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1 Abstract

Exploring dilepton decay of charmonium is a way to study polarisation of charmonium. Angular

parameters or coefficients which are included in angular distribution of dilepton are frame-dependent,

that is why finding any relations for them is significant for analysis. Another important task is to set

relations for these parameters and initial charmonium state which is described with a hadron tensor.

Besides, properties of the tensor bound values of the angular coefficients and rotation-invariants of the

distribution. Thus, the approach studied and stated in this report can be very useful for charmonium

research.

2 Introduction

Studying and description of process of quarkonium production and subsequent dilepton decay

is a fine task for QCD testing. Angular distribution of dilepton decay of quarkonium is parameterised

with a set of angular coefficients which are dependant on definition of coordinate system axes. One

of the parameters for charmonium decay was experimentally measured by PHENIX collaboration [1],

for example. Because the parameters are frame-dependent, it is useful for analysis to have quantities

which could relate them with each other, i.e. some invariant quantities.

Firstly, we will derive a form of the angular distribution without usage of any factorisation

and hadronisation approach but on the basis of quite general ideas. Also, we will try to express a

spacial part of a hadron tensor (which describes an initial quarkonium state before decay) in terms of

the observable angular coefficients. Exploring the existence and properties of the invariants will be

associated with a question of some symmetry in angular distribution and a frame that could provide

such symmetry. Further, we will note bounds which are imposed by properties of the hadron tensor.

The approach for charmonium research studied by me is a helpful and powerful tool for analysis

of both experimental data and theoretical predictions.

3 Leptonic decay of charmonium

We will start with the most general ideas of description of charmonium production and then

find connection of charmonium polarisation and angular distribuition of leptons produced during char-

monium decay.

On the diagram of our process in a one-photon approximation a grey blob refers to a hadron

tensor 𝑊𝜇𝜈 in a final squared amplitude and an external leptonic line refers to a lepton tensor 𝐿𝜇𝜈 .
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And a cross section of the process will be proportional to a contraction of them:

𝑑𝜎 ∼ 𝐿𝜇𝜈𝑊
𝜇𝜈 .

The hadron tensor should follow conditions of symmetry, parity, gauge invariance and positivity.

According to them, the hadron tensor 𝑊𝜇𝜈 can be written as a combination of structural functions 𝑊𝑖:

𝑊𝜇𝜈 = 𝑊1̃︀𝑔𝜇𝜈 +𝑊2
̃︀𝑃𝜇

̃︀𝑃𝜈 −
𝑊3

2

(︁ ̃︀𝑃𝜇̃︀𝑝𝜈 + ̃︀𝑝𝜇 ̃︀𝑃𝜈

)︁
+𝑊4̃︀𝑝𝜇̃︀𝑝𝜈 ,

̃︀𝑔𝜇𝜈 = 𝑔𝜇𝜈 −
𝑞𝜇𝑞𝜈
𝑞2

, ̃︀𝑃𝜇 = ̃︀𝑔𝜇𝜈 𝑃 𝜈

√
𝑠
, ̃︀𝑝𝜇 = ̃︀𝑔𝜇𝜈 𝑝𝜈√

𝑠
,

𝑃 = 𝑝1 + 𝑝2, 𝑝 = 𝑝1 − 𝑝2, 𝑞 = 𝑘1 + 𝑘2, 𝑘 = 𝑘1 − 𝑘2.

