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Abstract

We consider the stochastic model which describes developed turbulence in general-
ized magneto-hydrodynamics. Using standard technique, we reformulate this model as
quantum field theory one. In the framework of this model we consider the vertex renor-
malization at two-loop approximation. For one vertex we find all diagrams which give
rise to renormalization. We write a Python program that calculates a tensor structure of
this diagrams. We checked Python calculations using Maple. As example, we calculate
frequency and momenta integrals and find divergent part for one of this diagrams.

Introduction

Turbulence is one of the unsolved classical physics problems. Research in this area is of
undoubted interest both from a theoretical and applied point of view. [1]. In this work we
consider developed turbulence in generalized magnetohydrodynamic [2,3]. This describes a lot
of phenomena in physics – from magnetic dynamo to astrophysical processes [4–6]. To study
this regime in the magnetohydrodynamic limit [2] the following stochastic model is usually
formulated [7]

∇tv⃗ = ν0∇2v⃗ + (⃗b · ∇)⃗b+ f⃗ v,

∇t⃗b = ν0u0∇2⃗b+ A(⃗b · ∇)v⃗ + f⃗ b. (1)

Here b⃗ is fluctuating magnetic field, v⃗ is fluctuating velocity field, ν0 is viscosity, u0 is the

inverse Prandtl number, A is parameter of the theory, f⃗ v and f⃗ b are sources of random noise.
Terms with pressure fields are not given. It is assumed that the velocity and magnetic fields

satisfy the incompressibility conditions. The correlation functions of f⃗ b and f⃗ v are given by
the formulas

Dv
ij(x) =

〈
f v
i (x, t)f

v
j (0, 0)

〉
= δ(t)

∫
ddk

(2π)d
D0k

4−d−2εRij(k)e
ikx, (2)

Db
ij(x) =

〈
f b
i (x, t)f

b
j (0, 0)

〉
= δ(t)Cij(|x|). (3)

Here d is dimension, δ(t) is the Dirac delta function, k = |k|, D0 > 0 is the parameter associated
with the typical ultraviolet momentum scale, Cij is some function whose explicit form is not
important, ε is free parameter of the theory,

Rij(k) = δij −
kikj
k2

+ iρεijl
kl
|k|

, (4)

εijk is the third-rank completely antisymmetric tensor, ρ is helicity parameter (|ρ| ≤ 1).
It is known that stochastic differential equations can be represented in the form of Euclidean

quantum field theory [8]. For the model (1), the corresponding quantum field action is the
following:

S =
1

2

(
v′iD

v
ijv

′
j+b′iD

b
ijb

′
j

)
+ v⃗′

(
−∇tv⃗+ν0∇2v⃗+(⃗b·∇)⃗b

)
+ b⃗′

(
−∇t⃗b+ν0u0∇2⃗b+A(⃗b·∇)v⃗

)
. (5)

Summation over i, j ∈ {1, 2, . . . , d} is implied. The v⃗′ and b⃗′ are the additional dynamic
fields. For a given quantum field theory, the following Feynman rules can be formulated in the
momentum-frequency representation:
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v′i
vj

vl

= i (klδij + kjδil),

v′i
bj

bl

= i (klδij + kjδil),

b′i
vj

bl

= i (kjδil − Aklδij),

v v
=

g0ν30k
4−d−2ε

|−iω+ν0k2|2Rij(k),

v v′
= 1

−iω+ν0k2
Pij(k),

v′ v
= 1

iω+ν0k2
Pij(k),

b b′
= 1

−iω+ν0u0k2
Pij(k),

b′ b
= 1

iω+ν0u0k2
Pij(k).

Here

Pij(k) = δij −
kikj
k2

, Rij(k) = Pij(k) + iρεijl
kl
|k|

. (6)

Project goals

For this field theory we consider the renormalization of the vertex v⃗′ · (⃗b · ∇)⃗b in two-loop
approximation. It was necessary to determine the diagrams contributing to the renormalization,
and also for one of these diagrams to calculate the tensor structure, calculate the integrals over
frequencies and momenta, and find the divergent part.

Main part

The following diagrams were found to be contained in this order (see Appendix A). We
calculate the following diagram
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Diagram 1.

