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Part 1. A model which consists of an elliptic partial di�erential equation and Dirichlet

boundary conditions is considered. Three di�erent �nite di�erence methods (FDM) are

suggested for its discretization. The resulting systems of linear equations are solved,

using the successive overrelaxation (SOR) method. For that purpose, the conditions for

its stability and convergence are found, using analytical and numerical approaches. The

analytical approach requires the usage of a spectrum analysis, while for the numerical

one a golden section search method is applied so as the number of the SOR iterations to

be minimized. The results from the two technics show a negligibly small di�erence. Com-

parison between the obtained results of the investigated FDM, as well as their features,

is made. Their upsides and downsides are discussed.

Part 2. A class of models of heat transfer processes in a multilayer domain is con-

sidered. The governing equation is a nonlinear heat-transfer equation with di�erent

temperature-dependent densities and thermal coe�cients in each layer. Homogeneous

Neumann boundary conditions and ideal contact ones are applied. A �nite di�erence

scheme on a special uneven mesh with a second-order approximation in the case of a

piecewise constant spatial step is built. This discretization leads to a pentadiagonal sys-

tem of linear equations (SLEs) with a matrix which is neither diagonally dominant, nor

positive de�nite. Three di�erent methods for solving such a SLE are developed � diagonal

dominantization, symbolic algorithms, and iterative procedure. Computer simulations

are conducted and the results from them are summarized and discussed.
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Chapter 1

Introduction

1.1 Introduction to the First Part

Elliptic partial di�erential equations can arise in many di�erent �elds, e.g.:

• Electrostatics: to describe the electrostatic potential �eld caused by a given electric

charge;

• Astronomy: to describe Newtonian gravity;

• Fluid dynamics: to describe the �uid potential;

• Thermodynamics: to describe the steady-state heat equation.

For that reason, methods for their numerical solving with a high order of approximation

are needed. Here, we investigate �nite di�erence methods (FDM) for the approxima-

tion of the partial di�erential equation. As a result from these approximating schemes,

systems of linear equations (SLEs) are obtained. In order to solve them, we consider

successive overrelaxation (SOR) method and conditions for its stability.

1.2 Introduction to the Second Part

Systems of linear algebraic equations (SLEs) with pentadiagonal (PD) and tridiago-

nal (TD) coe�cient matrices arise after discretizing partial di�erential equations (PDEs),

using �nite di�erence methods (FDM) or �nite element methods (FEM). Methods for

numerical solving of SLEs with such matrices which take into account the band struc-

ture of the matrices are needed. The methods known in the literature usually require

1



Chapter 1. Introduction 2

the matrix to possess special characteristics so as the method to be stable, e.g. diago-

nally dominance, positive de�niteness, etc. which are not always feasible. For instance,

such a problem was solved in [1]. There, a �nite di�erence scheme with �rst-order ap-

proximation was built that leads to a TD SLE with a diagonally dominant coe�cient

matrix. The system was solved using the Thomas method ([2]). However, a di�erence

scheme with second-order approximation leads to a matrix which does not have any of

the above-mentioned special characteristics. Our aim is to build and explore e�ective

methods and their stability which methods are not that restrictive. For that reason, we

consider three di�erent approaches: diagonal dominantization, symbolic algorithms, and

iterative procedure.

1.3 Approbation of the Results and Publications

1.3.1 Approbation of the Results

Parts of the report were presented at the following scienti�c seminars and conferences:

• Chapter 2 � Seminar of the Sector of Methods for Modelling Nonlinear Systems of

the Division of Computational Physics at the Laboratory of Information Technolo-

gies, Joint Institute for Nuclear Research;

• parts of Chapter 3 � International Conference �Mathematical Modeling and Com-

putational Physics, 2017� (MMCP2017), 3�7 July 2017, Dubna, Russia (during the

poster session).

1.3.2 Publications

Parts of Chapter 3 of this report are about to be published, as follows:

• Milena Veneva and Alexander Ayriyan, E�ective Methods for Solving Band SLEs

after Parabolic Nonlinear PDEs, submitted to European Physics Journal � Web of

Conferences (EPJ-WoC), arXiv: 1710.00428 [math.NA].

