
𝑑𝑥𝛽

′
,

or briefly: Λ𝜇𝛼′Λ𝜈𝛽′𝜂𝜇𝜈 = 𝜂𝛼′𝛽′ .
The vector 𝑎 sets the shift (translation) and if it is nonzero, then such inhomogeneous Lorentz

group is called a Poincare group. The Lorentz group is a subgroup of the Poincare group, it forms
the following symmetries: inversion of space and time, their combination, rotations and boosts.
Boost is a transition to a moving inertial frame of reference, without purely spatial rotation, shift
and reflections.
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In a component-by-component form, the transformations can be written as a system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑡 = 𝑥′𝑠ℎ(𝜑) + 𝑡′𝑐ℎ(𝜑) = 𝑥′+𝑣𝑡′√

1−𝑣2 ,

𝑥 = 𝑥′𝑐ℎ(𝜑) + 𝑡′𝑠ℎ(𝜑) = 𝑣𝑥′+𝑡′√
1−𝑣2 ,

𝑦 = 𝑦′,

𝑧 = 𝑧′.

Hence, the Lorentz transformation matrix is given as the Jacobi matrix of the corresponding
coordinate system:

Λ𝑎𝛼′ =
𝜕𝑥𝛼

𝜕𝑥𝛼′ =

⎛⎜⎜⎝
1√

1−𝑣2
𝑣√
1−𝑣2 0 0

𝑣√
1−𝑣2

1√
1−𝑣2 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠ .

.

3 Linearized gravity
The main equation of general relativity is Einstein’s field equation:

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = 8𝜋𝐺𝑇𝜇𝜈 . (1)

Here we want to find out the equations of motion obeyed by the perturbations of metric. In the
neighborhood of the point 𝑔𝜇𝜈 can be represented as the sum of 𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 , where ℎ𝜇𝜈 are
linear perturbations of the Minkowski metric.

To obtain linearized equation, we rewrite the Christoffel symbols Γ, the Ricci tensor 𝑅𝜇𝜈 and
the Ricci scalar 𝑅:

Γ𝜎𝜇𝜈 =
1

2
𝑔𝜎𝜆(𝜕𝜇𝑔𝜈𝜆 + 𝜕𝜈𝑔𝜆𝜇 − 𝜕𝜆𝑔𝜇𝜈) =

1

2
𝜂𝜎𝜆(𝜕𝜇ℎ𝜈𝜆 + 𝜕𝜈ℎ𝜆𝜇 − 𝜕𝜆ℎ𝜇𝜈) +𝑂(ℎ2).

Ricci tensor we obtain from Riemann tensor in linear order:

𝑅𝜇𝜈𝜌𝜎 = 𝜂𝜇𝜆𝜕𝜌Γ
𝜆
𝜈𝜎 − 𝜂𝜇𝜆𝜕𝜎Γ

𝜆
𝜈𝜌 =

1

2
(𝜕𝜌𝜕𝜈ℎ𝜇𝜎 − 𝜕𝜌𝜕𝜇ℎ𝜈𝜎 − 𝜕𝜎𝜕𝜈ℎ𝜇𝜌 + 𝜕𝜎𝜕𝜇ℎ𝜈𝜌),

𝑅𝜇𝜈 = 𝜂𝜌𝜎𝑅𝜇𝜈𝜌𝜎 =
1

2
(𝜕𝜎𝜕𝜇ℎ

𝜎
𝜈 + 𝜕𝜎𝜕𝜈ℎ

𝜎
𝜇 − 𝜕𝜇𝜕𝜈ℎ−□ℎ𝜇𝜈),

𝑅 = 𝜂𝜇𝜈𝑅𝜇𝜈 = 𝜕𝜇𝜕𝜈ℎ
𝜇𝜈 −□ℎ.

Let’s substitute this into the right side of the equation (1) and use harmonic gauge (Lorentz
gauge) 𝜕𝛼ℎ𝛼𝛽 = 1

2
𝜕𝛽ℎ, where ℎ is a trace of perturbation matrices, defined by formulas 𝜂𝜇𝜈ℎ𝜇𝜈 = ℎ

or ℎ𝛼𝛼 = ℎ:

𝑅𝜇𝜈 −
1

2
𝜂𝜇𝜈𝑅 =

1

2
(−□ℎ𝜇𝜈 + 𝜂𝜇𝜈□ℎ) = 8𝜋𝐺𝑇𝜇𝜈 .