Here, the numbers denote tensor indices (it is convenient to use this notation instead of the
Latin alphabet, the Einstein convention is still implied), the arrows indicate the direction

of momenta, p⃗, r⃗ and s⃗ – are external momenta, k⃗ and q⃗ – are momenta over which it is
necessary to integrate. The momenta r⃗ and s⃗ can be taken equal to zero. The original integral
corresponding to this diagram is given by

I =
1

(2π)2(d+1)

∫
dk⃗ dq⃗ dωk dωq

g0ν
3
0 |k|4−d−2ε

|iωk + ν0k2|2
g0ν

3
0 |q|4−d−2ε

|iωq + ν0q2|2
P6,10(k + q)

i(ωk + ωq) + ν0(k + q)2

P3,7(k + q)

−i(ωk + ωq) + u0ν0(k + q)2
P2,4(k + q)

i(ωk + ωq) + u0ν0(k + q)2
P9,13(q)

−iωq + u0ν0q2

[P8,11(k) + iρH8,11(k)] [P12,14(q) + iρH12,14(q)] (−i) [(k + q)11δ10,12 + (k + q)12δ10,11]

i [p2δ1,3 + p3δ1,2] (−i) [(k + q)6δ4,5 − A(k + q)5δ4,6] i [(k + q)8δ7,9 − A(k + q)9δ7,8]

i [q14δ13,15 − Aq15δ13,14] .

To carry out integration over frequencies a program was written in the Wolfram Mathematica
computer algebra system. To determine the tensor structure, a program was written in Python
and independently verified in the Maple computer algebra system.

After calculating the tensor structure and frequency integrals I takes the form

I =
i (p15δ1,5 + p5δ1,15) g

2
0A

2

d(d+ 2)(1 + u0)
(2π)−2d

∫
dk⃗ dq⃗ k2−d−2εq−d−2ε(1− z2)(kz − q)

(
q3 − ρ2kq2 − Ak2q + Aρ2kq2

) [ 1

4 (1− u0) 2 (k2 + q2)2 (k2 + kqz + q2)
−

− k2 + (1 + u0)q
2

2u0(1 + u0) (k2 + q2) (k2 + q2u0) (k2 + 2kqz + q2)2
+

+
u0

2 (1− u0) 2 (k2 + q2u0) 2 (k2(1 + u0) + 2kqu0z + 2q2u0)
−

− u2
0

(1− u0) 2 (1 + u0) (k2 + q2)2 (k2(1 + u0) + 2kqu0z + q2(1 + u0))
−

− 1

(1− u0) 2 (1 + u0) (k2 + q2u0) 2 (2k2 + 2kqz + q2(1 + u0))
+

+
q2(2k2 + (1 + u0)q

2)

2 (1 + u0) (k2 + q2)2 (k2 + q2u0) 2 (k2 + 2kqz + q2)

]
.
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For integrationg over the momenta and finding divergent part we use Wolfram Mathematica.
The Prandtl number in the calculation can be set equal to u0 ≈ 1.393 [9]. The final result is

I =

(
i (p15δ1,5 + p5δ1,15) g

2
0

ε

)
×

×
(
− 7.06192 · 10−7A2 + 4.44924 · 10−7A2ρ2 + 3.47105 · 10−7A3 − 4.44924 · 10−7A3ρ2

)
.

(7)

Results

1. A program is written in Python that performs the necessary convolutions in the tensor
structure of diagrams. The results of this program have been independently verified using
the Maple computer algebra system.

2. For one of the diagrams (see Diagram 1 ) integration over frequencies and momenta was
carried out, and the pole part in ε was find using the Maple computer algebra system.

Conclusion

The model that describes the developed turbulence in magnetohydrodynamics is considered.
This model is a system of stochastic differential equations, and, as is known, can be represented
in the form of a quantum field theory. This makes it possible to apply the apparatus of
the renormalization group developed in elementary particle physics and the physics of critical
phenomena. We have analyzed the renormalization of the vertex v⃗′ · (⃗b · ∇)⃗b. Diagrams were
obtained that give rise to the renormalization of a given vertex. Further, as an example, we
have analyzed and calculated one of the diagrams. In the future, it is planned to calculate the
rest of the diagrams given in Appendix A in a similar way, as well as write a program in the
Wolfram Mathematica that automates routine calculations.
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and in collaboration with Lukas Mizisin. The author thanks them for their hospitality and
help in carrying out this project. The author also expresses his deep gratitude The Bogoliubov
Laboratory of Theoretical Physics and the Joint Institute for Nuclear Research.
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Appendix A. The two-loop diagrams which give rise to

renormalization of v⃗′ · (⃗b · ∇)⃗b

S. C. = 1 S. C. = 2 S. C. = 2 S. C. = 1

S. C. = 2 S. C. = 2 S. C. = 2 S. C. = 2

S. C. = 2 S. C. = 2 S. C. = 2 S. C. = 2

S. C. = 2 S. C. = 2 S. C. = 2 S. C. = 2

S. C. = 1 S. C. = 2 S. C. = 2 S. C. = 2

S. C. = 2 S. C. = 1/2 S. C. = 2 S. C. = 2

S. C. = 2 S. C. = 2 S. C. = 2 S. C. = 15



S. C. = 2

Here S. C. is symmetry factor of corresponding diagram.
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