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ABSTRACT

The aim of this work is the study of the statistical hadron model with exactly conserved
strange charge of the system. The statistical hadron model is used to describe the yields and ratios
of hadrons produced in heavy-ion collisions at high energies. This approach is relevant in the final
state of the nuclear collision at chemical freeze-out, when the equilibrium statistical mechanics
can be applied. In this case the system of the produced particles can be treated as an ideal gas of
different species. ldeal gas following different statistics (Maxwell-Boltzmann, Bose-Einstein and
Fermi-Dirac) for canonical and grand canonical ensembles has been considered. The
thermodynamic potentials, partition functions and ensemble averages for each statistical ensemble
has been calculated. The exact solution for the canonical partition function with exact conservation
of net strangeness for ideal gas of different species with quantum and classical statistics of particles
has been obtained. The mean occupation numbers has been calculated.
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INTRODUCTION

In heavy ion collisions the strange particle multiplicity has an anomalous rise at the

Vs ~8 GeV. The observed maximum of the ratio K+/7T+ can be considered as the sign of the

Quark-gluon plasma (QGP) formation [1, 2, 3]. In order to evaluate the production of different
sorts of particles in heavy ion collisions we apply the statistical hadron model with exactly
conserved strangeness charge [4]. It also can be used to analyze thermodynamic properties of
hadron systems occurring in heavy ion collisions.

The conservation laws of the charges (electric, baryon, strange) are fulfilled in heavy ion
collisions. It means that initial net charge of all involved in the collision nucleons should be equal
to the net charge of the particles created in considered event. The colliding nucleons do not contain
strange quarks, therefore the net strangeness equals zero for all events. On the other hand, nucleons
carry baryon and electric charge, hence, these net charges of the system differ from event to event
(because collisions have different centrality).

The strange particles produced in heavy ion collisions need to be treated canonically,
because the strange charge is conserved exactly and do not differ from event to event. Particles
carrying electric or baryon charges need to be treated grand canonically. The net electric and
baryon charges are not conserved exactly in the created fireball. The part of the nucleons (the
nucleons of spectators) of the colliding heavy ions is not involved in the collision. Therefore, the
baryon and electric charges of the system fluctuate from event to event.

In order to consider system strictly, all conserved charges need to be treated canonically.
However, in heavy ion collisions electric and baryon charges can be conserved in average, which
do not cause sufficient deviations from canonical effects, while particles carrying strange charge
cannot be treated grand canonically [4]. In description of heavy ion collisions it is important to
impose exact strangeness conservation.

In this work, we consider the statistical hadron model with exactly conserved strange
charge of the system [4]. We derive the canonical partition function for the quantum and classical
ideal gas of different species of hadrons. The solution of the partition function in the case of the
Maxwell-Boltzmann statistics of particles is obtained by two different methods: direct and
recurrent equations. For the Bose-Einstein and Fermi-Dirac statistics of particles the exact
solutions of the partition functions are obtained by the method of recurrence relation. The mean
occupation numbers and other ensemble averages have been obtained.



CHAPTER I. RELATIVISTIC KINIMATICS AND VARIABLES

Let us consider two-body collision. In order to describe the colliding system, we introduce
four-momentum for each particle. The components of this four-dimensional vector is following:

Pk = (E' Px, py,pz,)- (1.1)

Relativistic invariant variable s is one of Mandelstam variables and related to four-
momentum by following equation [3, 5]:

s=(P1+P2)2=(P1+P2)“(P1+P2)“, 1.2)

where P/, P} stands for four-momentum of first and second particle respectively. Invariant
variable s can be used for finding the relation between energy of the system in one frame of
references the the energy of the system in another one.

1.1 LABORATORY FRAME

In laboratory frame of references one of the colliding particle is at rest. This particle is
called target (the target rest frame). The second particle is called projectile. In target frame the
components of four-momentum have the following values:

P1ﬂ = (Elab:ﬁ)v qu = (my, 0), (1.1.1)
where E; = E'? E, =m,,p; =P, p; = 0and E' =,/ 52 + m,2 . Therefore, we obtain:

s = (1 +P2)u(p1 +p)* = (B! + my)? — p? = my® + my® + 2E'%m,.

(1.1.2)
For the particles with equal rest mass m the equation (1.1.2) will simplify to:
Vs =/2m(El®b + m) . (1.1.4)
For E'*® > m (corresponds to ultra-relativistic case), we have
Vs ~ V2Elabm (1.1.4a)

The Lorenz invariant +/s describes the energy of the system that occurs in relativistic
collisions. And +/s can be obtained when the E@? is known. But in the real experiment for the
heavy ion collision this quantity E'*’ can’t be defined directly. We do know the energy of one
proton accelerated by strong electric or magnetic field. By knowing how many protons ion is
comprised of, we can define the net energy E'4?,

Let’s consider heavy-ion collisions. For that we consider the invariant quantity /syy
defined as

Py

sww = (2 + ﬁ)z , (1.15)

Az

where A; and A, are the number of nucleons of colliding ions.



After simplifying (1.1.5), we obtain:

S =t et o (1.1.5a)
When m; = m, = m (4, = A, = A), we obtain:
Veun = =2m(E +m) . (1.1.5b)
For E'® » m, we have
SyN = ‘/%Tm : (1.1.5¢)

The quantity /sy reflects the energy of the matter that occur in heavy ion collision on a couple
of colliding nucleons.

1.2 CENTER-OF-MASS FRAME

In center-of-mass frame the momenta of two colliding particles have equal magnitude but
opposite directions, hence net momentum equals zero [3, 5]. The four-momentum of colliding
particles is defined as

py = (Ef,P), (1.2.1)

py = (E5, —P). (1.2.2)
Therefore, the +/s can be written as

Vs = J(Ef + ES)? = Ef + ES. (1.2.3)

When m; = m, , E{ and E5 also supposed to be equal (derives from the definition of the energy
in relativistic case). Therefore, (1.2.3) can be simplified as

Vs = 2E¢, (1.2.38)
where E€ is the energy of each particle with equal masses in center-of-mass frame.

In the case of center-of-mass frame the /sy, can be obtain from equation (1.1.5) :

_ |mi_  m§ mi+mi (Ef+E§)?
SNN = 2 + 2 v e (1.2.4)
Form; = m, =mand A; = A, = A we have:
2E¢€
SNN — T, (1246.)

where A corresponds to the mass number of equal colliding ions.



1.3 HEAD-ON COLLISIONS

Let’s consider frame of references in which particles approach each other along one line-
head-on frame. Four-momentum of each particle has following components:

pl = (E},p1ep), (1.3.1)
py = (B3, —D28p), (1.3.2)

where e, is unite vector defining direction of approaching, p; = |p;| and p, = |p,|. In head-on
frame scalar variable /s is obtained by the equation:

Vs = \/(E{l + E?)Z - (Plgzj - pZB—p))Z = \/m12 +my% + ZE1hE£l + 2p1p, - (1.3.3)

For the ultra-relativistic case (E{’,2 > m, ,) equation simplifies:

Vs =2 /E{lEgl : (1.3.4)

= (22) (32 2oL (135)

We obtain

A A4z

When the rest masses of colliding particles are equal, hence A; = A, = A, we rewrite equation
(1.3.5):

1
SNy = Z\/Z(mz + EMEN + pip, ) (1.3.53)

For E', E! > m, we have

2 /EhEh
=N (1.3.5b)

S
NN A



CHAPTER II. EQUILIBRIUM TERMODYNAMICS

Thermodynamic equilibrium is the state of the system, when its macroscopic parameters
do not change (under the condition that system is isolated). It is obvious that little fluctuations of
variables of state take place due to thermal motion of the particles [6].

All thermodynamic quantities in the equilibrium thermodynamics can be divided into two
groups: extensive and intensive. When we divide system into two, extensive variables satisfies
relation [7]:

Fi*2 = F1 + F?, (2.1)

while intensive variables do not change:

fie=ft=g (22)

The thermodynamic system is comprehensively described by its particular thermodynamic
potential. Thermodynamic potential is the function Y = Y (x4, x5, ..., x), where x4, x,, ..., x,, are
independent variables called variables of state. These variables fix macroscopic state of the system.

