

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Veksler and Baldin laboratory of High Energy Physics

FINAL REPORT ON THE

START PROGRAMME

BM@N Central Tracker Efficiency for Negative
Pion Tracks

Supervisor:
Mr Vasilii Plotnikov

Student:
Reem Mohamed, Egypt
Cairo University

Participation period:
July 17 – September 3, 2022

Dubna, 2022

2

Abstract

BM@N experiment in the NICA complex at JINR is a fixed target experiment aimed to study the

production of strange particles in relativistic nucleus-nucleus collisions. In the experimental run of

March 2018, argon and krypton ion beams were used with various fixed targets. This report focuses

on obtaining the efficiency of both the three planes of the two-coordinate forward silicon detectors

(FwdSi) and the six planes of the two-coordinate Gaseous Electron Multiplier (GEM) detectors in

the central tracker system for the reconstructed negative tracks in the Ar/Kr run. These results are

also compared with the results obtained from the simulated Monte Carlo (MC) tracks.

3

1. Introduction

BM@N, which stands for Baryonic Matter at Nuclotron, is an experiment conducted in the NICA

complex at JINR to study the properties of relativistic heavy-ion collisions1. This experiment aims

to provide a better undertanding of Quantum Chromodynamics (QCD) matter at densities similar to

those predicted to exist in compact stellar objects1. Moreover, the studies of this experiment may

shed light on the role of hyperons in neutron stars1. Since the first experimental run of the BM@N

experiment, multiple ion beams were used such as deuteron, carbon, argon and krypton beams2. As

for the experimental run of March 2018, argon and krypton beams were used with five fixed

targets2. To identify the charged particles and nucleus fragments in the inelastic reactions of the

argon and krypton beams with the fixed targets, a variety of detector systems were used.

In this report, the main goal is to calculate the efficiency of the central tracker system for negative

pion tracks. The average efficiencies of the Si and GEM stations for negative tracks range from 80

to 95%. These results showed a good agreement with Monte Carlo simulated tracks.

2. Experimental Set-Up

The scheme of the BM@N set-up that was used in the experimental run of March 2018 is shown in

Figure 1. In this experimental run, Ar/Kr beam was used, and the set-up consisted of a central

tracker mounted inside the SP41 analyzing magnet, an outer tracking system, a time-of-flight (ToF)

system, calorimeters, a trigger system, and read-out electronics and data acquisition (DAQ)

system3,4. The advantage of such a set-up is that it can provide track measurements with high

precision, and it can be used for particle identification with low and high momenta and can be used

for the collision centrality analysis1,2. Moreover, it is feasible to obtain the BM@N optimal

geometrical acceptance and momentum resolution for various beam energies and different

processes, and this is due to the 1 m vertical gap between the poles of the SP41 analyzing magnet

which in turn allows the magnetic field to reach a maximum value of 1.2 T 4.

Figure 1: BM@N experimental set-up.5

4

2.1. Central Tracker

The central tracker is responsible for

measuring the momenta and multiplicities

of the resulting charged particles tracks.

According to the experimental run of

March 2018, the central tracking system

shown in Figure 2 consisted of 6 planes of

two-coordinate Gaseous Electron

Multiplier (GEM) detectors and 3 planes of

two-coordinate forward silicon detectors

(FwdSi)1,2. The GEM detectors are an

excellent choice for the tracking system of

the BM@N experiment as they are capable

of stable operation in high radiation

loadings up to 105 Hz/cm2 and can operate

in a strong magnetic field reaching to 1.5 T. Also, the GEM detectors possess the basic requirements

for a tracking system such as having high momentum and spatial resolution and having efficiencies

better than 95% and possessing the maximum possible geometrical acceptance in terms of the

BM@N experiment dimension1. As for the FwdSi detectors, they were added to the central tracker

to enhance the primary vertex reconstruction and to improve the tracking efficiency4. The central

tracking system was tuned to measure the strange V0 particles soft decaying products and Monte-

Carlo simulation was used to optimize the placement of the GEM and FwdSi detectors2.