But the explicit form of the tensor won’t be used. Instead, we consider the process in a rest frame

of charmonium, thus, a sum of leptons’ momenta is 𝑞𝜇 = 𝑘𝜇1 + 𝑘𝜇2 = (𝑞0, 0, 0, 0). Therefore, we can

confine ourselves to exploration of the spacial part of the 𝑊𝜇𝜈 due to the lepton current conservation

𝑞𝜇𝑊
𝜇𝜈 = 𝑊 𝜇𝜈𝑞𝜇 = 0. Also, we will use the helicity amplitudes for hadron tensor which are defined

as

𝑊𝜎,𝜎′ = 𝜀𝜇𝜎(𝑞)𝑊𝜇𝜈 𝜀
*𝜈
𝜎′ (𝑞) (1)

where 𝜀𝜇𝜎(𝑞) is polarisation four-vectors of a virtual photon in a coordinate system where 𝜀𝜇(0)(𝑞) = 𝑍𝜇

and 𝜀𝜇(±1)(𝑞) = 1√
2
(∓𝑋𝜇 − 𝑖𝑌 𝜇) [2]. The four-vectors 𝑋𝜇, 𝑌 𝜇, 𝑍𝜇 are four-dimensional extension of a

three-dimensional cartesian coordinate system vectors with time components being equal to zero.

Using (1) and definition of polarisation vectors we can get the tensor 𝑊𝜇𝜈 in a form

𝑊𝜇𝜈 = ̃︀𝑔𝜇𝜈 (𝑊𝑇 +𝑊ΔΔ) − 2𝑋𝜇𝑋𝜈𝑊ΔΔ + 𝑍𝜇𝑍𝜈 (𝑊𝐿 −𝑊𝑇 −𝑊ΔΔ) − (𝑋𝜇𝑍𝜈 + 𝑍𝜇𝑋𝜈)𝑊Δ

where independent helicity amplitudes are left only, they are redenoted according to

𝑊𝑇 = 𝑊1,1, 𝑊𝐿 = 𝑊0,0, 𝑊Δ =
𝑊1,0 +𝑊0,1√

2
, 𝑊ΔΔ = 𝑊1,−1.

Contraction with the 𝐿𝜇𝜈 tensor and explicit form of 𝑘𝜇-components in a spherical system connected

with the cartesian system (𝑋𝜇, 𝑌 𝜇, 𝑍𝜇) give angular dependence of the cross section in one of the

convenient alternatives of 𝑊 components (we will further note with 𝑊 the spacial part of the hadron

tensor):

𝑑𝜎

𝑑Ω
∼ 𝐿𝜇𝜈𝑊

𝜇𝜈 = 𝑊𝑇

(︀
1 + cos2 𝜃

)︀
+𝑊𝐿

(︀
1 − cos2 𝜃

)︀
+𝑊Δ sin 2𝜃 cos𝜙+𝑊ΔΔ sin2 𝜃 cos 2𝜙 =

= (𝑊1,1 +𝑊0,0) + (𝑊1,1 −𝑊0,0) cos2 𝜃 +
(𝑊1,0 +𝑊0,1)√

2
sin 2𝜃 cos𝜙+𝑊1,−1 sin2 𝜃 cos 2𝜙.

Now we can obtain connection of 𝐽/𝜓 polarisation with the 𝑊𝜇𝜈 tensor. If one considers

unpolarised charmonium state as a superposition of polarised states with values of angular momentum
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projections 𝐽𝑧 = 0,±1 [3]:

|𝐽/𝜓⟩ = 𝑎1 |1⟩ + 𝑎0 |0⟩ + 𝑎−1 |−1⟩ , 𝒩 = |𝑎1|2 + |𝑎0|2 + |𝑎−1|2, (2)

then the helicity amplitudes 𝑊𝜎,𝜎′ are proportional to 𝑎𝜎𝑎
*
𝜎′ with some coefficients which won’t be

specified here as they are going to be reduced in expressions of observables. The coefficients in the

contraction 𝐿𝜇𝜈𝑊
𝜇𝜈 can be written as

𝑊1,1 −𝑊0,0 ∼
1

2

(︀
𝒩 − 3|𝑎0|2

)︀
, 𝑊1,1 +𝑊0,0 ∼

1

2

(︀
𝒩 + |𝑎0|2

)︀
,

𝑊1,0 +𝑊0,1 ∼ 2 Re (𝑎0𝑎
*
1) , 𝑊1,−1 ∼ Re

(︀
𝑎1𝑎

*
−1

)︀
,

and we can now write the final angular distribution in terms of angles of a chosen frame and observable

coefficients 𝜆, 𝜇 and 𝜈:

𝑑𝜎

𝑑Ω
∼ 1 + 𝜆 cos2 𝜃 + 𝜇 sin 2𝜃 cos𝜙+ 𝜈 sin2 𝜃 cos 2𝜙, (3)

𝜆 =
𝑊1,1 −𝑊0,0

𝑊1,1 +𝑊0,0

=
𝒩 − 3|𝑎0|2

𝒩 + |𝑎0|2
, 𝜈 =

𝑊1,−1

𝑊1,1 +𝑊0,0

=
2 Re

(︀
𝑎1𝑎

*
−1

)︀
𝒩 + |𝑎0|2

,

𝜇 =
𝑊1,0 +𝑊0,1√

2 (𝑊1,1 +𝑊0,0)
=

2
√

2 Re (𝑎0𝑎
*
1)

𝒩 + |𝑎0|2
.

In order to get rid of the uncertainty in definition of the angular distribution we will integrate the cross

section of the lepton production over the solid angle:

1

𝜎

𝑑𝜎

𝑑Ω
=

3

4𝜋

1

3 + 𝜆

(︀
1 + 𝜆 cos2 𝜃 + 𝜇 sin 2𝜃 cos𝜙+ 𝜈 sin2 𝜃 cos 2𝜙

)︀
.

Except the last expression, we can find the explicit form of the 𝑊 as well. It can be useful to express

it in terms of the helicity amplitudes 𝑊𝜎,𝜎′ (if necessary, normalised matrix can be obtained with the

help of the 𝑊 normalisation condition Tr𝑊 = 1):

𝑊 =

⎛⎜⎝𝑊𝑇 −𝑊ΔΔ 0 −𝑊Δ

0 𝑊𝑇 +𝑊ΔΔ 0

−𝑊Δ 0 𝑊𝐿

⎞⎟⎠ =

=

⎛⎜⎝ 𝑊1,1 −𝑊1,−1 0 −(𝑊1,0 +𝑊0,1)/
√

2

0 𝑊1,1 +𝑊1,−1 0

−(𝑊1,0 +𝑊0,1)/
√

2 0 𝑊0,0

⎞⎟⎠ .

And, of course, the same matrix (normalised this time) which components are represented as functions

of the angular coefficients is

𝑊 =
2

3 + 𝜆

⎛⎜⎝
1+𝜆−2𝜈

2
0 −𝜇

0 1+𝜆+2𝜈
2

0

−𝜇 0 1−𝜆
2

⎞⎟⎠ .
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The coefficients can be experimentally measured and calculated that’s why the 𝑊 components

can be considered as found. It is only enough to remember what the coefficients 𝑎0,±1 mean in the

sum (2): we are able to multiply both numerators and denominators of the 𝜆, 𝜇, 𝜈 expressions with

necessary factors to obtain them as combinations of (un)polarised cross sections of charmonium. For

instance,

𝜆 =
𝑑𝜎 − 3 𝑑𝜎0,0
𝑑𝜎 + 𝑑𝜎0,0

≡ 𝑑𝜎 − 3 𝑑𝜎L

𝑑𝜎 + 𝑑𝜎L

≡ 𝑑𝜎T − 2 𝑑𝜎L

𝑑𝜎T + 2 𝑑𝜎L

.

We haven’t specified any frame for derivation of the angular distribution. And values of the angular

coefficients differ depending on the frame. That’s why the next stage for us will be looking for some

invariants that can mathematically connect different frames.

