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Abstract 

The main purpose of the work during the spring practice was to study the 
radiative corrections due to the initial state radiation in the process of electron-posi-
tron annihilation. The Fortran programming language was studied and the program 
code for numerical calculation of second-order radiative corrections was written. 
Also, the research papers by F.A. Berends, W.L. van Neerven and G.J.H. Burgers 
[1]; J. Blumlein, A. De Freitas, C.G. Raab, K. Schonwald [2] were studied. 

1. Introduction 

High energy 𝑒!𝑒" colliders operating at large luminosity are crucial for meas-
uring core parameters of the Standard Model with high precision and testing its 
structure. Previous experiments at LEP have obtained precise results on the param-
eters of the Z-boson. Future facilities such as ILC, CLIC, FCC-ee, and muon collid-
ers are planned to operate at even higher energies and luminosities. This will allow 
for precise scans of the 𝑡𝑡̅ - threshold to measure properties of the top quark and 
produce the Higgs boson under clean conditions in ZH-final states to understand its 
properties in great detail. 

However, highly precise measurements require exact knowledge of the QED 
radiative corrections for the 𝑒!𝑒" 	→ 	 𝛾∗/𝑍∗process, which must be known to two-
loop order in the fine structure constant α, with additional logarithmic contributions 
in higher orders. During the spring practice, the first calculation of radiative correc-
tions to the initial state O(α2) for this process was performed. 

While the first calculation of the O(α2) initial state radiative corrections was 
performed in Ref. [1], some approximations were made to simplify the integration 
process. However, the second calculation based on massive operator matrix ele-
ments (OMEs)  showed deviations in the constant term at O(α2), although the O(α) 
result and logarithmic terms at O(α2) agreed. In order to determine which result is 
correct, a complete calculation of the scattering cross section without any approxi-
mation or assumption must be performed analytically.  

In this paper, a thorough numerical calculation of the contributing terms is 
performed. The calculation also takes into account the axial-vector contributions and 
the differences in the components of the vector. Also, all terms up to O((𝑚$

% 𝑠⁄ )&) 
are preserved. The final radiators can be expressed by Nielsen integrals: 
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which cover the classical polylogarithms [4].  
The radiator functions have the general structure 
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                      𝐶5 :𝑧,
0
1&= = ∑ 𝑙𝑛5"8 : 0

1&=
5
87& 𝑐5,8(𝑧).                              (4) 

The respective differential cross sections are then given by 
  

.9'"'$
.0(

=	 +
0
𝜎$"$$(𝑠:)	𝑅 :𝑧, 𝛼,

0
1&=                                                    (5) 

with  𝜎$"$$(𝑠:) the scattering cross section without the initial state radiation 
(ISR) corrections and 

            𝑧 = 0:
0
                                                   (6) 

where 𝑠: is the invariant mass of the produced (off-shell) 𝛾 𝑍⁄  boson. Here 
and in the following the mass m denotes the electron mass me, if not stated other-
wise.                          

2 The process 

Our focus is on the phenomenon of 𝑒!𝑒" annihilation which leads to the cre-
ation of a virtual photon 𝛾∗or virtual 𝑍&∗ boson at an energy threshold of 𝑠& ≥ 4𝑚;

%, 
where 𝑚<  represents the mass of the muon and s denotes the squared cms energy of 
the annihilation process. Additionally, we can also explore the production of other 
fermionic final states such as 𝜏!𝜏", massless 𝑞𝑞I, and their corresponding heavy 
quark pairs. The upper limit of the phase space for 𝑠& is defined as 𝑠& ≥ 4𝑚;

% .Under 
normal circumstances, we assume that 𝑠& ≥ 4𝑚;

% or alternatively, a more conserva-
tive cut. The differential Born cross section can be expressed as: 

 

   
.9'"'$

(*),-

.0(
= 	𝛿(𝑠 − 𝑠:)𝜎(&)(𝑠:)                                     (7) 

 
where 𝜎(&)(𝑠:) denotes the integrated cross section of one of the above pro-

cesses. It corresponds to the annihilation diagram in Figure 1. For  
s-channel 𝑒!𝑒"  annihilation into a virtual gauge boson (𝛾∗, 𝑍∗)which de-

cays into a fermion pair 𝑓𝑓,̅ the scattering cross section reads 
 

                                     
  Figure 1: The Born cross section for the process 𝑒!𝑒" → γ∗/𝑍&∗ 
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In the current work, in order to obtain the Born cross-section in the s-channel, 

it is assumed that the fermions of the final state are not electrons. The electron mass 
is disregarded in Eqs. (8, 9) kinematically. The fine structure constant is represented 
by 𝛼, while 𝑁>,; corresponds to the number of colors of final state fermions. The 
value of 𝑁>,; = 1 for colorless fermions and 𝑁>,; =3 for quarks. The function 𝑔(𝑠) 
is set to 1 for pure perturbative calculations. The variables used in the study are s for 
the cms energy, 𝛺 for the spherical angle, 𝛺 for the cms scattering angle, and   
𝐺!(𝑠)|"#!…% as the effective couplings. 