The partial derivatives of the thermodynamic potential: % - define the thermodynamic quantities

of the system at the equilibrium.
All thermodynamic quantities are homogeneous functions of degree k=1 (extensive) or k=0

(intensive) [8, 9]:
A1, AXy, ooy AXpyy Xpaty eoer Xm) = ARA(XL, Xgy ooy Xy Xppids ooes X (2.3)

where x; is extensive variable for i=1,...,n and intensive for i=n+1,...,m.

2.1 FUNDAMENTAL THERMODYNAMIC POTENTIAL

The main quantity of the equilibrium thermodynamics is fundamental thermodynamic
potential (energy) [7], which is a function of three independent variables E = E(S,V,N), where S
is the entropy of the system, V is the volume occupied by the system and N is the number of
particles that comprise this system. The first differential of the fundamental thermodynamic
potential can be written as [10]

dE = 22dS +52dV +SZdN = TdS — pdV + udN, 2.1.1)
where
T = g_'; (2.1.2)
pz—%, (2.1.3)
n=st (2.1.4)

The fundamental thermodynamic potential defines the thermodynamic quantities: pressure
p, temperature T and chemical potential u. The equation (2.1.1) is the fundamental equation of
thermodynamics, which combine first and second laws of thermodynamics.



In this ensemble variables of state satisfies relations of homogeneity [7, 10]:

E(AS, AV, AN) = AE(S,V,N), (2.1.5)
T(AS, AV, AN) = T(S,V, N), (2.1.6)
u(AS, AV, AN) = u(S,V,N), (2.1.7)
p(AS, AV, AN) = p(S,V, N), (2.2.8)

where E is extensive variable, while T, p and u are intensive.

2.2 THERMODYNAMIC POTENTIAL OF THE CLOSED SYSTEM

The independent variables of state in the fundamental thermodynamic potential are (S, N,
V). The Helmholtz thermodynamic potential F is obtained from fundamental thermodynamic
potential by changing the variables S and T and by the Legendre transform [11] (see Appendix B):

F(T,V,N) = E(S(T,V,N) — TS(T,V,N), (2.2.1)

where S is obtained from the equation: g—i =T. In new set of independent variables the first
differetial is defined in the following way [10]:

oF oF oF
dF =2ar + 2 v + 2L dN = —SdT — pdV + udN, 2.2.2)
where
OF _OE _0(ST) _0EQJS o _m0S _ _ 9F _O0E _ _ OF _OE _
9T 9T  OT _ 9SaT S TaT =-S5 v _oav._ P an _oan K (2.2.3)

For the Helmholtz thermodynamic potential and its variables we can write equations [9, 10’]:

F(T,AV,AN) = AF(T,V,N), (2.2.4)
S(T,AV,AN) = S(T,V, N), (2.2.5)
u(T, AV, AN) = u(T,V,N), (2.2.6)
p(T, AV, AN) = p(T,V, N). (2.2.7)

The Helmholtz thermodynamic potential defines the canonical ensemble, which is fixed by the
variables of state (T, V, N).

2.3 THERMODYNAMIC POTENTIAL OF THE ISOLATED SYSTEM
The thermodynamic potential of isolated system is entropy as the function of the
independent variables of state (E, V, N) [7]
S=S(E,V,N). (2.3.1)

Then first deferential of entropy S can be written as

_ S g 35 gy L 08
dS = S2dE + = dV + 5> dN. (2.3.2)



Let us define partial derivatives in (2.3.2). For that we divide equation (2.1.1) on 3—5 =T, then we

obtain:
LdE =dS —2dv +LdN .
T T T

Therefore, we can exert dS [10]:
dS = ~dE +2av —£dN.

Eventually, we obtain [10]:
95 _ 1 _1
0E  9E T
as

oS 10E _p

av.~ T8V T
s _ _19E_ _p
aN  TAN T

In this ensemble variables of state satisfies following relations [7, 10]:

S(AE, AV, AN) = AS(E,V, N),
T(AE,AV,AN) = T(E,V,N),

w(AE, AV, AN) = u(E,V,N),
p(AE, AV, AN) = p(E,V, N).

2.4 THERMODYNAMIC POTENTIAL OF THE OPEN SYSTEM

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)
(2.3.9)
(2.3.10)
(2.3.11)

The thermodynamic potential of the open system is grand thermodynamic potential 2 as the
function of the variables of state (T, V, ). It can be obtained from the fundamental thermodynamic
potential by changing variables of state (S, V, N) to (T, V, u) and the Legendre transform [11]:

Q(T,V, 1) = E(S(T,V,w),V,N(T,V,u)) — TS(T,V, 1) — uN (T, V, 1),

where S and N are obtained from the following equations respectively:

OE OE
as "’ aN

The first differential is defined in the following way [10]:

an an an
dn = 5dT+EdV +ad,u,

where
00 _0F _9(T) 0ouN) 0EOS | OEON o 505  ON__ ¢
aT ~ 8T aT aT ~ 8SdT ON T ar  Hor =7
90 _O0E O0(ST) OoWN) _OE A OEQS , OEON 505  ON _
v~ av v v~ av ' 9asav = ANV v Hay = 7P
00 _0E _0(ST) _d(uN) _ 9B | 9EDS L OEON _n05 _ ON .
au  ou au du  Au  8Sdu AN u au '“aﬂ - '

(2.4.1)

(2.4.2)

(2.4.3)

(2.4.4)
(2.4.5)

(2.4.6)

10



As it is done above, let us write relation for extensive and intensive variables [7, 10]:

QT, AV, 1) = 10(T, V, ), (2.4.7)
S(T, AV, ) = T(T,V, ), (2.4.8)
N(T,AV,u) = N(T,V, ), (2.4.9)
p(T,AV,u) = p(T,V, . (2.4.10)

11



CHAPTER Ill. EQUILIBRIUM STATISTICAL MECHANICS

In equilibrium thermodynamics macroscopic variables define the system comprehensively.
In statistical mechanics we need to introduce more parameters of the system: microstates and its
probabilities.

The system with fixed variables of sate (that define macrostate) in statistical approach can
be obtained by different microstates. Every of them is comprised of different combinations of
single-particle states and has different probabilities to occur.

The first step in statistical approach is to define probabilities of microstates. Let us consider

the Boltzmann-Gibbs entropy S [7, 9] as

§S=-XipiInp;, (3.1)
where p; is the probability of i-th microstate of the system. The statistical averages are defined as:
(A) = X Aip; (3:2)

where A; is the value of quantity A in i-th microstate. The norm equation for the probabilities of
microstates is

xipi = 1. (3.3)

Let us consider the thermodynamic system defined by the variables of state (X1,..., X™) and
thermodynamic potential Y(X2,..., X™). For i-th microstate thermodynamic potential has the
value [7, 9]:

Y, = V(XL XE, ..., X). (3.4)

L

All thermodynamic potentials considered above are extensive functions (chapter 2), therefore we
can find their averages over all microstate using equation (3.2) [9]:

Y(Xl, ey Xn) = Zi Ylpl . (35)

Unknown set of probabilities {p;} we find using relation (3.3) and the condition of extremum of
thermodynamic potential as the function of {p;}. In order to define {p;}, the method of Lagrange
can be applied [9]:

(p = Y(pl: pZJ p3) ey pW: Xl' "'IXn) - A(Zl pl - 1))

9 _0, i=1,2 ... W. (3.6)
op;

We obtain [9]
Y+pi§—;/i—l=0. (3.7)

From this equation we obtain p; = p;(4, X%, ..., X™), where A is unknown Lagrange parameter.
Substituting p; into equation (3.3) we obtain (X1, ..., X™).

12



3.1 CANONICAL ENSEMBLE

3.1.1 General theory
Let us consider canonical ensemble in statistical approach which can be described with the

use of Helmholtz thermodynamic potential F = F({p;},T,V,N) [7], where p; is the probability
of corresponding microsate, T,V, N are variables of state that fix macroscopic state. Using (3.5)
and (2.2.1), we obtain [12]

F=%ipiFi=2ipi(E; +Tlnpy), F =E;+Tlnp; (3.1.1)
Applying the method of Lagrange multiplier [9], we have

¢ = F(pl; pZ; p3; 'rle TP V’ N) - ){'(Zl pi - 1)!