1.4 Outline of the Report

The layout of the report is as follows:

• Chapter 1 is an introduction to the topics that are considered in this report;
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• in Chapter 2 di�erent FDM with a high order of approximation for numerical solv-

ing of elliptic PDEs are investigated. Comparison between the considered methods

is made. A thorough study of SOR method and its stability is conducted;

• in Chapter 3 di�erent methods for solving pentadiagonal and tridiagonal SLE are

built. Numerical experiments are conducted and the results are compared;

• Chapter 4 draws the conclusions of the whole report and presents some insights for

future work on the same topics;

• in Appendix A the formulas for the diagonal dominantization used in Chapter 3

are written in details.



Chapter 2

Investigation of Numerical Methods

for Solving Elliptic Equations with

High Order of Approximation

2.1 The Problem � Mathematical Model

Let us have the following domain:

Ḡ = G ∪ Γ = {(x, z) : xleft ≤ x ≤ xright, zleft ≤ z ≤ zright}.

A solution of the following problem is searched over the already de�ned domain:

• governing equation:

∂2u

∂x2
+
∂2u

∂z2
= f(x, z), (x, z) ∈ G; (2.1)

• Dirichlet boundary conditions:

u|Γ = uexact. (2.2)

Equation (2.1) is a nonhomogeneous partial di�erential equation of an elliptic type (Poi-

son's equation). This equation is a generalization of Laplace's equation ∆u = 0, where

∆ stands for the Laplace operator. Dirichlet boundary conditions (2.2) are applied, i.e.

the exact solution is known on the boundary of the considered domain.

4
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2.2 Discretization of the Problem

Using the following mesh ωh = ωh ∪ γh, where:

ωh =

{
xi = ihx, i = 0, N, hx =

1

N
, zj = jhz, j = 0,M, hz =

1

M

}
,

and applying the central-point di�erence scheme with a second-order approximation:

Λxyi,j =
yi−1,j − 2yi,j + yi+1,j

h2
x

+O(h2
x), (2.3)

the considered problem (2.1)�(2.2) can be discretized as follows:

Λyi,j = fi,j +O(h2
x + h2

z); (2.4)

yi,j = uexact(xi, zj), (x, z) ∈ Γ, (2.5)

where

Λyi,j := Λxyi,j + Λzyi,j . (2.6)

Remark: from this point on, everywhere in this Chapter 2 we are going to assume that

we have a homogeneous spatial step in both the directions, so as: hx = hz = h.

2.2.1 Five-point Stencil Di�erence Method

Using the �ve-point stencil which can be seen in Figure 2.1:

St(xi; zj) = {(xi; zj−1), (xi−1; zj), (xi; zj), (xi+1; zj), (xi; zj+1)}, (2.7)

Equation (2.4) has the following form:

Λxyi,j + Λzyi,j = fi,j +O(h2). (2.8)

Then, in canonic form the �ve-point stencil method is:

yi,j =
1

4

[
yi,j−1 + yi−1,j + yi+1,j + yi,j+1 − h2fi,j

]
, i, j = 1, . . . , N − 1. (2.9)

This method has a second-order approximation.
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Figure 2.1: Five-point stencil.

2.2.2 Five-point Stencil Di�erence Method with an Increased Order

of Approximation

Applying Taylor series to the function u taken in the points xi±1 around the point xi

(for any z), it follows that:

ui+1 = ui + hx
∂u

∂x

∣∣∣∣
x=xi

+
h2
x

2!

∂2u

∂x2

∣∣∣∣∣
x=xi

+
h3
x

3!

∂3u

∂x3

∣∣∣∣∣
x=xi

+
h4
x

4!

∂4u

∂x4

∣∣∣∣∣
x=xi

+
h5
x

5!

∂5u

∂x5

∣∣∣∣∣
x=xi

+O(h6
x);

(2.10)

ui−1 = ui − hx
∂u

∂x

∣∣∣∣
x=xi

+
h2
x

2!

∂2u

∂x2

∣∣∣∣∣
x=xi

− h3
x

3!

∂3u

∂x3

∣∣∣∣∣
x=xi

+
h4
x

4!

∂4u

∂x4

∣∣∣∣∣
x=xi

− h5
x

5!

∂5u

∂x5

∣∣∣∣∣
x=xi

+O(h6
x).

(2.11)

Summing Equations (2.9) and (2.10) up and dividing the sum by h2
x ⇒

∂2u

∂x2

∣∣∣∣∣
x=xi

=
ui−1 + 2ui + ui+1

h2
x

− h2
x

4!