2.2. ToF System

The time-of-flight system is used for the identification of the particles, and it consists of a start

detector T0 situated near to the target, ToF-400 detector, and ToF-700 detector. The latter two

detectors are based on the technologies of multi-gap Resistive Plate Chamber (mRPC) and are

installed at distances of about 4 m and 7 m from the target, respectively3. The ToF system has a time

resolution of 80-100 ps which allows the discrimination between hadrons (π, K, p) and is also

sufficient to separate between light nuclei with momenta reaching to few GeV/c1.

2.3. Outer Tracker

The outer tracker serves as a link between the hits detected by the ToF-400 and ToF-700 detectors

and the measured tracks in the central tracking system, and it consists of two drift chambers (DCH)

and a cathode strip chamber (CSC). The DCH and the CSC are installed outside the magnetic field,

and both filters the bad tracks. The DCH has another function that is to measure the momentum and

the angular distribution of the beam. The CSC was used for the first time in the run of March 2018,

and this is to compensate the low efficiency of the DCH. The tracks reconstructed from the GEM

and CSC hits and extrapolated to the ToF-400 have an improved momentum resolution and can be

used in the separation of the secondary particles (π, p, K, light nuclei) in the 0.5-3.5GeV/c

momentum range. In the upcoming runs, two CSCs will be installed to cover the ToF-700 system

and replace the DCH.1,3

2.4. Calorimeters

There are two types of calorimeters installed in the BM@N experiment, the zero-degree calorimeter

(ZDC) and the electro-magnetic calorimeter (ECAL). The ZDC measures the energy of forward

Figure 2: Central tracker configuration. It consists of 6 planes of

GEM detector and 3 planes of FwdSi detector.

5

going particles to be used in the analysis of the collision centrality, while ECAL studies the

processes with electro-magnetic probes (γ, e±) in the final state.4

2.5. Trigger System

The trigger system consists of a trigger, T0, and beam detectors. The system is included in the

BM@N configuration to trigger the nucleus-nucleus collisions in the target effectively, and to

provide the start signal for the ToF detectors with time resolution of picoseconds. Moreover, the

trigger system monitors the beam characteristics and background.4

2.6. Read-Out Electronics and DAQ System

The DAQ system is responsible for the realization of data transfer from the read-out electronics in

the detector to the storage system. The DAQ system consists of electronic modules, network

infrastructure, and a software. The experimental data stored in the DAQ storage is in a binary

format and then it is digitised and converted into a ROOT format to be integrated into the BmnRoot

framework.1

3. BmnRoot Framework

The BmnRoot was developed to support the BM@N experiment. It is based on the ROOT

environment and the FairRoot framework and uses the C++ programming language for execution.

The BmnRoot is used to study the detector performance and define the experimental setup. It also

provides the simulation of events and is used for the reconstruction of tracks. In addition, it is used

for the physics analysis of the experimental and simulated data. The comparison between the real

data and the simulation results can be done easily using the BmnRoot framework.6

4. Fundamental Concepts

In order to use and understand the BmnRoot framework effectively, one should be familiar with

ROOT and be familiar with some concepts that are discussed in this section.

4.1. ROOT Macros

A ROOT macro is C++ program which can contain ROOT classes and ROOT objects and can be

compiled either by ROOT CINT command interpreter or by ACLiC compiler6,7. In this section,

multiple examples of ROOT macros are presented.

The following macro describes an example of creating a one-dimensional histogram with 1000

random numbers having gaussian distribution with a mean of 50 and a standard deviation of 2 using

the TRandom2 class. The output of this macro is shown in the following figure.
void t1()

{

 TRandom2 *rand = new TRandom2();

 TH1F *hist = new TH1F("hist", "Histogram",

100, 0, 100);

 for(int i=0; i<1000; i++)

 {

 double r = rand->Gaus(50,2);

 cout<<r<<endl;

 hist->Fill(r);

 }

 TCanvas *c1 = new TCanvas();

 hist->Draw();

}

Figure 3: Left: A simple macro that creates a 1D gaussian histogram. Right: The macro’s output.