9 _0,i=12...W, (3.1.2)
op;

where W is the number of microstates. From these equations we obtain [9]
Fi+pl-Z—Zi_—/1 = 0. (3.1.3)
Substituting (3.1.1) into (3.1.3), we have

Ei+Tlnpi+pl-p1+/'l= 0. (3.1.3a)

Then we obtain the probability of i-th microstate:

1

p; = et FiT), (3.1.4)

Substituting (3.1.4) into (3.3), we obtain
1
A=T-TlnZ,  Z=Y;e 7 (3.1.5)

where Z is partition function. Substituting (3.1.5) in (3.1.4):
1

pi=ze T (3.1.4a)

Now we can write S, E and the Helmholtz thermodynamic potential F as

S=InzZ+z2, (3.1.6)

1 —lE-
E = 7 ZiEie Tt (317)
F=E—-TS=-ThZ. (3.1.8)

3.1.2 Ideal gas
For ideal gas energy and number of particles of the microstate can be represented as sum
over single-particle states [6, 7]:
E = Zﬁnﬁ 5, (3.1.9)
N=Y;n;, (3.1.10)

where n; is occupation number of p-th single-particle state.

13



The statistical averages can be written as [6, 12]

(4) = %Z{nﬁ}A({”ﬁ})e% 2575% §(Tsns —N), (3.1.11)
Z=X0) 6 ({ns})e T 2055 5(Sm; — N ), (3.1.12)

where G({nz})=1 for Bose-Einstein and Fermi-Dirac and G({n;}) =ﬁ for Maxwell-
5

Boltzmann statistics of particles. The occupation numbers nz; = 0,1, ... for Bose-Einstein and
Maxwell-Boltzmann statistics and nz; = 0,1 for Fermi-Dirac statistics. In partition function
summation is taken over all microstates (every microstate is the combination of single-particle
states). Summation is written in terms of occupation numbers [7], which reflects number of particle
in every single-particle state: Y.¢, y =X, Xn, Xn, -~ IS product of sum over number of particles
in every single-particle state.

Let us derive partition function for ideal gas of N particles for all types of single-particle
statistics: Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac.
Classical statistics. First of all, let us consider ideal gas of classical particles. The partition function

will have the following form [7, 12] (see Appendix C):

N

1 N 1y e 1 1.
Iy = 5 ) o ® TP PP (S — N ) = —(Zpe™) . (3.1.13)
The mean occupation numbers can written as [12]
1 1 Iy noe
(np,> = 7 Z{nﬁ}nﬁnﬁ! nge T pp¢p 5(Zﬁn5 - N)
1 9 1 iy n.e
= — Eafﬁz{np} Hﬁnﬂ'e T 2 "B¢p 5(2{51’123 - N)
1N Lo N—1 . —2e
= Eﬁ(zﬁe T°P) e TP, (3114)
Substituting (3.1.13) in (3.1.14), we obtain:
N 1o N 1o
(ng) = ———e % = 7%, (3.1.15)

S5e TP Z

1
where Z; =35 e~ T°P is partition function of the system comprised of one particle. We have obtained
partition function and average occupation numbers for particles following Maxwell-Boltzmann
statistics.
Quantum statistics. Let us now consider the ideal gas following Bose-Einstein statistics. The

partition function in the representation of occupation numbers has form [12]:
T P
Zy = Z{nﬁ}e TP 5 (X ns — N) . (3.1.16)
14
The partition function can be solved by recurrence equations [12-16] :

Iy =YL wZyy,  Zy=1, (3.1.17)

1
where w, = Y5 T,

14



For proving relation (3.1.17) we use the equation [12]:

L X BN 2" 8 (B — (N — L= 1)
= XN X P 8B — (N =) (3.1.18)
By replacing variables and changing n; — n; + [, we obtain
Lax! gg,lzo Xp 7' 8 Xgepr g — (N — 1 — 1))
= 2 0 % P Ty — (N = L= n.)
(3.1.19)

= Z?’:l Z‘Il\llﬁ,zlxplnﬁ,é‘(Zﬁ;tﬁr ng — (N - Tlﬁ,))

, , > , ,
Then we introduce the step function 0(x) = {éiz 8 Function @(njz — 1) gives us an

opportunity to start summation over nj from zero, because for every nz <[ function
Q(np/ - l) =0:
€V=1 Zgﬁ,zlxplnﬁla(Zﬁiﬁ/ ng — (N — nﬁ,))

=Y SN 0(ng — Dxy P8 (Tpesng — (N —13)). (3.1.20)

nﬁ,=0
Substituting right-hand side of the relation ¥, ©(nz, — 1) = ng, into (3.1.20), we obtain:

N l -l 7]
121 Ty Xp 70 Bpepr iy — (N = L= 15))

= Zngiey Wy 7 0 e 1tp — (N = 15.)) -

Now we can get back to the equation (3.1.17). For every microstate we can write an
equation }.5n; = N. Substituting it into (3.1.16), we obtain

1 Ly en
I = 5By €T 6y = N) X T

Zﬁl Z{n e_% Zﬁiﬁ/ ENp Znﬁ/ nﬁ,e_% Sﬁ/nﬁ’lé‘(zﬁiﬁl nﬁ _ (N _ nﬁ') ) (3121)

ﬁ}ﬁifjl
1
Substituting left-hand side of equation (3.1.18) into (3.1.21) with x,,, = e T 9/, we obtain

1 Ly e _lﬁl _ L ne
Iy =325 Sy € TP RL, e T L e S (T — (N — L= 1)

p=p/

LS B e T e T I S (Emy — (N - D) = & B[S0 T 2
1=12pr€ {nﬁ}e pNp =y &i=1|4p€ N-1 -
(3.1.22)

15



For the mean occupation numbers we can write [12]:

1
(np) = i Linyn5e T 255" §(Lms — N)

| o7 Spepr S5 S, N e T 5 §(Lpupi iy — (N —15,)
=Ly oreeily, (3.1.23)
Let us consider Fermi-Dirac statistic. We need to prove the relation [12]:
Lyt (=) Tt W e 5 (D — (N = L= 1)
= 27115,=0 N X" 8 (Xpep Ny — (N — 1)), (3.1.24)
Writing all components of left-hand side sum, we obtain

ZN X ( 1)l+1 me [N-1,1] x p,5(2p¢p,np (N -1 _nﬁ,))

= x(6Qpepng — (N — 1)) + x 82515 — (N — 2)))

—x28((Xpepi s — (N = 2)) + x6(Xgepi s — (N — 2))) + - = x(§Xpepi s — (N — 1)).
(3.1.25)

Right-hand side of equation (3.1.25) can be written in following form:
X(8Epepmg — (N = 1)) = o nsx" P 8 (Eapims — (N = 13)) - (3.1.26)
Let us derive recurrence representation of partition function Zy, :
1
Zn = By 10 TP S(Spn — N) X Sy, =

1 NIV e
= Ezﬁ’z{nﬁ} erT 2p=p/ EpNp Znﬁr nﬁ,e Tsp’npld(z:ﬁiﬁr nﬁ _ (N _ nﬁr)) . (3.1.27)

B

Substituting (3.1.24) in (3.1.27), we obtain
Iy = lzq Y e_% L5251 S5 N e‘%fﬁr’(_1)l+1 X
N NP {nﬁ}ﬁazﬁl =1

x ymin IN-L1] e__sﬁ’nﬂ’S(Zp:tprnp (N —l=ny))= % (DM wiZy (3.1.28)

Npr=o

16



For occupation numbers [12]:

("p,)=—2{ e T Z5% §(Tms — N)

1 1
e T Zpip,spnp Znﬁ, ng e Tgp’np’6(2ﬁ¢ﬁ’ ng— (N — Ny, ))

Jper

S

L pEp! —7 Eprl l min[N— 11] —= &2/,
52{%} o Lpepr S5 YN e T (1)t ym o T &M 8 peprns — (N — L —1n3))

DD
= 2 1( 1)l+1 lZN—z- (3.1.29)
Equation (3.1.16) can be written as [12]

Zy =3 ye Tz, (3.1.30)

where y; = 1 for the Bose-Einstein and y, = (—1)"** for Fermi-Dirac statistics.