4 Invariants for charmonium decay

Invariant of reduced distribution

We can see that in the distribution (3) two of four terms don’t depend on 𝜙. Therefore, one can

suppose that there is a frame where the distribution includes dependence on 𝜃 only:

𝑑𝜎

𝑑Ω
∼ 1 + 𝜆0 cos2 𝜃′

where 𝜃′ is an polar angle in the new frame. The connection of this angle and angles in an arbitrary

frame is

cos 𝜃′ = sin 𝜃 sin 𝜃0 cos𝜙+ cos 𝜃 cos 𝜃0

where 𝜃 is a polar angle in the arbitrary frame, 𝜃0 is an angle between two 𝑧-axes, and 𝜙 is an azimuthal

angle of 𝑧-axis direction of the new frame. If we substitute cos 𝜃′ in the distribution and reorganise it

in such way that it has similar structure as (3), the parameters 𝜆, 𝜇, 𝜈 will be able to be expressed in

terms of 𝜆0 and 𝜃0 in the following way:

𝜆 = 𝜆0
1 − 3 sin2 𝜃0

2

1 + 𝜆0
sin2 𝜃0

2

, 𝜇 = 𝜆0
sin 𝜃0 cos 𝜃0

1 + 𝜆0
sin2 𝜃0

2

, 𝜈 = 𝜆0

sin2 𝜃0
2

1 + 𝜆0
sin2 𝜃0

2

. (4)

Expressing 𝜆0 and sin 𝜃0, we obtain it as a combination of the parameters 𝜆 and 𝜈 in the arbitrary

frame:

𝜆0 =
𝜆+ 3𝜈

1 − 𝜈
=
𝑊1,1 −𝑊0,0 + 3𝑊1,−1

𝑊1,1 +𝑊0,0 −𝑊1,−1

,

sin2 𝜃0 =
2𝜈

𝜆+ 3𝜈
=

2𝑊1,−1

𝑊1,1 −𝑊0,0 + 3𝑊1,−1

.

Thus, assuming that the frame without azimuthal dependence of the angular distribution exists, we

were able to find expressions of 𝜆0 and the angle that geometrically connect two frames. The value of

the angle 𝜃0 obviously would differ for different frames. But 𝜆0 is constant for different frames and

the same kinematic parameters. That’s why we can take it (if the corresponding frame exists) as the

first invariant though we’ve derived it quite heuristically.
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Frame of azimuthal symmetry

The main question of the previous part is whether the discussed frame exists. It’s useful to look

onto the 𝑊 matrix to answer this question. In such frame the coefficients 𝜇 and 𝜈 have zero values

that’s why 𝑊 becomes a diagonal matrix. A frame where any matrix is diagonal is a frame of its

eigenvectors as basis vectors. The set of eigenvectors of 𝑊 is⎧⎨⎩(0, 1, 0) ,

⎛⎝⎡⎣−𝜆− 𝜈

2𝜇
+

√︃(︂
𝜆− 𝜈

2𝜇

)︂2

+ 1

⎤⎦ , 0, 1
⎞⎠ ,

⎛⎝⎡⎣−𝜆− 𝜈

2𝜇
−

√︃(︂
𝜆− 𝜈

2𝜇

)︂2

+ 1

⎤⎦ , 0, 1
⎞⎠⎫⎬⎭ .

If we change the coordinate system of 𝑊 to the one which has upper set as basis vectors and then use

the expressions (4) and the definition of sin2 𝜃0 — we obtain just the same diagonal form of the 𝑊 as

we get if we would nullify 𝜇 and 𝜈 coefficients. Thus, we apparently can conclude that in the frame

of 𝑊 ’s eigenvectors the angular distribution of charmonium decay into pair of leptons is azimuthally

symmetric.

It’s also important to mention that the set of normalised eigenvectors in limit of 𝜇→ 0 becomes

a set of three orthonormal vectors directed along the 𝑥, 𝑦, 𝑧 axes — just as it should be expected.

By the way, the 𝑦 axis remains untouched while the necessary rotation of the frame is being

made. Therefore, one should rotate the frame around the 𝑦 axis to the angle 𝜃0 to obtain the azimuthal

distribution.