6

The following macro is an example of storing data in a root file using TFile class. In this example,

two one-dimensional histograms are created, one with a gaussian distribution and one with a

uniform distribution. Both of the histograms are stored in a root file called entries.root. The output

of such a macro can be viewed using TBrowser as shown in Figure 4.

void t2()

{

 TFile *f = new TFile(“entries.root”, ”recreate”);

 TRandom2 *rand = new TRandom2();

 TH1F *hist1 = new TH1F("hist1", "Histogram", 100, 0, 100);

 TH1F *hist2 = new TH1F("hist2", "Histogram", 100, 0, 100);

 for(int i=0; i<1000; i++)

 {

 double r = rand->Gaus(50,2);

 cout<<r<<endl;

 hist1->Fill(r);

 double x = rand->Uniform(100);

 cout<<x<<endl;

 hist2->Fill(x);

 }

 f->Write();

 f->Close();

}

Figure 4: Top: A macro that stores data in a root file using TFile class. Bottom: An example of viewing the contents of

root file in ROOT Object Browser.

Another way of storing data in ROOT is by using the TTree class. An example of such a way is

shown in Figure 5. In this example, a new root file (tree.root) and a tree with two branches (Gauss

and Uniform) are created. The two branches are filled with 1000 random numbers. The tree can be

viewed using TBrowser and the visual representation of the two branches are shown in the right

panel of Figure 5.

7

void t3()

{

 TFile *f = new TFile(“tree.root”,

”recreate”);

 TTree *tree = new TTree(“Tree”,

”Distributions”);
 double gaus, flat;
 tree->Branch =(“Gauss”, &gaus,

”Gauss/D”);
 tree->Branch =(“Uniform”, &flat,

”Uniform/D”);

 for(int i=0; i<1000; i++)

 {

 flat = gRandom->Uniform(0,100);
 gaus = gRandom->Gaus(50,2);
 tree->Fill();
 }
 f->Write();

 f->Close();

}

Figure 5: Left: A macro that stores data using TTree class. Right: The branches of the tree “tree” inside the tree.root

file.

The following macro reads the root file that was created in the previous macro (tree.root) and get

the entries of the Gauss branch and save these values inside a new tree which in turn is saved in a

new root file (read.root)
void t4()
{

 TFile *f2 = new TFile(“tree.root”, ”recreate”);

 TTree *t1 = new TTree((“t1”, ”t1”);

 double g;

 t1->Branch(“Gauss”, &g, ”Gauss/D”);
 TTree *Tree = (TTree*)f2->Get(“Tree”);
 Tree->SetBranchAddress(“Gauss”, &g);

 double entries = Tree->GetEntries();

 for(int i=0; i<entries; i++)
 {

 Tree->GetEntry(i);
 cout<<g<<endl;
 t1->Fill();
 }
 TFile *f1 = new TFile(“read.root”, ”recreate”);
 t1->Write();
 f1->Write();
 f1->Close();
 f2->Close();
}

Figure 6: An example of a macro that reads an existing root file and save one of its branches in a new tree in a new root

file.

8

4.2. Insights into C++

To take advantage of the advanced features of ROOT, one should know some useful concepts in

C++ such as classes and preprocessor directives.

4.2.1. Classes

Classes are used for defining new data types that meets the user requirements. A class consists of

data members and member functions8. Data members must be defined inside its class while member

functions can be defined inside or outside the class definition9. And, to use these members, objects

must be created, and they can access the class members using the dot (.) operator. Pointers to

objects can also access the class members but using the arrow (→) operator. Class members are by

default private unless they are specified in the class definition to be public. Objects and pointers can

directly access the public class members; however, they are not allowed to access private class

members. Only the class members can access the private section of the class8 .

Two of the main characteristics of Object-Oriented Programming (OOP) in C++ that are

implemented in classes are inheritance and data encapsulation10. Inheritance allows new defined

classes to use members of existing classes as if they were part of these classes9. The new defined

classes are called derived classes or child classes while the existing classes are called base classes or

parent classes9. The inheritance of classes can be seen in the classes of BmnRoot. As for data

encapsulation, it is evident in private class members as they can only be accessed only from within

the class itself and not from outside. This is important because it ensures that the data members and

functions of a class are not modified or called by other classes in an unpredictable manner10.