3.2 GRAND CANONICAL ENSEMBLE

The grand thermodynamic potential is the function of variables (T, V, u) [6, 7]. It describes
the system which can exchanges particles as well as energy with heat reservoir. T is temperature
of reservoir with which system is in contact, V is volume occupied by system and u is chemical
potential.

3.2.1 General theory

In statistical approach grand thermodynamic potential has form: Q = Q{p;},T,V,u)-
where set of {p;} is unknown. The thermodynamic potential of the grand canonical ensembe is
obtained by the Legendre transform (2.4.1) from the fundamental thermodynamic potential E =
Y. piE; using the entropy (3.1) and the number of particles N = }; p;N; [17]:

where 2; = E; + T Inp; — uN; in i-th micristate [6, 7, 12].

With the same algorithm as has been presented for canonical ensemble we obtain the set of
probabilities [17]:

1
p; = e TETHND, (3.2.2)
7=y, ¢ TEHND (3.2.2a)
where Z is partition function.
Using equation (3.2.2), we obtain:
S=InZ+=(E —uN), (3.2.3)
1
=~ % B T EHND, (3.2.4)
1
N =¥, N; e TEHND, (3.2.5)
N=-TInZ. (3.2.6)
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3.2.2 Ideal gas

For the ideal gas energy and number of particles of the microstate are represented by the
equations (3.1.9) and (3.1.10) respectively. It is important to emphasize that N is not exactly
conserved in grand canonical ensemble, but mean N is constant for fixed variables of macroscopic
state.

The statistical extensive averages can be written as [6, 7]

1
(A) :% fn }A({na})e T 255, (3.2.7)
Z =Y }G({n e 7 I, (3.2.8)
Let us derive partition function for ideal gas in grand-canonical ensemble for all types of statistics:

Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac.
Classic statistics. Partition function for particles following Maxwell-Boltzmann statistics:

1 1 1 1
—T2pnp(Eg—1) — 1 —oni(e-p) 1 —tna(e-p) 1 —rns(es-p)
erT —-annﬂe T annﬂe T Z"3nye T .

(3.2.9)
Every occupation number corresponds to number of particles in particular single-particle state and

every particular set of {nﬁ} defines microstate. Using equation Zn’% = e*, we obtain [6, 7]

= —Nn=!
p}npnn

1 1
~F(e5—i) T
P = ezp € P .

(
Z=Tlze® " (3.2.9a)
Using (3.2.7), we obtain average of occupation numbers [6, 7]:
— =555 ( )
(n )——Z{nﬁ}nﬂnﬂlnpe 7255 (e
an_e - (e1- Zhes ——nz<ez NS 713(83—#)._.211“na%e—%na(ga—#)m
Z
Znﬂﬁnpe T p(Sﬁ ) F) 1 1
= ———— = —T—(ln Znﬂ—e_ ”ﬁ’(eif"“)) = _TE(Z%@—?(%—#)) = TEPH,
Sngnzge T PP # P
(3.2.10)

In the grand canonical ensemble, the total number of particles N fluctuates near average
value which can be obtained from equation (3.2.7):

1
(N) = %Z{nﬁ} H;nﬁ, {nﬁ}e‘?zﬁ“ﬁ@ﬁ"” , (3.2.11)

where Ny, 3 = X35 is sum over all single-particle states for particular microstate.

—Anz(e—w)
L e TP\D™
Znﬁnz_ﬂnpe LA

_1 lyzn 5E5—1) _ v — YV (.
(N) _zz{nﬂ}l‘km'zl’npe TP "p = g v Y 5(nz). (3.2.12)
nﬁnﬁ!

For average value of energy E of microstate we have:

<E> Z{ } - [ pERNE ]e sz ng(e5—H) =Zﬁ€ﬁ _ Zﬁsﬁ(nzﬁ . (3213)
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Let us obtain averages of intensive variables. We are not able to use (3.2.7) for such a
variables. Thermodynamic potential defines system comprehensively, hence we can exert
intensive averages from it. Substituting (3.2.9a) in (3.2.6), we obtain grand thermodynamic
potential [6, 7]:

D) 1
Q= —Tlne¥® T = Ty ;e 7% W, (3.2.14)
Using (3.2.14) and (2.4.5), we obtain the pressure p [18]:
1
_an ., 00ge TP
p=—5,=T av
1
ge TEF ™M _1( ) ¢ _l( ——u) Pp 1 p35°
=T2ﬁ oy ——Zﬁe T o Z e TP H ;; 25213%(7173). (3.2.15)

Substituting (3.1.14) into equation (2.4.4), we obtain entropy:

&z
S = a (Tze T(Sﬂ ﬂ)) — Ze T(S —1) +T(Z (EH—,LL)( p - H))

~ (51

Sp(e5—t)e
T

=InZ +
= InZ + = ((E) — (). (3.2.16)

We have obtained equation equal to (3.2.3). It means that statistical thermodynamic potential 2
defined as 2 = —T In Z does correspond to thermodynamic potential 2 introduced in chapter 2.

In chapter I11 we obtained partition functions for grand-canonical and canonical ensembles
for all statistics with discrete set of single-particle states. Every state is defined by energy e; =

\JP? + m?. We consider system in finite volume V, therefore momentum of quantum particles
may obtain only discrete values: p; = % [19],n=0,1,2...., hence we obtain discrete energy states.

The more volume become, the more dense states occur.
Let us focus on grand-canonical ensemble of classical particles in thermodynamic limit for
large value of volume V. Thermodynamic potential is defined by the equation (3.2.14):

1
0=-TY%,e T = (2 o 9% [ d3pe G (3.2.17)

where g, = /p? + m? . We calculate this integral over momentum in spherical coordinates:
d3p = p?sin @dpdBOde. Integrating equation, we obtain

1 1
0= —T% [e T Wp2qp = —TZ%e?” m2K, (3, (3.2.18)

where K, is modified Bessel function [20] of order 2 (see Appendix F).
The mean number of particles N can be written as

angv “L(ep- a 4TTgVv YOS an
N =¥p{n,) = n )3fe T~ Wp2dp = __u(_Ter 7 M)Pzdp) - o

atgV _” _Q
=T 7% e miK, ( )=-2 (3.2.19)
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For mean energy of the system we obtain equation with g = L

4TtgVv _ _ d ,Amgv
E= ZP gp("p) @n )3f£pe 'B(Sp ,U.)pde = ﬁ'u (

oB (2n)3fe_ﬁ€pp2dp)
d [ 4mgVv 4mgVv 4mgVv
=—eﬁﬂ§<(;’,f)3’"— (mB)> P L Ky (mp)—ePn L T LKy (mp).  (3.220)

For modified Bessel function K, we have recurrence relations [20]

:—xKZ =K —2K, . (3.2.21)
Using (3.2.21), we obtain:

— Bu 47thm_2 By AmgV 47thm
E=el o g K,(mpB) +e e (K

For obtaining entropy we use (2.4.4):

__i __m2 4mgv lﬂ 2 m _ Buingv_ 2 1
S = ar( T —(Zn)BeT sz(T) =ePh—> m*“(Kym+ 4-=K,

2 o Bu AmgV m* 3
+ BKZ) e (K1+mBK2). (3.2.22)

5E 5 — uky). (3.2.23)
Finally, let us obtain pressure p. Substituting (3.2.18) into (2.4.5), we obtain

a amgv > 1 TN n
p=—g (T (;‘[g)3 " mA K, () = T (zn)3 er m*K, (%) VT Ty (3.2.24)

Quantum statistics. Let’s us consider Bose-Einstein statistics. Partition function has form
[6, 7]:

1 1 1
7 = 2{ e Tipp(Ep—H) — Y e T(E1—H) Y. e T2(E2=1) Y e TwE—H)
TLTJ} 1 2 3

(3.2.25)
1
Every sum can be represented as ¥, e TG = — L
P 1o T
then we obtain [24]
Z =1l 3.2.26
Hp [1 . T(E“‘“)] ( )
For the mean occupation numbers we obtain equation [6]
_1 Z35n pEg—1) —
nz)=- naze TP np =
( p) Zz{nl—’)} 14
ane—%m(&—#)znz e—%nz(«ﬁz—ﬂ)z e Tn3(53 N npe T np(Ep=H)
Z
s (Eg—i)
Inznpe TP P
B _ ~n5(es—H)y — 1 _ 1
= =(-T)—(n), e TP T)—(In = .
= (-T)5- (2, )= (=T)5-(n —) T T
(3.2.27)
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Thermodynamic potential has form [6]:

TY;In(1—e ~#E50), (3.2.28)

1

1
0= —Tlnnﬁm

For Fermi-Dirac statistics occupation numbers assume values 0 and 1, hence we obtain [6]
Iy o (es—
Z = Z{nﬁ}e T2 = [5(1 + e ~7(E5) . (3.2.29)
14

For mean occupation numbers we write [6]:

_ Zngnpe TS e .