∂4u

∂x4

∣∣∣∣∣
x=xi

+O(h4
x). (2.12)
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Using the same technic with respect to z ⇒

∂2u

∂z2

∣∣∣∣∣
z=zj

=
uj−1 + 2uj + uj+1

h2
z

− h2
z

4!

∂4u

∂z4

∣∣∣∣∣
z=zj

+O(h4
z). (2.13)

Going to the discrete function y and substituting Equations (2.12) and (2.13) into (2.8),

it follows that:

Λxyi,j + Λzyi,j = fi,j +
h2
x

12

(
∂4u

∂x4

)
i,j

+
h2
z

12

(
∂4u

∂z4

)
i,j︸ ︷︷ ︸

:=ϕi,j

+O(h4
x + h4

z), (2.14)

where ϕi,j in Equation (2.14) can be derived, di�erentiating the governing equation (2.1)

twice with respect to x and twice with respect to z:

ϕi,j =
h2
x

12

(
∂2f

∂x2

)
i,j

+
h2
z

12

(
∂2f

∂z2

)
i,j

−

(
h2
x

12
+
h2
z

12

)(
∂4u

∂x2∂z2

)
i,j

. (2.15)

Discretizing the last term in Equation (2.15), using the central-point di�erence scheme

with a second-order approximation, and taking the remark from the end of Section 2.2,

the following equation for ϕi,j is obtained:

ϕi,j =
h2

12
∆fi,j−

− 1

6h2

(
yi−1,j−1 + yi+1,j−1 + yi−1,j+1 + yi+1,j+1−

−2 (yi,j−1 + yi−1,j + yi+1,j + yi,j+1) + 4 yi,j
)
.

(2.16)

Remark: If we do not have the function f in an analytic form, the central-point di�er-

ence scheme with a second-order approximation can be used so as the Laplacian of f to

be approximated.

Thus, the di�erence scheme has the following form:

Λxyi,j + Λzyi,j = fi,j + ϕi,j +O(‖h‖4). (2.17)

2.2.2.1 Algorithm

In the case of the �ve-point stencil di�erence method with an increased order of approx-

imation the computation algorithm is as follows:

1. using the �ve-point stencil method (2.8) (in canonic form � (2.9)), an initial ap-

proximation ỹ of the searched solution u∗ is found. The error of this approximation
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is O(‖h‖2), i.e.

ỹi,j = u∗(xi, zj) +O(‖h‖2); (2.18)

2. as a next step, using ỹ, a number of corrections to the right-hand side is made.

More precisely, the procedure is the following:

(a) ϕ(ỹi,j) is calculated and added to the right-hand side;

(b) the approximating function ŷ of the solution u∗ is calculated, substituting the

corrected right-hand side into the �ve-point stencil method's Equation (2.8):

ŷi,j = u∗(xi, zj) +O(‖h‖4). (2.19)

Then, the procedure is repeated. The number of the needed corrections so as a

prescribed margin error to be satis�ed is usually ≤ 2.

Although f is approximated, using a second-order scheme, the overall approximation

error of the method is O(‖h‖4), because this second-order approximation is used only as

an initial value. What is peculiar about this method is that a �ve-point stencil is used

for the Laplacian and a nine-point one for the right-hand side.

Remark: In the Russian literature the �ve-point stencil di�erence method with an

increased order of approximation is known as the Volkov method.

2.2.3 Nine-point Stencil Di�erence Method

Using the nine-point stencil which can be seen in Figure 2.2:

St(xi; zj) = {(xi−1; zj−1), (xi; zj−1), (xi+1; zj−1), (xi−1; zj), (xi; zj), (xi+1; zj),

(xi−1; zj+1), (xi; zj+1), (xi+1; zj+1)},
(2.20)

and applying Taylor series like we did in Equations (2.14) and (2.15), but moving the

fourth derivative of u to the left-hand side (LHS), the following di�erence scheme is

obtained ([3]):

Λxyi,j+Λzyi,j+

(
h2
x

12
+
h2
z

12

)
ΛxΛzyi,j = fi,j+

h2
x

12
Λxfi,j+

h2
z

12
Λzfi,j+O(h4

x+h4
z). (2.21)

