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Abstract  

 

In computed tomography, materials with different elemental compositions can 

be represented by the same Hounsfield units, which depend on the mass 

density of the material. Thus, differentiating and classifying different tissue 
types and contrast agents can be extremely challenging. In this work, was 

investigate the possibility of applying machine learning methods to the task of 

automatically contouring areas containing contrast agents, as well as to the 

task of differentiating and identifying contrast objects. The data were a series 

of tomographic images acquired using Medipix 3RX pixelated semiconductor 

detectors. 
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INTRODUCTION 

 

Among all existing imaging techniques, radiation (X-ray) computed 

tomography (CT) has been particularly successful. CT is based on the ability 

of X-rays to penetrate matter. It is a powerful tool for examining internal parts 
of objects without the need for invasive intervention. Until recently, x-ray 

detectors were only able to measure one scalar quantity: the intensity of the 

radiation. This led to the emergence of grayscale radiographs. Despite its 

simplicity, this approach led to the development of sophisticated imaging 

techniques used today. Among them is computed tomography, which 

produces three-dimensional X-ray images of objects reconstructed from a set 
of two-dimensional images taken with a tomograph. 

Because the absorption properties of matter are highly dependent on 

the energy of the radiation, the spectrum of X-rays passing through the object 

is distorted. In general, low energy photons are absorbed more strongly than 

high energy photons, and the average energy of the spectrum shifts toward 

higher values. This effect is called beam hardening. If monochromatic light 
sources were used in X-ray imaging systems, this effect would not occur. 

However, at the moment, the only sources capable of emitting monochromatic 

X-ray beams are large and expensive synchrotrons. In contrast, most imaging 

applications use X-ray vacuum tubes, which are characterized by emitting a 

continuum energy spectrum. Although filtering techniques can be applied, the 

spectra of the tubes always remain polychromatic. As a consequence, when 
radiographs are made based only on intensity measurements, image artifacts 

appear. In computed tomography, the effects of beam hardening in two-

dimensional images extend to three-dimensional reconstruction, resulting in 

artifacts that can seriously degrade image quality.  

With the development of new detector systems, such as the Medipix 

readout chip for solid-state pixel sensors, spectral information can be 
recorded. This information, combined with the high spatial resolution of these 

detectors, can be used to reduce beam-hardening effects and achieve 

material decomposition in X-ray computed tomography. Because different 

colors can be associated with different materials that are recognized, spectral 

computed tomography is often referred to as color computed tomography. 

However, in mono-energy CT imaging, materials with different 
elemental compositions can be represented by the same or very similar 

Hounsfield units, which makes differentiating and classifying different tissue 

types extremely difficult. A classic example is the difficulty in differentiating 

between calcified plaques and iodine-containing blood. Although these 

materials differ significantly in atomic number, depending on the 

corresponding [1]. 
One option for solving this problem is the use of multi-energy computed 

tomography. This method uses a series of images taken at different energies 

to determine the difference in the ability of different materials to absorb X-rays 



at different energies. Based on these differences, it becomes possible to 

differentiate between materials. 

This paper investigates the possibility of applying machine learning 

methods for automatic classification of materials based on data obtained from 

a multi-energy tomograph.  
Chapter 1 gives a general overview of computed tomography and 

presents the basic image reconstruction methods used to construct a three-

dimensional image of a sample from a set of two-dimensional radiographs 

taken from different angles. 

Chapter 2 describes the principles of the Medipix chips, the main 

differences between several versions of the chips, and a brief description of 
the properties that characterize their operation. 

Chapter 3 discusses the background of multi-energy CT and the 

algorithm for material decomposition using multi-energy CT. 

Chapter 4 presents basic information about machine learning 

algorithms, as well as the results of applying these methods to the problem of 

material decomposition. 
 

CHAPTER 1. INTRODUCTION TO COMPUTED TOMOGRAPHY 

 

Computed tomography (CT) scanning is a diagnostic imaging procedure 

that uses x-rays to build cross-sectional images ("slices") of the body. Cross-

sections are reconstructed from measurements of attenuation coefficients of 
x-ray beams in the volume of the object studied [1]. 