Simplifying the equation above and assuming the absence of a matter field (𝑇𝜇𝜈 = 0), we get
the wave equation:

□ℎ𝜇𝜈 = 0, (2)
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where □ = 𝜂𝜇𝜈𝜕𝜇𝜕𝜈 is d’Alembert operator.
Thus, weak perturbations of the metric against the background of flat spacetime can exist in

the form of propagating self-sustaining waves.
Since the equation (2) is linear, the general solution can be constructed as a linear superposition

of plane waves, so ℎ𝜇𝜈(𝑥) = 𝜖𝜇𝜈(𝑘)𝑒
𝑖𝑘𝑥, where 𝜖𝜇𝜈 is the polarization tensor and 𝑘 is a wave vector.

Because of the harmonic gauge and symmetries, gravitational waves come in only 2 polarizations,
just like electromagnetic waves. So the polarization tensor is characterised by 2 real numbers
𝜖+, 𝜖×:

𝜖𝜇𝜈

⎛⎜⎜⎝
0 0 0 0
0 𝜖+ 𝜖× 0
0 𝜖× −𝜖+ 0
0 0 0 0

⎞⎟⎟⎠ .

The two polarizations, found here for a classical gravitational wave, correspond to the two
helicity states of the graviton in quantum field theory. And this allowed to make an assumption
about existence of gravitational waves and gravitational radiation.

4 Bondi-Metzner-Sachs Group
So, if gravitational fields are negligible, two approaches for definition of Lorentz transformations
can be distinguished[2]:

1)Lorentz transformations should leave the basic differential equations of physics invariant;
2)Lorentz transformations are symmetry transformations that preserve the numerical value of

the metric tensor. If the effects of gravitational waves are taken into account according to general
relativity theory, then any coordinate transformation will satisfy the first understanding, but in
general it will not satisfy the second. Thus, only a homogeneous Lorentz group can be defined
correctly, since these transformations are related to local properties of space.

But in theoretical physics, the inhomogeneous Lorentz group justifies conservation laws and
defines possible types of elementary particles. Hence, the Lorentz transformations must be "asymp-
totic symmetries" and a new representation in an asymptotically flat spacetime with a modified
Minkowski metric should be considered. Also, these transformations must satisfy some boundary
conditions imposed on gravitational waves at infinity.

In Bondi’s works, a solution to this problem was proposed, which was subsequently generalized
in the Petrov-Pirani classification. The essence of the approach is to assume the absence of a priori
knowledge about the properties of the defined group of asymptotic symmetry and to construct such
a group using reasonable boundary conditions. The key role from the mathematical side is played
by null (light-like) hypersurfaces.

The characteristic hypersurfaces of a given hyperbolic equation can be given in terms of the
retarded time 𝑢 and the leading time 𝑣:

𝑢 = 𝑡− 𝑟, 𝑣 = 𝑡+ 𝑟, 𝑟2 = 𝛿𝛼𝛽𝑥
𝛼𝑥𝛽,

that is, these are hypersurfaces along which the wave front moves. They are also null hypersurfaces,
meaning their normals are null:

𝑘𝛼 = −𝜕𝛼𝑢, 𝑛𝛼 = −𝜕𝛼𝑣

𝜂𝛼𝛽𝑘𝛼𝑘𝛽 = 𝜂𝛼𝛽𝑛𝛼𝑛𝛽 = 0
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It follows from this that the normal direction is also tangent to the hypersurfaces, that is, the
vector 𝑘𝛼 = 𝜂𝛼𝛽𝑘𝛽 is tangent to 𝑢 = 𝑐𝑜𝑛𝑠𝑡 hypersurface. Curves tangent to 𝑘𝛼, these are null
geodesic rays generating outgoing null hypersurfaces 𝑢 = 𝑐𝑜𝑛𝑠𝑡. Using the family of outgoing rays,
gravitational waves can be described. Such a construction will be one of the necessary conditions
for the existence of the Bondi-Metzner-Sachs metric.

Let the space be defined as the topological product of a real axis and a two-dimensional unit
sphere and this space is smoothly covered by three coordinates 𝜃,𝜑,𝑢, where 0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜑 ≤
2𝜋, −∞ ≤ 𝑢 ≤ ∞. Let’s define the Bondi-Metzner-Sachs transformation:

𝜃′ = 𝜃′(𝜃,𝜑,𝑢), 𝜑′ = 𝜑′(𝜃,𝜑,𝑢), 𝑢′ = 𝐾(𝜃,𝜑)(𝑢− 𝜍(𝜃,𝜑)),

where (𝜃,𝜑) → (𝜃′,𝜑′) - conformal transformation of a sphere into itself, 𝐾 is a conformal factor:

𝑑𝜃′2 + 𝑠𝑖𝑛2𝜃′2𝑑𝜑′2 = 𝐾2(𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2)

The fig. (1) shows the geometric properties of the coordinates in the generic case.