4.2.2. Preprocessor Directives

One of the distinctive characteristics of C++ is preprocessor directives11. The preprocessor

directives indicate that some particular lines need to be preprocessed before the compilation of the

source code by the compiler. These preprocessor directives are recognised by the preprocessor by

the preceding hash sign (#) such as #define, #include, #ifdef, and #pragma etc12. For example,

during the preprocessing, #include directive merges the header files with the source file13. Classes

of BmnRoot are implemented in macros using preprocessor directives.

4.3. Bash Shell Script

Repeating a series of commands manually for more than 500 times as will be seen in Section 5 is

not practical. Thus, to automate the process of executing a series of commands for a number of

times is done by inserting these lines of commands into a bash shell script file and running it for the

required number of times. The bash script file is read and executed line by line by the bash program.

The bash scripts are identified by the file extension of .sh.

4.4. Sun Grid Engine

The NICA cluster uses a batch-queueing system called the Sun Grid Engine (SGE) to run multiple

tasks on multiple machines. The SGE has a scheduler for assigning machines to tasks and a

queueing mechanisms. Each queue has a number of slots, and each slot can only be assigned to one

task. To use the SGE, a job must be defined by specifying which program to run, the input and

output files, and the arguments. After that, the defined job is submitted to the SGE by qsub

command. And to know the status of the submitted job, qstat command is used, while to delete a

particlar job, one should use qdel <job-ID>.14

9

5. Si/GEM Efficiency for π- Tracks

The main task is to obtain the efficiency of Si/GEM stations for negative pion (π-) tracks for each

target separately. The targets used in the experimental run of March 2018 were Carbon (C),

Aluminium (Al), Copper (Cu), Tin (Sn), and Lead (Pb). However, the tracks that are used in

calculating the efficiency must meet the quality criteria of having at least 4 GEM hits. The condition

of having at least 2 Si hits was removed, as it was found that the number of Si hits are much larger

in the experiment than in the Monte Carlo simulation (MC). And this is due to the large charge of

the Ar ions which causes the large relaxation time of the electronics in the Si stations.

The method of obtaining the efficiency relies on the fact that each Si/GEM station is covered with a

1×1 cm grid of cells. The algorithm of calculating the efficiency uses two counters, the numerator

and the denominator and loops over the nine Si/GEM stations. Then, for each cell in each station,

the counters will be increased depending on whether the reconstructed track has a hit in the given

station or not. So, if the track does not have a hit in that station, the algorithm extrapolates the track

and tries to find the cell of the hit from the coordinates of the point of the intersection of the track

with the given station. And for that cell, only the denominator counter will be increased. Whereas, if

the track has a hit in the given station, the algorithm will exclude this hit and checks if the track still

meets the quality criteria. Thus, if the track meets the quality criteria without the excluded hit, both

the numerator counter and the denominator counter will be increased for the cell of the hit. After

that, for each cell in each station, the counters are summed for all tracks, and the efficiency is

calculated by dividing the numerator by the denominator as shown in Figure 7.

for (size_t stf = 0; stf < STATIONS_NUMBER - 1; stf++)
{

 Int_t rect = 0, rect1 = 1, rect2 = NrectY;

 for (size_t rect0 = 0; rect0 <= NrectXY - 1; rect0++)

 {

 Float_t eff =

(Float_t)effUprect[stf][rect0]/(Float_t)effDorect[stf][rect0];

 if (std::isnan(eff))

 eff = 1.;

 myfile << stf << " " << rect0 << " " << eff << " " <<

effUprect[stf][rect0] << " " << effDorect[stf][rect0] << "\n";

 if (!std::isnan(eff) && eff > -0.5 && eff < 1.05 && effUprect[stf][rect0]

<= effDorect[stf][rect0])

 hist[stf]->SetBinContent(rect1, rect2, eff);

 cout << "SetBinContent " << rect1 << " " << rect2 << " " << eff << endl;

 if ((rect0 + 1) % NrectY == 0)

 {

 rect1++;

 rect2 = NrectY + 1;

 }

 rect2--;

 rect++;

 }

}

Figure 7: The algorithm for calculating the efficiency of each cell in each station.