The detectors of the CT scanner measure the transmission of the X-ray 

beam through a full scan of the body. The image of that section is taken from 

different angles, and this allows to retrieve the information on the depth (in the 

third dimension). The appearance of the scanner in Figure 2. 

 

 
Figure 2: CT scanner. 

 

The CT scanner is made up of three primary systems, including the 

gantry, the computer, and the operating console. Each of these is composed 

of various sub-components. The gantry assembly is the largest of these 



systems. It is made up of all the equipment related to the patient, including 

the patient support, the positioning couch, the mechanical supports, and the 

scanner housing. It also contains the heart of the CT scanner, the X-ray tube, 

as well as detectors that generate and detect X-rays.  

 
CHAPTER 2. MEDIPIX SYSTEM DETECTORS 

 

Timepix was conceived as a timing measurement chip with an added 

functionality of measuring time-over-threshold (ToT). ToT functionality was 

found useful in many applications, and Timepix3 extends the functionality of 

Timepix by allowing simultaneous time-of-arrival (ToA)/ToT measurement. It 
also aims to improve the timing resolution of Timepix. The pixel size has been 

retained at 55×55µm2. The Timepix3 engineering run has been funded by 

Medipix3 collaboration, and it has been a multi-site project between the 

European Organization for Nuclear Science (CERN) [2,3].  

Although full scale (non-prototype) chips with capabilities of 

simultaneous ToA/ToT measurement do exist, their spatial or timing 
resolution are not satisfactory for all applications. For example, in it is pointed 

out, that longitudinal resolution in gas-electron multiplier time projection 

chambers (GEM-TPCs) could be improved by having better timing resolution 

in the readout chip. Timepix3 has been designed to address these issues by 

using pixels of 55µm2×55µm2, and as mentioned, by improving timing 

resolution. The timing improvement has been achieved by using voltage-
controlled oscillators (VCOs) inside the pixel matrix. In some low duty cycle 

applications power consumption needs to be reduced by additional means. 

An on-chip power pulsing functionality has been added into Timepix3 to 

support its deployment in these applications. Main usage of Timepix3 is seen 

to being particle tracking applications where timing and spatial resolution are 

important. However, the chip can be programmed in event counting or photon 
counting mode and used in imaging applications with higher particle rates 

than 40Mhits/cm2/s. The choice of the sensor will depend on the particular 

application but the first assemblies with a bonded sensor will use silicon 

sensors. In GEM-TPCs Timepix3 will be used without any sensor on top [2,3].  

 

CHAPTER 3. MULTI-ENERGY COMPUTED TOMOGRAPHY 
 

In x-ray computed tomography (CT), materials having different 

elemental compositions can be represented by identical pixel values on a CT 

image (ie, CT numbers), depending on the mass density of the material. Thus, 

the differentiation and classification of different tissue types and contrast 

agents can be extremely challenging. In dual-energy CT, an additional 
attenuation measurement is obtained with a second x-ray spectrum (ie, a 

second “energy”), allowing the differentiation of multiple materials. 

Alternatively, this allows quantification of the mass density of two or three 

materials in a mixture with known elemental composition. Recent advances in 



the use of energy-resolving, photon-counting detectors for CT imaging 

suggest the ability to acquire data in multiple energy bins, which is expected 

to further improve the signal-to-noise ratio for material-specific imaging [4]. 

 

CHAPTER 4. APPLICATION OF MACHINE LEARNING METHODS IN 
THE PROBLEM OF CONTRAST SEPARATION 

 

4.1 Using OpenCV for automatic contouring of region of interest 

(RoI) 

 

The reconstruction of a 3D tomographic image results in a set of layer-
by-layer images. The image is a tiff file, each pixel of which stores the value 

of material absorption coefficient.  

In the current work, tomographic images of a Plexiglas phantom 

containing samples with different types of contrast and at different 

concentrations were investigated. A picture of the phantom with signed 

objects is shown in Figure 4.1. 
 

 
Figure 4.1: Tomographic image of the phantom. 