Figure 1: Bondi-Metzner-Sachs coordinate system defined at a timelike worldtube with a null cone.
𝑅 = 𝑅0 is a cut of worldtube, where 𝑢 varies along surface geodesics. Hypersurfaces 𝑢, 𝜑 = 𝑐𝑜𝑛𝑠𝑡
correspond to null rays, 𝑢 = 𝑐𝑜𝑛𝑠𝑡 is a null cone

Transformations 𝜃′ = 𝜃, 𝜑′ = 𝜑, 𝑢′ = 𝑢 + 𝜍 are called supertranslations, it is a subgroup of
Bondi-Metzner-Sachs group. The 𝜍 function can be decomposed into spherical harmonics:

𝜍 =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑎𝑚,𝑙𝑌𝑙,𝑚(𝜃,𝜑),

where 𝑎𝑚,𝑙 is an infinite set of constants defining supertranslations. If 𝑎𝑚,𝑙 = 0 for 𝑙 > 2, then 𝜍 is
represented by:

𝜍 = 𝜖0 + 𝜖1𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑+ 𝜖2𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑+ 𝜖3𝑐𝑜𝑠𝜃.
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In this case, the transformation is called translation with 4 parameters and is a subgroup of
supertranslations. A fairly detailed introduction to can be found in the book [3]

Let the Bondi-Sachs coordinates be constructed on a family of null hypersurfaces 𝑢 = 𝑐𝑜𝑛𝑠𝑡
and represented as 𝑥𝛼 = (𝑢, 𝑟, 𝑥𝐴), where 𝑥𝐴 are the angular coordinates 𝜃, 𝜑. Using the definition
(2) and under suitable boundary conditions, which will be discussed below, it is possible to write
the interval in general form:

𝑑𝑠2 = 𝑔𝛼𝛽𝑑𝑥
𝛼𝑑𝑥𝛽 = −𝑉

𝑟
𝑒2𝜓𝑑𝑢2 − 2𝑒2𝜓𝑑𝑢𝑑𝑟 + 𝑟2ℎ𝐴𝐵(𝑑𝑥

𝐴 − 𝑈𝐴𝑑𝑢)(𝑑𝑥𝐵 − 𝑈𝐵𝑑𝑢), (3)

where the indices𝐴,𝐵 run through two values, the functions 𝑉 (𝑢, 𝜃, 𝜑), 𝜓(𝑢, 𝜃, 𝜑), 𝑈( 𝜃, 𝜑), 𝑑𝑒𝑡(ℎ𝐴𝐵) =
𝑏(𝑢, 𝜃, 𝜑) are arbitrary functions of their arguments and 𝑔𝐴𝐵 = 𝑟2ℎ𝐴𝐵. At the same time, restric-
tions must be satisfied:

𝑢0 ≤ 𝑢 ≤ 𝑢1, 𝑟0 ≤ 𝑟 ≤ ∞, 0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜑 ≤ 2𝜋. (4)

Necessary conditions for the existence of a metric (3):
1)Hypersurfaces 𝑢 = 𝑐𝑜𝑛𝑠𝑡 are tangent to the light cone everywhere. The normal vector

𝑘𝛼 = −𝜕𝛼𝑢 satisfies the equality 𝑔𝛼𝛽𝜕𝛼𝑢𝜕𝛽𝑢 = 0, hence 𝑔𝑢𝑢 = 0 and the vector 𝑘𝛼 = −𝑔𝛼𝛽𝜕𝑏𝑢
remains tangent to the null rays.

2) Variable 𝑟 is the radius of the light cone section. In the Newman-Penrose formalism, the
affine parameter 𝜆 is used instead of the radial coordinate, since the expansion of the Θ null
hypersurface goes to infinity at 𝑟 = 0:

Θ = ∇𝛼(𝑒
−2𝜓𝑘𝛼) =

2

𝑟
𝑒−2𝜓, 𝑘𝛼𝜕𝛼 = −𝑔𝑢𝑟𝜕𝑟

The relation of the radius and the affine parameter is expressed by the formula: 𝜕𝛼𝜆 = 𝑒2𝜓.
3)The variables 𝜃, 𝜑 are constant along each ray forming a cone, that is, 𝑘𝛼𝜕𝛼𝑥𝐴 = −𝑔𝛼𝛽(𝜕𝛼𝑢)(𝜕𝛽𝑥𝐴).

The ray is defined as a line with a tangent vector 𝑘𝛼 = −(𝜕𝛽𝑢)𝑔
𝛼𝛽.