Sticking to the remark from the end of Section 2.2, it follows:

Λxyi,j + Λzyi,j +
h2

6
ΛxΛzyi,j = fi,j +

h2

12
Λxfi,j +

h2

12
Λzfi,j +O(‖h‖4). (2.22)



Chapter 2. Investigation of Numerical Methods for Solving Elliptic Equations with a

High Order of Approximation 9

In canonic form the nine-point stencil method has the form:

yi,j =
1

40

[
8 (yi,j−1 + yi−1,j + yi+1,j + yi,j+1) +

+ 2 (yi−1,j−1 + yi+1,j−1 + yi−1,j+1 + yi+1,j+1)−

− 12h2 fi,j − h4 ∆fi,j

]
, i, j = 1, . . . , N − 1.

(2.23)

The overall approximation error of the method is O(‖h‖4).

Remark 1: On the order of what was said in Subsection 2.2.2, if we do not have the

Figure 2.2: Nine-point stencil.

function f in an analytic form, the central-point di�erence scheme with a second-order

approximation can be used so as the Laplacian of f to be approximated, namely:

∆fi,j =
fi−1,j − 2 fi,j + fi+1,j

h2
x

+
fi,j−1 − 2 fi,j + fi,j+1

h2
z

, (2.24)

or when hx = hz = h, then:

∆fi,j =
fi,j−1 + fi−1,j − 4 fi,j + fi+1,j + fi,j+1

h2
. (2.25)

Remark 2: In the Russian literature the nine-point stencil di�erence method is known

as the Samarskii method or the �jashchik� (from the Russian word for �box�) method.
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2.3 Matrix Form of the Discretized Problem

Using natural row-wise ordering, the system, after discretizing the problem (2.1)�(2.2),

has the form Au = F , where A is the block matrix:

A =
1

h2



A1,1 A1,2

A2,1 A2,2 A2,2

. . .
. . .

. . .

AN−2,N−3 AN−2,N−2 AN−2,N−1

AN−1,N−2 AN−1,N−1


(2.26)

For all the considered methods, A is a symmetric positive-de�nite matrix.

Applying the maximum principle gives as a result that A should be a positive-de�nite

and diagonally dominant matrix.

The blocks of A have the following forms:

• �ve-point stencil method with an increased order of approximation:

Ai,i =



4 −1

−1 4 −1
. . .

. . .
. . .

−1 4 −1

−1 4


Ai,i±1 =



−1 0

0 −1 0
. . .

. . .
. . .

0 −1 0

0 −1


• nine-point stencil method:

Ai,i =



20 −4

−4 20 −4
. . .

. . .
. . .

−4 20 −4

−4 20


Ai,i±1 =



−4 −1

−1 −4 −1
. . .

. . .
. . .

−1 −4 −1

−1 −4



2.4 Successive Overrelaxation Method

After discretizing the problem (2.1)�(2.2), an algorithm for solving the resultant SLE is

needed. We are going to consider the successive overrelaxation (SOR) method. The SOR

procedure is a method for solving a SLE Ax = b derived by extrapolating the Gauss-

Seidel method. This extrapolation takes the form of a weighted average between the
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previous iterate and the computed Gauss-Seidel iterate successively for each component:

x
(k)
i = ω x̄

(k)
i + (1− ω)x

(k−1)
i , (2.27)

where x̄ denotes a Gauss-Seidel iterate and ω is the extrapolation (relaxation) factor.

The method was devised simultaneously by two authors � [4] and [5]. If ω = 1, the SOR

method simpli�es to the Gauss-Seidel method. In a matrix form the SOR method is the

following [6]:

A− xk+1 +A+ xk +D

(
1

ω
xk+1 +

(
1− 1

ω

)
xk

)
= b, k = 0, 1, . . . (2.28)

or (
A− +

1

ω
D

)
(xk+1 − xk) +Axk = b, k = 0, 1, . . . , (2.29)

where A−, D, and A+ are the strictly lower-triangular, diagonal, and strictly upper-

triangular parts of A, respectively.

A theorem from [7] shows that SOR fails to converge if ω is outside the interval (0, 2):

Theorem 2.1. (Ostrowski) If A is symmetric positive-de�nite matrix,

B =
(
A− + 1

ωD
)
> 1

2A, and B is invertible, then the SOR method is convergent with a

rate of a geometric progression.