 

To create Figure 4.1, the center of the circle was defined manually. After 
that, the circle containing the RoI was constructed using the Python. Selection 

of the RoI is necessary for further analysis, which will be described in the 

following paragraphs.  

However, this task can be automated using computer vision techniques. 

Since the RoI can be described by a primitive shape, the Hough transform 

can be used to find primitives in the image. 
The Hough transform is based on the representation of the object being 

sought in the form of a parametric equation. The parameters of this equation 

represent the phase space (the so-called accumulator array/space, Hough 

space). Then, a binary image is taken. All the boundary points are tried and 

the assumption is made that the point belongs to the line of the object sought 



thus, for each image point, the desired equation is calculated and the 

necessary parameters are obtained, which are stored in Hough space. The 

final step is to bypass the Hough space and select the maximum values for 

which the most pixels in the picture "voted", which gives us the parameters 

for the equations of the sought object. 
The following algorithm is used to find circles using the Hough 

transform: 

1. uses the Kenny boundary detector to find boundaries in the image; 

2. the gradient is calculated for non-zero points (by calculating the 1st 

derivative on X and Y through cvSobel()); 

3. the centers of the circles are determined;  
4. the non-zero points lying at the same distance are defined with 

respect to the center. 

In OpenCV, the Hough transform for finding circles is implemented by 

the cvHoughCircles() function. The standard parameters of the 

cvHoughCircles() function are shown in Figure 4.2: 

 

 
Figure 4.2: Standard parameters of the cvHoughCircles() function. 

 

After finding the coordinates of the centers of the circles using 

cvHoughCircles(), they were constructed using Python. The results are shown 
in Figure 4.3. 

 

 
(а)                                                           (б) 

Figure 4.3: Automatic RoI extraction 

 
Figure 4.3 shows that the algorithm was able to select six RoIs out of 

eight (in this work only tubes with contrasting substance were selected and 

samples with Plexiglas, air and bone were not considered). The remaining 

two RoIs remained unselected, most likely due to the fact that they have 



poorly distinguishable boundaries and the Hough transform cannot distinguish 

them. 

4.2 Preparing Data Sets for Applying Machine Learning Algorithms 

 

Tomographic images obtained at different threshold values 
(approximate energies between 20 and 80 KeV) were used in the work. 

After the RoI was detected, the pixel values contained in it were 

averaged, after which the value was recorded in a column named thl value. 

An additional column containing the class label (material or K-edge value) was 

also created. 

Cubic interpolation was used to recover missing values. The final data 
set for material prediction took the form of the table shown in Figure 4.4. 

 

 
Figure 4.4: Prediction dataset 

  

Also, before using machine learning algorithms, the data set was 

partitioned into a training sample and a test sample (the test sample was 33% 

of the total number of rows), using the train_test_split() function from the scikit-
learn library. 

 

4.3 Gradient Boosting for Material Recognition  

 

Material recognition is a classification task with 6 classes: La, Nd, Gd, 

water, air and Plexiglas. It was decided to use gradient boosting from the 
Xgboost library to create a classifier. Selected parameters of the classifier 

based on gradient binning are shown in Figure 4.5. 

 

 
Figure 4.5: Classifier parameters. 

 



The quality of the predictions was evaluated by the error matrix, the form 

of this matrix is shown in Figure 4.6. 

 

  
Figure 4.6: Error matrix. 

 

The results of the evaluation on the test sample are shown in Figure 4.7.  

 

      

а) La b) Gd c) Nd d) air e) plex f) water 

 

Figure 4.7: Error matrices on the test sample. 
 

As can be seen from Figure 4.7, the number of false positive and false 

negative cases is very small and the accuracy of the predictions reaches 99%, 

which is suspicious and requires further research.  

 

4.4 Gradient Boosting for K-edge Prediction 
 

In X-ray absorption spectroscopy, a K-edge is a sudden increase in X-

ray absorption that occurs when the energy of the X-ray radiation is just above 

the binding energy of the innermost electron shell of atoms interacting with 

photons. Physically, this sudden increase in attenuation is caused by 

photoelectric absorption of photons. For this interaction to occur, photons 
must have an energy greater than the binding energy of the K-shell electrons 

(K-edge). Therefore, a photon with an energy just above the binding energy 

of an electron is more likely to be absorbed than a photon with an energy just 

below that binding energy or significantly above it. 