The study of field equations led to the identification of asymptotics of unknown functions of
𝑉, 𝛽, 𝑈 metrics (3):

𝑉 = −𝑟 + 2𝑀(𝑢, 𝜃, 𝜑) +𝑂(𝑟−1),

𝜓 = −𝑐(𝑢,𝜃,𝜑)𝑐*(𝑢, 𝜃, 𝜑) 1

4𝑟2
+𝑂(𝑟−4),

ℎ𝐴𝐵𝑑𝑥
𝐴𝑑𝑥𝐵 = (𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2) +𝑂(𝑟−1),

𝑈𝐴 = 𝑂(𝑟−2),

where 𝑐* is complex-conjugate to 𝑐.
As a consequence, in the limit at 𝑟 → ∞ it can be shown that if we take 𝑏 = 𝑠𝑖𝑛2𝜃, then the

metric (3) is transformed to the form of the Minkowski metric in spherical coordinates:

𝑙𝑖𝑚(𝑑𝑠2) = 𝑑𝑢2 − 2𝑑𝑢𝑑𝑟 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2). (5)

Bondi and Metzner considered the set of all coordinate transformations that preserve the form
(3),(4),(5). The result of the work was the construction of a generalized Bondi-Metzner group or
Bondi-Metzner-Sachs group.
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5 Group properties
Group properties of Bondi-Metzner-Sachs group are following.

Theorem 5.1. The supertranslations form a normal Abelian subgroup of the Bondi-Metzner-Sachs
group and its quotient group is isomorphic to the homogeneous Lorentz group.

Lemma 5.2. Translations form a four-dimensional normal subgroup of the Bondi-Metzner-Sachs
group

Lemma 5.3. If the group is a four-dimensional normal subgroup of the Bondi-Metzner-Sachs
group, then it is contained in the supertranslation group.

Theorem 5.4. The only normal Bondi-Metzner-Sachs subgroup is the translation group.

The proof of the theorems can be found in [2].

6 Conclusion
Mail goal of the practice was to get acquainted with different definitions of asymptotically flat
spacetimes and asymptotic symmetries. My work is a small introduction in BMS formalism and
during studies I found out where this approach can be applied, for example in numerical relativity
and special solutions of Einstein’s equation.
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8 Appendix A[3]
This appendix will provide some explanations to the type of BMS metric (3). The determinant
condition requires that ℎ𝐴𝐵𝜕𝑟ℎ𝐴𝐵 = ℎ𝐴𝐵𝜕𝑢ℎ𝐴𝐵 = 0, where ℎ𝐴𝐶ℎ𝐶𝐵 = 𝛿𝐴𝐵. The covariant deriva-
tive 𝐷𝐴 of the metric ℎ𝐴𝐵 is defined as 𝐷𝐴 = ℎ𝐴𝐵𝐷𝐵. Corresponding non-null contravariant
components of the metric 𝑔𝛼𝛽:

𝑔𝑢𝑟 = −𝑒−2𝛽, 𝑔𝑟𝑟 =
𝑉

𝑟
𝑒−2𝛽, 𝑔𝑟𝐴 = −𝑈𝐴𝑒−2𝛽, 𝑔𝐴𝐵 =

1

𝑟2
ℎ𝐴𝐵

We can represent the metric ℎ𝐴𝐵 through two functions 𝛾(𝑢,𝑟,𝜃,𝜑) and 𝛿(𝑢,𝑟,𝜃,𝜑) which are
corresponding to + and × polarizations of gravitational waves:

ℎ𝐴𝐵𝑑𝑥
𝐴𝑑𝑥𝐵 = (𝑒2𝛾𝑑𝜃2 + 𝑒−2𝛾𝑠𝑖𝑛2(𝜃)𝑑𝜑2)𝑐ℎ(2𝛿) + 2𝑠𝑖𝑛(𝜃)𝑠ℎ(2𝛿)𝑑𝜃𝑑𝜑. (6)

This form (6) differs from the one presented in Sachs’ original work by one transformation:𝛾 →
𝛾+𝛿
2
, 𝛿 → 𝛾−𝛿

2
.
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In Bondi’s original paper, an axisymmetric metric was considered, with symmetry with respect
to 𝜑, 𝛿 = 𝑈𝜑 = 0 and 𝛾 = 𝛾(𝑢,𝑟,𝜃), which ultimately gives the Bondi metric:

𝑔
(𝐵)
𝛼𝛽 𝑑𝑥

𝛼𝑑𝑥𝛽 = (−𝑉
𝑟
𝑒2𝜓 + 𝑟2𝑈𝑒2𝛾)𝑑𝑢2 − 2𝑒2𝜓𝑑𝑢𝑑𝑟 − 𝑟2𝑈𝑒2𝛾𝑑𝑢𝑑𝜃 + 𝑟2(𝑒2𝛾𝑑𝜃2 + 𝑒−2𝛾𝑠𝑖𝑛2(𝜃)𝑑𝜑2),

where 𝑈 = 𝑈 𝜃, but such a metric is not suitable for describing 𝜑-symmetric rotating bodies.
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