 
𝐺+(𝑠) = 𝑄$%𝑄;% + 2𝑄$𝑄;𝑣$𝑣;ℜ[𝜒@(𝑠)] + ]𝑣;% + 𝑎;%_

%(𝑣$% + 𝑎$%)%|𝜒@(𝑠)|% 
𝐺%(𝑠) = (𝑣$% + 𝑎$%)%𝑎;%|𝜒@(𝑠)|% 

𝐺=(𝑠) = 2𝑄$𝑄;𝑎$𝑎;ℜ[𝜒@(𝑠)] + 4𝑣$𝑣;𝑎$𝑎;|𝜒@(𝑠)|% 
 
The reduced Z–propagator is given by 
      
    𝜒@(𝑠) =

0
0"A/

&!BA/Г/
                                          (10) 

 
where 𝑀@ and Г@ are the mass and the width of the Z-boson and 𝑚; is the 

mass of the final state fermion. 𝑄$,; are the electromagnetic charges of the electron 
(𝑄$ = −1) and the final state fermion, respectively, and the electro–weak cou-
plings 𝑣B and 𝑎B are given by 

 
                     𝑣$ =

+
0B)D0EF0D0

c𝐼G,$% − 2𝑄$𝑠𝑖𝑛%𝜃Gf,                            (11) 
 

                     𝑎$ =
+

0B)D0EF0D0
𝐼G,$= ,                                                              (12) 

 
                    𝑣; =

+
0B)D0EF0D0

c𝐼G,;% − 2𝑄;𝑠𝑖𝑛%𝜃Gf,                                    (13) 
 

                    𝑎; =
+

0B)D0EF0D0
𝐼G,;= ,                                                        (14) 

 
where 𝜃G is the weak mixing angle, and 𝐼G,$= = ±½ the third component of 

the weak isospin for up and down particles, respectively. 
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For the radiative corrections studied below, we will consider the integrated 
cross section (9) in the energy region of the Z–peak.  

In the following we will use the fine structure constant with the normaliza-
tion 

 
    𝑎 = 2

34
 .                                                              (15) 

 
The scattering cross section including the contributions due to initial state ra-

diation can be expressed as follows 
 
             𝜎(𝑠) = ∫ 𝑑𝑧+

& 𝑅(𝑧; 𝛼; 𝐿)𝜎&(𝑧𝑠),                                   (16) 
where 𝑅(𝑧; 𝛼; 𝐿) is the distribution–valued [5]  radiative function, with 
  
                                          𝐿 = 𝑙𝑛 : 0

1'
&=                                       (17) 

The different radiators calculated in the present paper sum to the following 
distribution 

 
                                   	𝑅(𝑧; 𝛼; 𝐿) = 𝑎+𝑅+

H(𝑧, 𝐿) + 𝑎%                             (18)                                         
        

3. Program code for calculating radiative corrections 

Important fragments of the program for numerical calculation of radiative 
corrections will be shown below. The work of F.A. Berends, W.L. van Neerven 
and G.J.H. Burgers [1] was taken as a basis. The Fortran language was chosen as 
the tool for the following reasons: 

1) Fortran is a standard programming language for scientific computing, 
which is widely used in high-energy physics. This means that there are many li-
braries and tools that can be used to solve problems in this area. 

2) Fortran has a high speed of program execution, which is especially im-
portant for complex computational tasks related to radiative corrections. This al-
lows you to get results faster and use computer resources more efficiently. 

3) Fortran has powerful capabilities for working with matrices and data ar-
rays, which is often used in numerical methods used for the analysis of radiative 
corrections. This allows you to process large amounts of data quickly and effi-
ciently. 
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  Figure 2: Initialization of functions, constants and parameters 
 
 



 
 

8 

 
 
 
  Figure 3: Contribution of hard-photon emission 
 

 
 
 
  Figure 4: Contribution of soft and virtual photon emission 
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Conclusions  

During the spring internship the second-order radiative corrections to the 
process of 𝑒!𝑒" 	→ 	 𝛾∗/𝑍∗  were studied in detail and the Fortran programming 
language was mastered. Mastering this language allows you to develop and optimize 
programs to solve complex mathematical problems, as well as manage large 
amounts of data. 

The study of radiative corrections in the process of electron-positron pair 
formation is important for an accurate description of physical phenomena at the 
elementary particle level. These corrections can significantly influence the measured 
cross sections and distributions of particles in the final state, which should be taken 
into account when analyzing experimental data and verifying theoretical models. In 
addition, the study of radiative corrections can lead to more accurate determinations 
of fundamental parameters, such as masses and properties of elementary particles. 

Also, a program was developed to numerically analyze the contribution to the 
radiative corrections of the 2nd order to the initial state radiation (ISR) of positron-
electron annihilation. 

In the future, higher order contributions are planned to be added to the 
program. In the near future I plan to continue working on this topic, which will be 
the basis of my future master's and PhD thesis under the guidance of my supervisor 
for spring practice - Andrej Borisovich Arbuzov. 
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