After interpolating the missing values, plots were made of the 

dependence of the ratio value on the energy at which the picture was taken. 
The graphs are shown in Figure 4.8. 

 

 



 
Figure 4.8: Plots of ratio value dependence on energy. 

 

Manually determined values of k-edge for each contrast agent, their 

values are shown in Table 4.1. 
 

Table 4.1: Value of k-edge for contrast agents. 

 

Contrast agent  K-edge value 

La 98 

Gd 110 

Nd 121 

 

The obtained values were entered into the training dataset.  

For automatic determination of the K-edge a regressor based on 

gradient boosting was used, parameters of the regressor are shown in Figure 

4.9. 

 

 
Figure 4.9: Regressor parameters. 

 

The quality assessment was carried out according to the coefficient of 

determination R2, as well as the mean absolute error (MAE). MAE was chosen 

because it is more robust to outliers than the root means square error (MSE). 



A bar graph of the range of predicted values was also plotted, shown in Figure 

4.10. 

 
Figure 4.10: Bar graph of the range of predicted values. 

 

Formula 4.1 was used to calculate the MAE: 
 

𝑀𝐴𝐸 =
1

𝑁
∑ 𝑦𝑖 − 𝑦𝑖̂ ∨
𝑁
𝑖=1                                            (4.1) 

 
As a result of the cross-validation calculations, the MAE value was 3.13.  

The coefficient of determination R2 is calculated by formula 4.2. 

 

𝑅2 = 1 −
𝑀𝑆𝐸(𝑚𝑜𝑑𝑒𝑙)

𝑀𝑆𝐸(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
                                           (4.2) 

 

To use formula 4.2, find the MSE (model) and MSE (baseline) using 

formulas 4.3 and 4.4, respectively. 

 

𝑀𝑆𝐸(𝑚𝑜𝑑𝑒𝑙) =
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1                                            (4.3) 

 

where yᵢ is the actual expected result and ŷᵢ the model prediction. 

 

𝑀𝑆𝐸(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) =
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖)

2𝑁
𝑖=1                                       (4.4) 

where 𝑦 =
1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1  

 

The R2 score was 88%, which indicates to good algorithm prediction for 

the lanthanides recognition. 

 



 

CONCLUSION 

 

In X-ray computed tomography (CT), materials with different elemental 

compositions can be represented by the same pixel values in the CT image 
(i.e., CT numbers), depending on the mass density of the material. Thus, the 

differentiation and classification of different tissue types and contrast agents 

can be extremely challenging.  

In this work, we investigated the possibility of applying machine learning 

methods to the task of automatically contouring areas containing contrast 

agents, as well as to the task of differentiating and identifying contrast objects.  
The data were a series of tomographic images acquired with Medipix 3RX 

pixel solid-state detectors. 

For automatic contouring of areas, computer vision techniques were 

applied. With the help of Hough algorithm, six areas out of eight were 

identified. This result shows the possibility of using these methods to 

automate the contouring task, but further research and improvements are 
needed. 

To classify different contrast agents, a classifier based on gradient 

binning was constructed. To assess the quality of the model, tests were 

conducted on the test sample and an error matrix was constructed, as a result, 

the accuracy of the model was 98%. In the future, the model is to be tested to 

search for contrast agents in the image.  
A regression model was also built to determine the K-edge of contrast 

agents. The regressor is also based on gradient boosting. The quality of the 

model was checked by calculating the mean absolute error (MAE) on cross-

validation as well as by using the coefficient of determination R2. The resulting 

MAE and R2 values were 3.13 and 88%, respectively. 

The results prove the possibility of using machine learning methods in 
the tasks of contrast agent differentiation and autocontouring of the areas 

under study. However, further research and improvement of the available 

models is required, and other basic algorithms should be considered. 
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