Hence, the condition so as the SOR method to be convergent is ω ∈ (0; 2). If ω > 1, the

number of iterations is O(N). For that reason, we are going to consider ω ∈ (1; 2).

2.5 Optimum Relaxation Factor Problem for Elliptic PDEs

The idea is to choose a value for ω that will accelerate the rate of convergence of the

iterates to the solution. Let us de�ne a function nit(ω) of ω. It takes values in the

interval (1; 2) and gives the number of needed SOR iterations, i.e.:

nit(ω) : (1; 2)→ N. (2.30)

We are looking for the value ω ∈ (1; 2) which minimizes the number of SOR iterations,

i.e.:

min
ω∈(1;2)

nit. (2.31)

Hence, this is an optimization problem for �nding the relaxation factor which minimizes

the number of iterations needed so as the SOR method to be convergent to the solution.
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From this moment on, the ω which satis�es this condition is going to be called �optimum

relaxation factor� or �ωopt�.

Two di�erent approached to this optimization problem are suggested � numerical and

analytical. Comparison between the two approaches is conducted.

2.5.1 Optimum ω Problem - Numerical Approach

2.5.1.1 The Idea

The idea of the numerical approach is to divide the interval (1; 2) by a number of points

and then to calculate the solution of the problem (2.1)�(2.2), using the three suggested

discretization technics for all these values of ω. Then, the minimum functional values of

the function nit(ω) for all the three methods are searched. For that purpose, an algorithm

for seeking an extremum is needed. The one we use is the golden section search.

2.5.1.2 Golden Section Search

The golden section search is a technique for �nding the extremum of a strictly unimodal

function by successively narrowing the range of values inside which the extremum is

known to exist ([8]). Let, for instance, nit(ω) is de�ned in [ω1;ω3] and the extremum

which is soughed is minimum. Then, the procedure is the following (see Figure 2.3):

Figure 2.3: Golden section method.
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• ω2 ∈ [ω1;ω3] is chosen so that:

ω3 − ω1

ω3 − ω2
= ϕ, where ϕ =

1 +
√

5

2
.

• if(nit(ω2) < nit(ω1) && nit(ω2) < nit(ω3)), then the min ∈ [ω1;ω3];

• we make a probe in the larger interval (because it is more optimal). ω4 is chosen

so that:
ω3 − ω1

ω4 − ω1
= ϕ;

• if(nit(ω4) > nit(ω2)), then the min ∈ [ω1;ω4];

else the min ∈ [ω2;ω3];

• repeat the procedure with the new interval;

• if the length of the interval is < ε⇒ STOP.

• Complexity of the algorithm: O(log(1
ε )), where ε is the margin error.

Remark 1: If one starts out with a triplet whose segments are not in the golden ratios,

the procedure of choosing successive points at the golden mean point of the larger segment

will quickly converge you to the proper ratios.

2.5.1.3 Test Functions

So as to �nd ωoptnumerical, we consider two di�erent exact solutions of the problem (2.1)�

(2.2) u∗1 and u∗2. They lead to two di�erent right-hand sides f1 and f2:

u∗1(x, z) = x6 + z6; f1(x, z) = 30x4 + 30z4;

u∗2(x, z) = (x− 1)2(z − 1)2; f2(x, z) = 2(x− 1)2 + 2(z − 1)2.

The graphics of these four functions are depicted in Figures 2.4, 2.6, 2.5, and 2.7, respec-

tively.

2.5.1.4 Results

Graphics of the numerically evaluated function nit(ω) against ω for all the three dis-

cretization technics are depicted in Figures 2.8, 2.9, and 2.10, respectively. The optimum

values of ωoptnumerical are summarized in Table 2.1.
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Figure 2.4: Exact solution u∗1.

Figure 2.5: Exact solution u∗2.
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Figure 2.6: Right-hand side f1.

Figure 2.7: Right-hand side f2.
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Figure 2.8: Optimum ω for the �ve-point stencil method.

Figure 2.9: Optimum ω for the �ve-point stencil method with an increased order of
approximation.
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Figure 2.10: Optimum ω for the nine-point stencil method.