The algorithm for obtaining the efficiency of Si/GEM stations for the π- tracks in each run is located

inside the /nica/mpd6/reem/NegEff/GEMeffRun7neg.C macro. This macro is a modified version of

10

the /nica/mpd6/plotnikov/run7_Ar_automation/efficiencysigem/GEMeffRun7.C macro. The

reconstructed tracks that are used as an input for the GEMeffRun7neg.C macro are located inside

the directory of /nica/mpd6/plotnikov/run7_Ar_automation/identification/ and take the form of

{RUN_ID}.root where the {RUN_ID} is the run number which ranges from 3756 to 4704. The

process of obtaining the efficiency for each run is automated using a bash shell script file

(EfficiencyGEM.sh) in the /nica/mpd6/reem/NegEff/ directory to save time and effort. After the

execution of the EfficiencyGEM.sh script, two files are created for each run,

GEMeffRun7neg_{RUN_ID}.root and effneg{RUN_ID}.txt, and they are located in

/nica/mpd6/reem/NegEff/EffGEMNeg directory. The GEMeffRun7neg_{RUN_ID}.root files

contain 2-D histograms of the efficiencies for each station which can be seen in Figure 8, and the

effneg{RUN_ID}.txt files contain the same output but in a text format. Then, in each station for

each target, the numerator and denominator of each cell are summed for all runs, and the average

efficiency is obtained by dividing the summed numerator by the summed denominator. The average

efficiency is obtained using the SumEfficienciesGEM.C macro that is found in the

/nica/mpd6/reem/NegEff/ directory, and the process is automated for the five targets using the

EfficiencyAggregationGEM.sh script that is found in the latter directory.

a) b) c)

d) e) f)

g) h) i)

Figure 8: Two-dimensional efficiency histograms for negative tracks for: a) the first FwdSi station, b) the second

FwdSi station, c) the third FwdSi station, d) the first GEM station, e) the second GEM station, f) the third GEM station,

g) the fourth GEM station, h) the fifth GEM station, i) the sixth GEM station.

A comparison between the efficiencies of the Si/GEM stations for positive and negative tracks for

the Copper target are given in Figure 9. Each panel in Figure 9 was obtained by plotting the

division the x-projections of the numerator by the x-projections of the denominator from the

previously obtained 2-d numerator and denominator histograms to get the x-projections of the

efficiencies for the negative and positive tracks on the same plot. It can be seen that for the first four

11

GEM stations, the efficiency for the negative tracks has a wider range in the x-axis than for the

positive tracks.

a) b) c)

d) e) f)

g) h) i)

Figure 9: A comparison between the x-projection of the efficiencies for the negative tracks (blue line) and the positive

tracks (red line) for: a) the first FwdSi station, b) the second FwdSi station, c) the third FwdSi station, d) the first GEM

station, e) the second GEM station, f) the third GEM station, g) the fourth GEM station, h) the fifth GEM station, i) the

sixth GEM station.

The next step is to compare the efficiencies of the Si/GEM for the experimental tracks with the MC

reconstructed tracks. But first, we need to go through the process of reconstructing MC tracks. The

MC model used to reconstruct tracks is DCM-QGSM which stands for Dubna Cascade Model and

Quark Gluon String Model15. The reconstruction of MC tracks is done using the mainMcQsub.sh

script that is found in /nica/mpd6/plotnikov/vp_r7_v2 directory. The reconstruction process starts

with obtaining dcmqgsm_ArCu_<run>.sim.root files, and they contain the generated tracks. And

then, these latter files are used as an input file to obtain dcmqgsm_ArCu_<run>_tmp1.tra.root files

which contain Si, GEM, CSC digits in an intermediate format, which in turn are used to obtain

dcmqgsm_ArCu_<run>_tmp2.tra.root files that contain Si, GEM, CSC digits, clusters, and hits in

CBM format, as well as short tracks. The latter files play an important role in calculating the

efficiencies of Si/GEM stations, as the suppression of hits is implemented during obtaining these

files. This suppression of hits is done inside the CbmStsFindHits class using the IsDetected method.