(n )=—z{ e ~TIpm(Eph) = = = — . (3.2.30)

Z e T‘l’lp(é' ﬂ) 1+e T( D ﬂ) T(Sﬁ_u’)_'_l
"p
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CHAPTER IV. TRANSVERSE MOMENTUM DISTRIBUTION

4.1 DISTRIBUTION FUNCTION

In relativistic mechanics addition law of velocities moving along, for example along z-axis,
is not linear. Therefore, we consider rapidity- quantity with linear addition law [3]:

- I
y = tanh ﬁ—zlnl_ﬁ, (4.1.1)

where § = % , therefore we can rewrite (4.1.1) as

1, E+
y ==In—F2
2 E-p,

(4.1.1a)

where E=,/p? + m2. Let us consider the system moving with velocity B’ along z-axis. Then three-
dimensional momentum can be presented as addition of transverse and longitudinal components
with respect to B’. Transverse momentum p; = \/prpy do not differ with changing frame of
reference, while longitudinal momentum p, change according to transformation law [21]:

I, IEY

p, = —Zf_—’;z. 4.1.2)

In order to obtain four-momentum in terms of p; and y (which obeys linear addition law),

we need to find p, and E as functions p,(y, pr ) and E(y, pr) . Let us exert E (y, pr) from equation
(4.1.1a). For simplifying calculations we introduce

my = /m? + py2 , which is the transverse mass. Substituting my in (4.1.1a), we obtain

E+p; E+p, E+p, _ E+p,

=Pz = n =In n (4.1.3)
Y= e, T E-p,  JE-p)E+p;)  JEE-p,2)  mr’ -
Then we obtain
_1.y —yy — L(E+pz | mr \ _ lE2+2EpZ+pZZ+mT2 _ 2Ep,+2E? _E
COShy 2 (e te ) 2( mr + E+pz) 2 my(E+py) 2mp(E+p;) mp (4'1'4)
From (4.1.14) we obtain E(y, pr):
E = mycoshy, (4.1.5)

For p, we have relation:

p, = JEZ — ms2. (4.1.6)
Substituting (4.1.5) into equation (4.1.6), we obtain

p, = mysinhy. (4.1.7)
Now we can write four-momentum in new set of variables [3]:

p#* = (mrcoshy,pr cos @, pr sin @, my sinhy). (4.1.8)
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Full number of particles can be defined by equation [10]:

N = S50(np0) = Bo s | °plngo) = o [ *p(ng) = s [ dpadpydp,(ns), (4.1.9)

where g = 2s + 1 is degeneracy multiplicity of the state for particles with spin s. To proceed with

(4.1.9) we use Lorentz-invariant % [3] (see Appendix D):

N = gv fE Adpxdpydp, (Tlﬁ), (4110)

T (2m)3 E

3
On the other hand, full number of particles can be written with the use of derivative .

d3p
3
N=[F—%N dPxdbydps (4.1.12)
dpxdpydp, E
Comparing (4.1.10) and (4.1.11), we obtain distribution function [10]:
d3N av
E o = o E(n3), (4.1.12)

where d3p = Eprdprdyde (see Appendix D). Finally, we obtain distribution function [22, 23]:

d3N gV
dprdyde ~ (2m)3

pr mpcoshy (nﬁ). (4.1.13)

Let us consider ideal gas following Maxwell-Boltzmann statistics in grand-canonical
ensemble. Subscribing equation (3.2.10) in (4.1.13), we obtain:

d3N av

1
ordy = @ PT mycoshy e 7™M, (4.1.14)

Equation (4.1.14) is integrated over azimuthal angle ¢.
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CHAPTER V. QUANTUM STATISTICAL HADRON MODEL WITH EXECTLY
CONSERVED STRANGENESS

In this chapter we consider the system of hadrons of different spices with exactly conserved
number of strangeness and average conservation of barion and electric charges of the system.

5.1 SYSTEM WITH DIFFERENT SORTS OF PARTICLES IN THE GRAND
CANONICAL ENSEMBLE

In chapter 111 we have obtained partition function for one sort of particles. Let us consider
grand canonical ensemble for the set of species. Every species a is characterized by chemical
potential .. Here we consider ideal gas following Maxwell-Boltzmann statistics [4, 7]:

_1 _ 1 1 _
e T2ap Nap(Eap~Ha) — I, Hp@e 7Map (Eap~Ha) , (5.1.1)

Z= Z{"ap}

Hapnap!
where ug = bopig + qalig + Sqlts. The mean occupation numbers and mean particle number of
species a can be obtained as

_1 1 -z Yap(Eap—Ha)Nap _ - Earpr—Har
(M) = 5 D) ey M€ T 2P CovHadhan = 7l ) (5.1.2)

1 1 _1 — ~Xeqrpr—tar
(n(xl> — E Z{Hap}m [Zplnalpl]e T Yap(Eap—Ha)Nap — Zp/e T(Ea pr—H ) :Zpl<nalpl)- (513)

5.2 SYSTEM WITH DIFFERENT SORTS OF PARTICLES IN THE CANONICAL
ENSEMBLE

5.2.1 Classical statistics: direct method of solving partition function.

The partition function of the system with different sorts of particles with exactly conserved
strangeness by the canonical ensemble and with average conservation of baryon and electric
charges by grand canonical ensemble can be written as [4]

1
— 0 (Zap Satap — S)e TE@NawEa, (5:2.1)

Hap Ngp!

ZS = Z{nap}

where g4, = \/D? + M2 + Ug, g = bolip + qqlq. Statistical average of the extensive quantities
can be defined as

1
Hap Ngp!

1
Qpney)8 Bap Satay — S)e Toepeveer (5.2.2)

Q)= Z—lsz{n,w}

Let us insert the identical unit Y, 3 [14 6(Xap nap — e ) = 1 into equation (5.2.1).
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We obtain

1
Hap Ngp!

1
6(20{;} Salap — S)e_anp Mapfap x Z{na} Ha 6(20:17 Ngp — na)

Zs = Z{nap}

= Y [na B gy T € TEP 55, — na)] 5 Sata —S),  (523)

[Ip nap!

where {nap}’ is set of occupation numbers with fixed spices a, hence in brackets we obtain product
1

over spices of functions Z,, = nia!(z‘,pe"?gap)"a, which are not exact canonical partition

functions (here we have &4, = y/p? + m?2 + u,, while for canonical partition function &4, =

VP? +m?). Substituting Z, ,, . into equation (5.2.3), we obtain

1

Tsap)na] 6(26{ SqNg — S) = Z{na} 6(20{ SaqNg — S) Hania! (Zé)na )
(5.2.4)

Zs = Zng |Mars (67

where
At gaV

1 1
Zé — Zpe—?é‘ap — gdaV fd3pe_f(€p—ﬂa) =T 2y

lu 2 m
K eT*m KZ(F)' (5.2.5)

We can proceed from the summation over spices a to summation over all possible values
of strangeness s € [—S;qx Smax] fOr individual particle. Firstly, let us carry out summation over
all {n,}. It can be accomplished by using integral representation of the Kronecker symbol
(e Sala — S):

Zs = Z{na}if dpe~ 5~LaSana)¢ Ha% (Za)" (5.2.6)
a!

Changing order of summation and integration, we obtain [24-26]

Z :ifd(pe_lS(pz Hi(zl)naeisana¢
ST 2m ma ng! ¢

= ij d¢e—i5<p nz L(Zl)naeisanaq’
2m 3 ngMa!