2.5.2 Optimum ω Problem - Analytical Approach

The optimum relaxation factor is known ([9], [10], and [11]) to satisfy the following

formulae:

ωoptanalytical =
2

1 +
√

1− ρ2
, (2.32)

where ρ is the spectral radius of the matrix. The optimum ω is corresponding to the

asymptotic convergence factor ([11]), which de�nes the rate of convergence:

ρACF =
1−

√
1− ρ2

1 +
√

1− ρ2
. (2.33)

So as to �nd ωoptanalytical and ρACF, the spectrum factor ρ must be evaluated. For that

purpose, a spectrum analysis should be made.
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2.5.2.1 Spectrum Analysis

Let A is the block matrix:

A =



A1,1 A1,2

A2,1 A2,2 A2,2

. . .
. . .

. . .

AN−2,N−3 AN−2,N−2 AN−2,N−1

AN−1,N−2 AN−1,N−1


(2.34)

where

Ai,i =



α β

β α β
. . .

. . .
. . .

β α β

β α


Ai,i±1 =



β γ

γ β γ
. . .

. . .
. . .

γ β γ

γ β


Then, the spectrum problem is the following:

Au = µu, (2.35)

where A is a (N−1)2×(N−1)2 matrix; u and µ are block vectors ∈ R(N−1)×(N−1), so that:

u =


u1

u2

...

uN−1,

 , ui =


u1,i

u2,i

...

uN−1,i

 , i = 1, . . . , N − 1.

Theorem 2.2. The eigenvalues of A have the following form:

µm,n = α+ 2β (cos(mπ h) + cos(nπ h)) + 4 γ cos(mπ h) cos(nπ h),

m, n = 1, . . . , N − 1; h =
1

N
.

(2.36)

Proof. Let us rewrite Equation (2.35) as follows:

Am,k−1 uk−1 + (Am,k − µm I)uk +Am,k+1 uk+1 = 0, k = 1, . . . , N − 1, (2.37)

where u0 = uN ≡ (0, . . . , 0)T.

Using an eigendecomposition, i.e. every real symmetric matrix can be decomposed as

a product of three matrices � Q,Λ, and QT, where Q is an orthogonal matrix whose
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columns are the eigenvectors of A, Λ is a diagonal matrix whose entries are the eigenvalues

of A, it follows that:

Am,k = QΛQT;

Am,k+1 = QM QT.
(2.38)

Remark: Here, the transformation matrices are the same, since the eigenvalues do not

depend on the entries of the matrix ([9]).

Λ and M are diagonal matrices and consist of the eigenvalues of the matrices Ai,k, and

Ai,k±1. Using the result from the theorem in [9], it follows that the elements of these

diagonal matrices are:

λj = α+ 2β cos(j π h), j = 1, . . . , (N − 1)2;

νl = β + 2 γ cos(l π h), l = 1, . . . , (N − 1)2.
(2.39)

Substituting (2.38) into (2.37), multiplying with Q−1 from left, and denoting QT uk with

yk, it follows that:

νm ym,k−1 + (λm − µ I) yk + νm yk+1 = 0, k = 1, . . . , N − 1, (2.40)

or in a matrix form:

λm νm

νm λm νm
. . .

. . .
. . .

νm λm νm

νm λm





ym,1

ym,2
...

ym,N−2

ym,N−1


= µm



ym,1

ym,2
...

ym,N−2

ym,N−1


. (2.41)

Using the theorem from [9] once again:

µm,n = λm + 2 νm cos(nπ h), m, n = 1, . . . , N − 1. (2.42)

Substituting (2.39) into (2.42), ⇒

µm,n = α+ 2β cos(mπ h) + 2 (β + 2 γ cos(mπ h)) cos(nπ h),

m, n = 1, . . . , N − 1⇔

µm,n = α+ 2β (cos(mπ h) + cos(nπ h)) + 4 γ cos(mπ h) cos(nπ h),

m, n = 1, . . . , N − 1.
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2.5.3 Optimum ω � Results

After conducting the spectrum analysis, �nding the maximum by an absolute value

eigenvalue, and substituting into (2.32), the following results are obtained (see Table 2.1).

ωopt Five-point Five-point with an IOA Nine-point

ωoptnumerical 1.73390 1.73799 1.73373

ωoptanalytical 1.72945 1.72945 1.73057

Table 2.1: Optimum ω for the SOR method.

There exists a perfect correspondence between the numerical and the analytical results.