However, we will need reconstructed MC tracks without any hit suppression to get the normalized

efficiencies of the Si/GEM stations. Thus, the Si/GEM hit suppression must be disabled in the

CbmStsFindHits class and then obtain the dcmqgsm_ArCu_<run>_tmp2.tra.root files. After that,

using the previous files, dcmqgsm_ArCu_<run>_tmp3.tra.root files are obtained which contain long

tracks. The last step in the reconstruction of the MC tracks that will used in calculating the

12

efficiency is to obtain dcmqgsm_ArCu_<run>.tra.root files from the latter files. The final version of

the track files contains two branches, one for all the long tracks and one for the long tracks that are

confirmed in CSC.

The process for obtaining the Si /GEM efficiencies for MC tracks is similar to that of data

experimental tracks. The same macros of GEMeffRun7neg.C and SumEfficienciesGEM.C are used

to calculate the efficiencies for each run and to obtain the average efficiency for each station

respectively.

Now, to obtain the normalized efficiencies of Si/GEM stations, EfficiencyNormalizeDataToMC.C

macro is executed using EfficiencyNormalizeDataToMC.sh script for all targets. Then, the obtained

normalized efficiencies are implemented inside the CbmStsFindHits class, and we need to repeat

the process of getting the MC reconstructed tracks with enabling the Si/GEM hit suppression and

calculate the new Si/GEM efficiencies for the newly obtained MC tracks.

To obtain a good matching between the Si/GEM efficiencies of experimental data and MC tracks,

we need to calculate the difference between the data and MC efficiencies and then apply the

difference to the MC efficiencies inside the CbmStsFindHits class. A visual representation of

calculating the difference between the efficiencies is given in Figure 10.

Figure 10: Left: 2-D histogram of the efficiency of the first GEM station for the real experimental reconstructed tracks.

Center: 2-D histogram of the efficiency of the first GEM station for the MC simulated tracks. Right: 2-D histogram of

the difference of the two efficiencies of the first GEM station.

The CbmStsFindHits class contained previous adjustments to the efficiencies that was applied

manually to the x and y ranges for positive tracks. These values were also used as a base adjustment

for the Si/GEM efficiencies for the negative tracks. However, in addition to the base adjustments,

the further difference between the efficiencies was applied to the hit suppression using the

following lines.

TFile *fdiff = new TFile("/nica/mpd6/reem/NegEff/diff/output.root","read");

TH2F *diff = (TH2F *)fdiff->Get(Form("difference%d", stationNr-1));

int binx = diff->GetXaxis()->FindBin(posX);
int biny = diff->GetYaxis()->FindBin(posY);
double d = diff->GetBinContent(binx,biny);

eff -= d;

Figure 11: The algorithm for reading the difference file and applying this difference to the Si/GEM efficiency for MC

simulated tracks.

The matching between the Si/GEM efficiencies for the experimental data and MC simulated data

before the applying the additional adjustments using the difference values is shown in Figure 12.

For more precise matching of the efficiencies, multiple iterations may be needed. For example, after

the first iteration, the difference between the newly obtained Si/GEM efficiencies for MC tracks and

the those of the experimental data tracks are calculated and applied to the CbmStsFindHits class

13

along with the previous differences. Then, new MC tracks and efficiencies are obtained. If the new

matching is not sufficient, more iterations can be done in a similar way. In Figure 13, the matching

between the Si/GEM efficiencies of experimental data and MC tracks after 3 iterations can be seen.

a) b) c)

d) e) f)

g) h) i)

Figure 12: A comparison between the x-projection of the efficiencies for real experimental data (blue line) and the MC

simulated data (red line) for negative tracks before additional adjustments for: a) the first FwdSi station, b) the second

FwdSi station, c) the third FwdSi station, d) the first GEM station, e) the second GEM station, f) the third GEM station,

g) the fourth GEM station, h) the fifth GEM station, i) the sixth GEM station.

a) b) c)

14

d) e) f)

g) h) i)

Figure 13: A comparison between the x-projection of the efficiencies for real experimental data (blue line) and the MC

simulated data (red line) for negative tracks after three iterations for: a) the first FwdSi station, b) the second FwdSi

station, c) the third FwdSi station, d) the first GEM station, e) the second GEM station, f) the third GEM station, g) the

fourth GEM station, h) the fifth GEM station, i) the sixth GEM station.