L[ dpeni50 [, o0 = L [ dpe-isn Saiet e 5.27)

Secondly, we introduce identity unit in form }; 85 s = 1, where s, stands for strangeness of the
species a particles. Substituting this unit into equation (5.2.7), we have

1 . 1,.is 1 . 1,iSq@
Lo = — d e—lSqD eZOLZsas,sazae a® — _J d e_lS(P eZS[Zd Ss,sazae a ]
s an ¢ 2T @

= if dpe iS¢ ZsSse? (5.2.8)

where Sg = ¥ 85,5, Za-
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After integrating over ¢, we obtain partition function where summation is taken over all
possible individual particle strangeness values [4]:

Zs = Z{Ns} 5(ssNs —S) Hsmax (SS)NS (5.2.9)

S=~"Smax Ny!

For reducing number of summation from all values to only positive values, we introduce identity

[4]
Hsmax Zns 5(1\/ N—s — ns) =1. (5.2.10)

Substituting (5.2.10) into (5.2.9), we obtain

ZS = Z{Ns}6(25 SNS - S) Hsmax (S )NS X Hsmax Zn 6(N N—s - ns)

S=~"Smax Ny!

= Yivg (X0 s(Ns — N_g) = S) Hsm‘”‘ - X [T B, 8(Ns — Ny — 15)Zo

'N'

= Zo T35 S, 82" 51 — 8) T2 S, S, 2 5N, = Ny — ), (5:2.11)

where
1 1
Zo = g 3y B 8o, 5, Za)"0 = eFar0.5a), (5.2.12)

Let us carry out summation over Ng and N_;:

gN=s Ns S(Ns ns)

s’ (S5 S_g)Ns
ZNSZN_SW(S(N —N_g—ng) = ZNS v

Ng!(Ns—ng)!

525 X,

Ng!(Ns—n5)!

= /i; In, (2/SsS-s), (5.2.13)

where I_,_is modified Bessel function. Here we have used series expansion of modified Bessel
function. Substituting (5.2.13) into equation (5.2.12), we obtain [4]

Zs = 2, T2 B, 6(532 smg — §) T2 [ e L, (2V55555). (5.2.14)

5.2.2 Classical statistics: method of recurrence relation

Let us write the initial partition function (5.2.1) as the product of the components:
summation over species with individual positive, negative and zero strangeness charge s [4]:

Z-|s R, P
S {n“p}aeMo [ap nap! {n“p}aeM+ [Tap nap!

1
X [Z{nal’}aeM_ Tecp 7! e_TEap Nap&ap ] S(Zap SaNap — S), (5215)

where M,,M_ and M, corresponds to subsets with positive, negative and zero individual
strangeness s respectfully.
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We introduce notation S, and S_ with following definitions:
Si— = ZaEMi Zplsalnap . (5.2.16)

For S, we can write identity units [4]:
Y5 =00 Caem, LplSalnap —S+) = 1. (5.2.17)

Substituting both units into (5.2.15), we obtain

_lz
ZS = Z{nap} erT “Pnapeap]

aEMq l_[o:p Ngp!

1 _LZa Nap€a 00
X [Z{n“p}aeM+ Tap ap! e ToAPTaApTap ZS+=0 6(ZaeM+ Zplsalnap - S+) ]

1 -1 o
% | Sy oo T B 08 Tplsalney =) |8(5, = 5. = 5)

(5.2.18)
Let us introduce new partition functions:
Zs =¥ L orlannantan sy [so |y — S4) (5.2.19)
Sy {nap}aEM+ Mecp ! aeM, LplSallap +) L
1
— __20.' apca
Zs_ = {nap}aeM_ Hapnap!e 7oap apt pS(ZaEM— Zplsalnar) -5.), (5'2'20)
Zo=Y L 7 apMapsar (5.2.21)
0 {n“p}aeMo [Map nap! ' o
Using (5.2.16), we can rewrite equation (5.2.18) as
ZS = ZO Zga_:Ochi:OZS.}. ZS_S(S+ —S_ —S) (5222)

Let us find recurrence relations for Zg, :

1
= 1
ZS e Tzap n‘ws‘w6(247((EMJ_r Zplsalnap - Si) X iZaeMi Zplsalnap

+ Z{n“p}aeMi Hap Ngp!

1
e TR I §(F Vo lSelngy — Si)

1
- g ZaEMi Zp Z{nap}aeMi Isa |nap Hap Ngp!

1
1 e‘;Zap NapEap

1
= — zal,p£p!
S+ Za,EMi ZpIZ{naP}ZE;: b ap nap!

1
X Zna,p,|Sa/|nmpre_?napsap6(2aEMi Zplsalnap - Si)- (5223)
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To proceed we use relation [4] (see Appendix G):

Znap—o nap e Tnapgap6(ZaEM+ Zplsalnap Si-)

-1 o 1 e ng
=e Téap Znap=0@e Téap™ p6(ZaEMi Zplsalnap - (S._}. - |Sa|). (5224)

Substituting (5.2.24) into equation (5.2.23), we obtain

1

1 _1 1
Zsi = iZareMilsarl Zpre Téap! Z{nap} e Tzapnapgapa(ZaeMi Zplsalnap —(5: — ISer1))

aEM 4 Hap Ngp!

1

1
= St ZaIEM+|Sa/| Zpl e Tsa’p’ZS+ ISarl = +Za/EM+|Sar|ZmZS+ [sqrl - (5.2.25)

Inserting X5 65, s, = 1 into (5.2.25), we obtain
1 1
Zsi = HZaIEMilsallzt}tlZSi—lsaA X Zs 65, Sar — EZS Za/EMi 65, Sar |Sal|Z(}uZSJ_r—|sa,|
1
= 555 5SxsZs, -5 (5.2.26)

_ 1
where Si5 = Yaem, s, s, Za-

The mean occupation number can be written as

1 Z EqpN
(n(l’P’>S - Z{Tlap}napnap Nap,€ T apd(Zap Sallap — S)

1 1

Zap EapNap 1 Eapnap
T n T N — S
{nap}mm,’p*p, Map iy e Zna,p, arpr€ 6(20{;) SaNap ). (56.2.27)

Applying relation (5.2.24), we obtain:

1
er Zap gapnapd(z:ap SaNgp — (S - Sar))

— 1 _lgalpl
<nalpl>s = Zs erT Z{nap} Tap Map!

1

1 ——¢
= — Teap!
Ze e Zs_s,, -

(5.2.28)

It is easy to see that mean occupation numbers for particles with zero individual strangeness
(a € M,) can be obtained by the simplified equation:

1 1
(M) = 5 €TV 25y = T, (5.2.29)

S
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The mean particle number for particular species a':
<nal)5 Z{nap} Map [Zp/ narp,]e T Z(xp Sapnap6(zap SaNap — S)

1
—= EqpN 1 —= Eqipin
e TZap aprap Zna,p, Narpr€ T “a/p/Tarp! 6(Zap SaNgp — S)
arpr!

= %Zpl 2{nap)

azarpzp! [lap Nap!

= 2 [Spr e | Zssyy = pilam) (5.2.30)

For the mean number for particle with individual strangeness s, we can write equation:

(Ng)s = — Z{nap}]'[ [Za S,Sa Zpr nalpl]e T Zap gapnap6(2ap SqNgp — )

1 _l Ipl
= Z_S [Za 6s,sa Zpl e TP ZS—sa] = Za 65,5a Zpl(nalpl)s . (5-2-31)
5.2.3 Quantum statistics: method of recurrence relation

For the particles that follows quantum statistics in canonical partition function with exact
conservation of net strangeness can represented by the equation [4, 7]:

1
ZS = Z{nap}6(2ap Sanap - S)e_anp napeap . (5232)

It can be rewritten in terms of Zg_ and Z,:

Zs =Zy L5 =0 2§ =0Zs, Zs_6(Sy —S_ =), (5.2.33)
where
1
Z{"ap}aem e_anp nomgapd(z;aeMrr Zplsalnap -S7), (5.2.34)
1
_ —=Yap Nap&a
20 = Lnaplyens, € T TP (5.2.35)

Let us obtain recurrence equations for Zs_ [4]:

1
i 1
Zs. = Z{nap} e Trap napeap(s(ZaEM; Zplsalnap —55) X _ZaEM¢ ZOUEM¢ Zprlsarlnalpl

aEM
1 =
= EZ“!EMi Zpl Z{nap}“*“’p’:p’ e TZap fapEap Zna,p, |Se |narpre Tnap‘go‘p(S‘(ZcreMJr Zplsalnap S4)-

aeMi
(5.2.36)
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To proceed we introduce the equation [4] (see Appendix G):

1
Znap nmp,e Tnapeap6(ZaEMi Zplsalnap — Si)

[lsal Lie {[ﬁ]_l'K“} e
2iet Yal T “”Z e TP PE(Yaem, LplSalnap — (1 — Uswl) (5.2.37)

Nap=0
! —= Yap NapEa [|j;| ~Lie,
= aZaIEMinIZ{nap}aEM_e T ~@p "ap pz -1 Yau€ T pa(ZQEMinISalnap — (Si —llsml)
+ 1+ [S+
=5, &l el Za/eM+ YarZsz—1lsq| [Zple Tle“p] (5.2.38)

1
Introducing ZL = y,, Yo e T'aP e can rewrite equation (5.2.38) as

L R

ZS; = E lsal ZaIEMJr ZS+—l|sa,| Za- (5-2-383)
Partition function for zero strangeness Z, can be presented as

1 1
Zy = Z{nap} e 7 2ap NapEap — HaEMo Z{"ap}’aemo e 7 2p NapEap X Z{na} Ha 6(Zap Ngp — na)

aEMg

1
= [aemo Ling Dnap}aen, © T2pnapfan §(Y g, — ). (5.2.39)
Z, can be written in following form [4] (see Appendix H):

N
ng (2&)

Zy = HaEMO Zna Z{Nal}’aeMo 6(2?;11 INg — na) Hl=1 INGIN !

N
_ " ne (2" _ o (2
= HaEMo Z{Nal}’aeMO 5(2 @ lNal - na) l_[l=a1 lNZlNal! - l_[aeMO Z{Nal}’aeMo l=1lNZl—Nal!
Na1 Zl
Zy ® ‘Za
= Taew, T2 S S0 = Taew, €571 (5.2.40)

Let us derive some ensemble averages. Mean occupation numbers for species a € M.
can be obtained with the use of equation (5.2.33):

1 oo oo
<nap)s = Zs Zy Zs+=o X5 =0 Zs, ZS_nap6(S+ -5.-9)
1 foe) 0 -2 ap Nap€a
= Z_S ZO ZS¢=O ZS¢ ZSi=0 [Z{n“p}aEMi nalpre Tz plap® pS(ZaeMi Zplsalnap - Si) 6(S+ ey S)

=

1
= Zo Zs+—0 St Zs+ lesoltl Yar€ T Cap ZSi—llsa|5(5+ -5_-9). (5.2.41)
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For species @ € M, mean occupation numbers can be obtained as [4]

L @ © - ap Nap&a
(na,p/)s = Z_S ZS.,_:O 25_=0 ZS+ ZS_ Z{n“p}aeMO e TZ p Nap€ap na,p,6(S+ -S - S)

1

= d1ln ZO
Zy {nap}aeMo

1
= Nupe TEP e = _T

(5.2.42)

Ocarpr
Substituting (5.2.40) into equation (5.4.42), we obtain:

1

) Zy T azk - s
(napr)g = =T (Z“l : <e | )) = -H(T ) = sEayae T (5243)

asa,p,

1
When |e‘¥l£“’p’| < 1, we obtain

(). = ———— — 1 = ——— for the Bose-Einstein statistics, (5.2.44)
S 1—e_Tsa’p’ eTSalpl_l

(s} = —————+ 1 = ———— for the Fermi-Dirac statistics. (5.2.45)
s 1+e ToaID! eTeap! 41

As for classical statistics for quantum one the mean numbers of particles of sort a and the mean
number for particles with individual strangeness s can be obtained by the equations:

(Na)s = pAnap) (5.2.46)

(No)s = a5 Lp{ftap) - (5.2.47)
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CONCLUSION

We have considered the general formulation of the equilibrium statistical mechanics in
canonical and grand canonical ensembles. The general equations for the partition function and
ensemble averages of the canonical and grand canonical have been obtained.

We have calculated the partition functions and ensemble averages for ideal gas of particles
following Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics in the canonical and
grand canonical ensembles. In the calculations the representation of occupation numbers has been
applied. The partition function and ensemble averages in the case of classical particles in the grand
canonical ensemble have been integrated over momentum. Eventual equations are represented
with the use of Modified Bessel functions as the functions of variables of state.

We have considered the quantum statistical hadron model with exactly conserved strange
charge of the system. We have obtained the exact solution of the partition function using the direct
and the recurrence equation methods. Ensembles averages are obtained for particles carrying
strange charge and for particles with neutral strangeness. Obtained equations can be applied for
evaluation of the particle yield in heavy ion collisions and further description of the observed
strangeness production rise.
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APPENDIX A

For proper understanding the relation between energy ( E€,E'*?) and +/s, \/syn. let us
consider an example. For two colliding protons +/s =5 Tev. It meant that E€=2.5 Tev (from the
equation (1.2.3a)). To what energy the ion of Au will be accelerated can be calculated by
multiplying E€ by amount of protons in Au. Therefore, the Ef,, = 2.5 X 79 = 197.5 Tev. Then,
V/syn can be calculated by using the equation (1.2.4a): v/syy =3.16 Tev.

APPENDIX B

Here we discus Legendre transform [11]. Let us consider fiz)
function f(x) represented on the figure B1. We consider
additional function y = px, where p is chosen accidentally. Jy
Now, let us introduce new function F (x, p) defined as [11]

F(x,p) = px = f(x) . (B.1) §4/%)

2
It is important to emphasize that Z—; is implied to be positively

defined. Z(D) Fig.Bl &
Maximum of the F(x,p) over x corresponds to maximal
distance between functions f(x) and y = px and can be obtained from the equation [10]:
a

F
=0 (B.2)
we obtain relation % = p, which defines function x(p). Therefore, for each point p we chose

that very x for which relation % = p is fulfilled.

APPENDIX C

Let us prove the equation:

1 N! _leana 1 _lsa N

mZ{na}mHae T §Xang —N) =—(Dqe TV, (C.1)
We apply the method of mathematical induction. For N=1 we have:

1 _1
St g e ™" 8(Eana — 1

_v1 1 leing w1 1 lem, w1 1 _len _ ~Le
_ZTll:On_l!e Tt 127’12:0”_2!8 T2 227’13:071_3!8 T3 36(20’”6{_1) _Zae T

=L (eeon €2)
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Let us suppose that (C.1) is right for N particles. We need to prove that (C.1) will be correct for
N+1 particle:

e = Gt x (e t)

wtl “Le.,
_Z{na}l—[ o ,Hae T 53, ng — N) X (Za,” e Tfa)

art1
1
—zeimy 52"2 N Ngrt+1 —=€ar(Mar+1)
= —_ T T _— T —_
Za’ e an Ny 1 e . Ngr na,!(‘na,+1) e 6(2“ na N)
1
=y N 1 e TE1M YN 1 ——82712 L YN Nar ——Eal(nal+1)6‘(z ng — (N +1—ng))
@ar&my g na nzl Nar=1 ., aza ta ar

N! —Lean n “Lewr(n
= Zal Z{na}aia l—[ana!naiae Toane Zg;ilﬁe réa( a’+1)6(2a¢a Ng — (N +1- Tla,))

= Ztna HLH &N §( Ly — (N + 1)) [Earie]

= Ying oA e e T §(Zang = (N +1)). (€3)
Therefore, we have
(N+1)' Qae sa)(NH) - (N+1)'Z{"a} §V+:). [ae et §Zanag —(N+1)) . (C.4)
APPENDIX D

Here we prove equation: d®p = Eprdprdydep, where d3p = dp,dp,dp,. The
transformation from one coordinate system to another one can be easily obtained with using
Jacobian determinant. Jacobian matrix has components:

Opx  9px  OPx

opr 9y ¢ cos ¢ 0 —prsing
J = 9py 9py 9py | _[ sing 0 pr COS @ (D.1)
opr dy O¢ PT . ' '
—sinh my cosh 0
o Op; Op, mp oY T COSRLY

opr dy  O¢
From (D.1) we obtain determinant of this matrix:
|Det J|=cos @pr cos ¢ my cosh y +py sin ¢ sin omy coshy = pymq cosh y. (D.2)
Therefore, we obtain equation:
dpydpydp, = |Det]|dprdyde = prmr cosh ydprdyde = Eprdprdyde. (D.3)
Let us prove that d%p do not differ from the frame of reference [3]. The Lorentz for the

four-momentum can be written as

E'+B19' __ DpIg+PBE!