Comparing the results for ωoptanalytical, in the case of the �ve-point stencil method and the

�ve-point stencil method with an increased order of approximation (IOA), with the ones

which exists in the literature (e.g. [9] and [12]), a perfect correspondence is achieved.

Some di�erences are observed when it comes to the nine-point stencil method. In the

Table 2.1 one can see the ωoptanalytical which was obtained, using the Matlab function for an

eigendecomposition. It must be noted that the spectrum analysis gave us the following

result ωoptanalytical ≈ 1.70781. On the other hand, the authors in [12] have obtained ωopt ≈
1.66758, using a combination between an analytical and a numerical approaches. As

Five-point Five-point with an IOA Nine-point

ρ cos(π h) cos(π h) 4
5 cos(π h) + 1

5(cos(π h))2

evaluated value 0.98769 0.98769 0.98526

Table 2.2: Optimum ρ for the SOR method.

it can be seen in Table 2.2, the spectral radius ρnine-point is a little bit smaller than

ρ�ve-point with an IOA which determines the slower convergence of the nine-point method

(see Table 2.3). The two �ve-point stencil methods are obtained to have one and the same

optimum relaxation factors and hence, one and the same spectral radii and asymptotic

convergence factors.

Five-point Five-point with an IOA Nine-point

ρACF 0.72945 0.72945 0.70782

Table 2.3: Optimum ρACF for the SOR method.
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2.6 Number of SOR Iterations

Using the evaluated values for ωoptnumerical, numerical experiments are conducted. Three

di�erent numbers of points for discretization of the domain of the initial problem are

considered and for each of them, the number of SOR iterations so as a prescribed margin

error to be obtained were found. The results are summarized in Table 2.4. There, the

last column gives the quotient between the number of needed SOR iterations for two

consecutive number of points. The results show that the �ve-point stencil method with

an increased order of approximation, and the nine-point stencil method require more

iterations than the general �ve-point method so as they to converge, which is expected,

having in mind that the former ones are more complicated methods. On the other hand,

the nine-point stencil method requires less number of iterations in comparison with the

�ve-point stencil method with an increased order of approximation. The explanation

for that behaviour is the nature of the two algorithms � in the case of the �ve-point

stencil method with an increased order of approximation, the algorithm starts from a

zero approximation for the searched solution, while in the case of the nine-point stencil

method, the �rst iteration of the relaxation method is used as an initial value.

Points Five-point Five-point with an IOA Nine-point Coe�cient

N 122 210 200 -

2 ∗N − 1 652 1096 1059 ≈ 5

4 ∗N − 1 2588 4185 4051 ≈ 4

Table 2.4: Number of SOR iterations.

2.7 Runge's Rule for a Practical Estimation of the Error

There exist two di�erent formulas for a practical estimation of the approximation error

called Runge's rule ([6]):

α = ln

∣∣∣∣∣ yh(x, z)− yh/2(x, z)

yh/2(x, z)− yh/4(x, z)

∣∣∣∣∣ /ln 2

α = ln

∣∣∣∣∣u(x, z)− yh(x, z)

u(x, z)− yh/2(x,z)

∣∣∣∣∣ /ln 2

The idea is the following: if we have a certain method for an approximate solving of

a problem, then taking the approximating function on three di�erent meshes (the sec-

ond is taken with a twice smaller step, and the third � with four times smaller), the

approximation error can be found. In the case when the exact solution is known, the
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approximating function on just two meshes is needed. Using the �rst formulae from the

two listed above, the Runge's coe�cient α for the three considered methods was found.

As it can be seen in Table 2.5, the approximate order of approximation is second, fourth,

and fourth for the �ve-point stencil method, the �ve-point stencil method with an in-

creased order of approximation, and the nine-point stencil method, respectively. This

means that what was expected from the theory is achieved.

The Runge's coe�cient α for the three methods is depicted over the whole domain in

Figures 2.11, 2.12, and 2.13, respectively. One can see that in the case of the �ve-point

stencil methods the order of approximation around the boundaries is lower than in the

middle of the domain, while for the nine-point stencil method it is higher. The reason for

that is the following: as an initialization of the solution in the inner part of the domain

for all the methods zero value is used, but while the �rst two methods use just two out

of �ve points from the boundary (where the exact solution is applied) and three from

the zero initialization so as to approximate the solution around the boundary, the third

method uses �ve out of nine from the boundary and four from the initialization.