A good agreement between MC and real experimental data is observed for the Si/GEM efficiencies

calculated with negative tracks. It can be seen from the latter figures that the average efficiency for

Si and GEM stations for π- tracks ranges from 80 to 95%.

6. Conclusion

BM@N is a fixed target experiment aimed to study the relativistic nucleus-nucleus collisions. The

experimental set-up of the BM@N consisted of several systems of detectors. However, the focus of

this report is on the central tracking system, the FwdSi and GEM stations. The process of obtaining

the efficiency for each station in the central tracking system was preceded by developing a good

understanding of many concepts of C++ and getting familiar with ROOT. The average efficiency of

Si/GEM stations obtained for negative tracks was found to range from 80 to 95%. This result agrees

with the previously obtained efficiencies for positive tracks. It can be noted that for negative tracks,

the efficiencies have a wider range in the x-axis for the first four GEM stations than for the positive

tracks. Moreover, the real data efficiencies showed a good agreement with the efficiencies for the

MC simulated data.

7. References

1. The Report on Project “Studies of Baryonic Matter at the Nuclotron (BM@N).”; 2021.

2. Gornaya J, Kapishin M, Plotnikov V, et al. Hyperons at the BM@N experiment: first results.

EPJ Web Conf. 2019;204:1-9. doi:10.1051/epjconf/201920401006

3. Alishina K, Plotnikov V, Kovachev L, Petukhov Y, Rumyantsev M. Charged Particle

Identification by the Time-of-Flight Method in the BM@N Experiment. Phys Part Nucl.

2022;53(2):470-475. doi:10.1134/S106377962202006X

4. Studies of Baryonic Matter at the Nuclotron.; 2019. https://bmn.jinr.ru/wp-

content/uploads/2019/07/BMN_Project.pdf

15

5. Batyuk P, Baranov D, Merts S, Rogachevsky O. Event reconstruction in the BM@N

experiment. EPJ Web Conf. 2019;204:1-7. doi:10.1051/epjconf/201920407012

6. BM@N collaboration. BmnRoot Simulation and Analysis Framework for the BM@N

Experiment Start Guide.; 2016. https://bmn.jinr.ru/wp-

content/uploads/2019/07/BmnRoot_Start_Guide.pdf

7. ROOT team. ROOT macros and shared libraries.

https://root.cern/manual/root_macros_and_shared_libraries/

8. Stroustrup B. The C++ Programming Language. Fourth.; 2013. doi:10.1145/954127.954144

9. Stanley B. Lippman, Josee LaJoie BEM. C++ Primer. Fifth.; 2012.

10. Chapter: A Little C++. ROOT. https://root.cern.ch/root/htmldoc/guides/users-

guide/ALittleC++.html

11. C++ Preprocessor. W3schools. https://www.w3schools.in/cplusplus/preprocessor

12. Preprocessor directives. Microsoft. Published 2021. https://docs.microsoft.com/en-

us/cpp/preprocessor/preprocessor-directives?view=msvc-170

13. Chandra A. Preprocessor Directives in C++. Published 2022.

https://www.scaler.com/topics/cpp/cpp-preprocessor-directives/

14. An Intro to SGE. http://talby.rcs.manchester.ac.uk/~ri/_linux_and_hpc_lib/sge_intro.html

15. Baznat M, Botvina A, Musulmanbekov G, Toneev V, Zhezher V. Monte-Carlo Generator of

Heavy Ion Collisions DCM-SMM. Phys Part Nucl Lett. 2020;17(3):303-324.

doi:10.1134/S1547477120030024

8. Acknowledgments

First and foremost, I would like to express my deepest appreciation to Mr. Vasilii Plotnikov for his

invaluable supervision, support, and patience. He has been a tremendous source of support for me

throughout the course of this project. He has always been available to answer any questions that I

had and provided me with assistance whenever I needed it. I would like to extend my sincere thanks

to the START program coordinators, Ms. Elena Karpova and Ms. Julia Rybachuk, for their warm

welcome and support. Finally, I would like to thank the Joint Institute for Nuclear Research (JINR)

for providing me with the opportunity to participate in this program. My experience at JINR has

been truly rewarding and I am very grateful for everything that I have learned during my stay here.