\/1—[),21 pz—\/l—_ﬁz’ px:p,xa by = py

(D.4)
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Therefore, we can write:
dE/
d3p _ dpxdpydp, _ y(dp/,+BdEr)dprydpry Vdp’z(“—ﬁp,z)dp'xdp'y

E E y(Er+Bpry) yE1+ P2y ’ (D.5)
Using relation EdE = p,dp, [3], we obtain:
fp_ip (D.6)
Hence this infinitesimal element % is relativistic invariant.
APPENDIX E
Here we solve integral:
I'= J7 1o ptdp = et [7 e P p2gp, (E.1)
for that we express p via new variable:
p = msinht. (E.2)

Substituting (E.2) into (E.1), we obtain

1 *® 1 1 *® 1
eT# f e TP 02 4 = oTH f e TSN (1 sinh t)2 d(msinh t)
0 0

1 o _1L
= eT! fo e TSN (cosh2 ¢ — 1)m3 cosh t dt

[ee]

1 * —lm cosht —1m cosht
= eT*m?3 j eT cosh®tdt — J e’T cosh t dt
0 0

62
a(mp)?

2
= eﬁ“maa—ﬂzl(l(mﬁ) — ePrmiK, (mpB) = eftm [mz

K, (mp) — m?Ky(mB)|, (E3)

w _L . . L .
where K;(mpB) = [ e TSt cosht dt is modified Bessel function in integral representation
[20]. The modified Bessel function satisfies the equation [20]:

d?K, . 1dKn n?
dx?2 | x dx 1+ xz)Kn ' E4)
Therefore, we obtain
d’Kn _ 1dKn n?
- Ty e +(1+ ;)Kn . (E.4a)

Modified Bessel function K, satisfies recurrence relations [20]:

a(emnKn) — eim(n 1)Kn_1 _gemnKn, (E.5)

et = (=D %einnKn . (E.6)
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Substituting (E.5) and (E.4a) into (E.3), we obtain eventual relation for the integral I:

1 dK;

— pBum3 | —
['=effm [ mB a(mp)

+ (14 K — Ko (mB)] = eFrm? [ (Ko + 5 K))

=Jhgm. (E.7)

APPENDIX F

Here we prove relation (5.2.24) [4]. Let us write right-hand side of the equation:

e Teap Z ap—Oje Fgocpnocp5(20{/(EM+ Zpllsarlna/p/ - (Si - |Sa|))

1 - +1
= Z?;,,:oae roap(Map )5(ZaIEMi Zp/lsallnarpr — (51 — Isel))

1
= Z?Loap=1 (ap—1)! e Tgo{pno{p6(ZOUEMJ_r Zpl::plsallnalpl + |5a|(nap — 1) — (51— IseD)

n -1
= Z%Oap=0ﬁ;e Tgapnapa(ZareMi Zpllsarlna/p/ - Si)- (Fl)

Let us also prove equation (5.2.37) [4]:

K
ZnZ:p’ Onalp[e Tn“pgapa(ZaEMinlsalnap_Si)

min {[|:;,|]_l' K“’}

Narpr=o

St L
= lesml] 9_7”“’1”5“’1”5(2ae1v1i Zp|sa|nap - (Si - l|Sa,|)),
(F.2)
where K, defines maximal occupation of the state: for the Fermi-Dirac statistics K, = 1, for the
Bose-Einstein statistics K, = oo [19].
Let us now focus on Bose-Einstein statistics:

7 B
|Sal| sa/p Znalpl 0 e anp'ga'p’5(2aeM+ Zplsalnap ( + = l|Sa,|))

l
Yane T Farp! %

s+]

Z |Sou|

+1
¥, e T (R S Isalng — (Si — Usal)

[

lswl Znap,, € anp,gwp’6(2aeM+ azar Zp;tpllsalnap + |Sar|(narpr D—(S:— Usel))

Lf;,d

anp,—l e_TnalpIE'alp’5(ZaEM+ Zplsa |nap Si)' (F3)

Substituting @ (ng,, — 1) into (F.3), we obtain

[t
|$al|

1
Zna,p, 0 Q(na/p/ l)e Tna,p,ea,p,6(ZaEMi Zplsalnap - Si)

2

o
1
Znalpl 02 Isarl @(na/p/ _ l)e Tna,p,ea’pl6(2aeMi Zplsalnap _ Si)

1
= Z?fa,p,zo Narpr€ Tna’plsa,pl6(2aeMi Zplsalnap —S4+) - (F.4)
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For the Fermi-Dirac statistics y,; = (—1)'*. Writing all components of the sum, we obtain

54 |11} 2
Isarl e—?na'pfgd’P’é‘(ZaeMi Zp|sa|nap - (Si - llsarl))

Si ]
[Serl

=1

(- 1)l+1e_%l€alpl Zmin {
Narpr=o

1
= e_Fgmp'5(ZaeMi Zplsalnap — (St = Isa))

1
= B im0 T TS §(S ey Tplslngy — Si). (F5)
APPENDIX G

Here we consider Z, (5.2.35) —component of the partition function corresponding to
species a € M, [6]:

N
ng (2&) ™

Zy = l_[t?tEMo Zna Z{Nal}’aeMo 6(2?:1 INg — na) Hl:ll’V“l—Nm! : (G.1)

Let us obtain this relation for the particular case. First of all we write canonical partition functions
for quantum statistics in general form. Substituting (3.1.22) into equation (5.2.39), we obtain

Zy = HaeMo Zna[Zna]a (G.2)
where

_ 1 ng 1
Zna - Ezlzlzazna—l ’
1
1 _ —=lg
Zd_yalZple TP

Compering (G.1) and (G.2), it becomes obvious that all we need is to prove:

Zl Nyt
Z{Nal}’aeMo 6(2?31 INg — na) l_[;l=a1 l(NZl)Nal! = Zna- (G.3)
Let us put n, = 4. Therefore, we obtain
1 1
Zy=7 1c1 2624y = " (2425 + 237, + 2371 + ZgZ,), (G.4)

where Z, = 1. We have:

1(z% zZ
Zy = {25282, + 232, + Z3) + 22 (242, + 23) + 232420 + 28}

{

_ (') (28) | ()" (22)"(28)° | (20 (22)°(22)' (z2)° | (2)°(22)"(22)"(z8)°
24 4 3 8

<((z&)“+zé(za)2)

2

W=

1
T + 2328 )+ G + @) + 23k + 2t

RN

N (z&)o(zé)l(zi)o(zé)l _ (G.5)
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Let us compare coefficients in (G.3) with obtained

_ (') () (@8 | (20)°(28) (72)(2)° | (20)'(28)°(22)'(28)° | (7)(7)"(22)"(z8)°
1*4! 1221211! 311! 2122

o (22) (28) (28) (z) (G.6)

417)

All coefficients match. Also, we need to check if all possible combinations of N,; are presented in
(G.6): ng=4=34+1=24+2=24+1+1=1+14+1+1. Therefore, possible
combinations of N,;: {0,0,0,1}, {1,0,1,0}, {0,2,0,0}, {2,1,0,0}, {4,0,0,0}.

y ) @) @)

144!
one particle (1 + 1+ 1+ 1);
g () () (z) ()
12212111

particles and one state occupied by two particles (2 + 1 + 1);

3) (z&)l(z&z(lzla)l(z&f

one state occupied by three particles (3 + 1);
(2)"(23)°(23)°(28)"
41171

correspond to case when four states are occupied and contain

correspond to case when two states are occupied by single

correspond to case when one state occupied by one particle and

4)
state.

correspond to case when all four particles are gathered in one

Hence all possible combinations are figured in (G.6).
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