Rotation invariants

The other way of finding invariants is to pay attention to properties of the 𝑊 matrix itself. The

value of its trace won’t be helpful as it is equal to one. But its eigenvalues could be interesting for

analysis:

𝑤1 =
1 + 𝜆+ 2𝜈

3 + 𝜆
, 𝑤2,3 =

1 − 𝜈 ±
√︀

(𝜆− 𝜈)2 + 4𝜇2

3 + 𝜆
.

The 𝑤1 value coincides with 𝑊22 component of the matrix which is clear because of the

untouchability of the 𝑦 axis during described frame rotation. Invariants are not only 𝑤1,2,3 but any

combinations of them that’s why they can be used to derive another invariants which are shorter or

more convenient to apply. For example, it’s easy to notice an invariant, though it doesn’t include 𝜇

anymore:
𝑤2 + 𝑤3

2
=

1 − 𝜈

3 + 𝜆
.

Moreover, the 𝜆0 coefficient can be expressed in terms of the 𝑤1,2,3 invariants as it is an

invariant itself:

𝜆0 =
2𝑤1 − 𝑤2 − 𝑤3

𝑤2 + 𝑤3

.

5 Positivity constraints

Properties of objects described earlier constraint the angular coefficients and consequently in-

variants for charmonium decay. Bounds for diagonal elements of the 𝑊 (0 6 𝑊𝑖𝑖 6 1) and determinant
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of the 𝑊 matrix (det 𝑊 > 0) cause following constraints for the coefficients:

|𝜆| 6 1, |2𝜈| 6 1 + 𝜆, 𝜇2 6
(1 + 𝜆− 2𝜈)(1 − 𝜆)

4
. (5)

The same bound for the diagonal matrix and its unit trace

0 6 𝑤1,2,3 6 1, 𝑤1 + 𝑤2 + 𝑤3 = Tr 𝑊 = 1

give a maximum value of these combinations of the eigenvalues:

0 6 𝑤1𝑤2𝑤3 6
1

27
, 0 6 𝑤1𝑤2 + 𝑤1𝑤3 + 𝑤2𝑤3 6

1

3
and 0 6

𝑤2 + 𝑤3

2
6

1

2
.

Beside all these constraints, there are bounds for combinations of 𝜆 and 𝜈 which represent

𝜆0 and sin2 𝜃0 that are connected with the frame of azimuthal distribution. But the constraints (5)

automatically ensure realisation of −1 6 𝜆0 6 1 and 0 6 sin2 𝜃0 6 1.

6 Example of calculation for NICA

An example of calculation of the 𝜆, 𝜇, 𝜈 coefficients for charmonium production in proton–

proton collisions for NICA kinematics was made within General Parton Model (GPM) as a factorisation

model and Non-relativistic QCD as a hadronisation model of charmonium. Direct contribution of 𝐽/𝜓

only was accounted. A GPM parameter ⟨𝑞2𝑇 ⟩ was traditionally taken equal to 1 GeV2. A helicity frame

was used as a frame for definition of polarisation, a vector of longitudinal polarisation is directed along

the charmonium three-dimensional momentum within this frame. The following plots demonstrate

dependence of the coefficients on transverse momentum of charmonium and its rapidity 𝑦.

The invariants for direct charmonium production don’t depend on either transverse momentum

or rapidity of charmonium:

𝑤1 = 0.5 ± (2 · 10−11), 𝑤2 = 0.5 ± (3 · 10−4), 𝑤3 = (3.6 · 10−6) ± (3 · 10−4),

that is apparently a peculiarity of the used models or the fact that only direct contribution was calculated
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within these models. As one can see, the invariants satisfy corresponding constraints and give the value

of the 𝜆0 = 1 with good accuracy.

7 Conclusion

Studied during the practice and described here instruments can be applied to future research

and calculations such as numerical calculations of the angular coefficients. Besides, this very useful

tool of analysis can be used and has already been used not for quarkonium studying only but for weak

decays as well [4].
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