Method Five-point Five-point with an IOA Nine-point

α ≈ 2 ≈ 4 ≈ 4

Table 2.5: Runge's rule for a practical estimation of the error � results.

Figure 2.11: α coe�cient for the �ve-point stencil method.
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Figure 2.12: α coe�cient for the �ve-point stencil method with an increased order of
approximation.

Figure 2.13: α coe�cient for the nine-point stencil method.
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2.8 Comparison between the Methods

In Figure 2.14 the relative errors |y−u
∗|

|u∗| for the nine-point stencil method, and the �ve-

point stencil method with an increased order of approximation are shown. It can be

noticed that the practical order of approximation of the nine-point stencil method is

higher than the one of the �ve-point stencil method with an increased order of approxi-

mation, namely ≈ 1 ∗ 10−7 vs. ≈ 2 ∗ 10−6.

In conclusion, both the methods theoretically have a fourth-order of approximation, but

Figure 2.14: Comparison between the �ve-point stencil method with an increased
order of approximation and the nine-point stencil method

Method Five-point with an IOA Nine-point

theoritical order of approximation O(h4) O(h4)

higher practical order of approx. (≈ 2 ∗ 10−6)
√

(≈ 1 ∗ 10−7)

higher complexity of the algorithm
√

faster convergence
√

smaller number of SOR iterations
√

Table 2.6: Comparison between the methods.

practically, the nine-point stencil method has a higher one in comparison with the other
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method. The nine-point stencil method possesses higher complexity of the algorithm in

comparison with the other method on one hand, but needs a smaller number of SOR

iterations so as to converge. On the other hand, the �ve-point stencil method with an

increased order of approximation converges faster than the nine-point stencil method.

All these features can are read in Table 2.6.



Chapter 3

Investigation of E�ective Methods

and Their Stability for Solving Band

Matrix SLEs after Parabolic

Nonlinear PDEs

3.1 Mathematical Model

The following nonlinear model of a cylindrical multilayer structure is considered:

ρm(u) cmv (u)
∂u

∂t
=

1

r

∂

∂r

(
r λm(u)

∂u

∂r

)
+

n∑
α=1

∂

∂zα

(
λm(u)

∂u

∂zα

)
+ ϕm(u); (3.1)

∂u

∂r
= 0 ∀ r ∈ [rmin, rmax]; (3.2)

−λm(u)
∂u

∂r

∣∣∣∣
r=rm

i∗−0

= −λm+1(u)
∂u

∂r

∣∣∣∣
r=rm

i∗+0

and u|r=rm
i∗−0 = u|r=rm

i∗+0, (3.3)

where (r, ~z) ∈ Ω ∪ ∂Ω, t ≥ 0; m � index of the subdomain. Equation (3.1) represents

the conservation of heat inside a multilayer structure. It is an energy equation with

conduction heat transfer, where the densities, the speci�c heat capacities, and the thermal

conductivities depend on the temperature. For instance, in the two-dimensional case,

Equation (3.1) could be de�ned in a domain similar to the one shown in Figure 3.1.

Homogeneous Neumann boundary conditions (3.2) are applied on the outer boundaries

in the radial direction. The ideal contact conditions (3.3) model the heat �ux on the

inner boundaries in the radial direction, where rmi∗ denotes the point of discontinuity. The

26
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numerical algorithms for solving the multidimensional governing equation (GE), using

FDM (e.g. ADI algorithms ([13], [14])), ask for a repeared SLE solution.

Figure 3.1: Example of a rectangular domain in cylindrical coordinates (a longitudinal
section of a multilayer cylinder), where the thermal coe�cients are di�erent in all the
subdomains and they have a discontinuity of the �rst kind on the borders in-between

the subdomains.

3.2 Discretization of the Problem

Focusing on the radial term of the GE with the assumption that the other terms will

be moved to the right-hand side (RHS), we consider the following special mesh with

grid points on the inner boundaries: ωr = {(t, r) | tk = k ht, k ∈ N0; r0 = rmin, ri+1 =

ri+hi+1, i = 0, . . . , N−2}. A �nite di�erence scheme with a second-order approximation

has the following form (three-point stencils are taken for the GE and the outer boundary

conditions (BC), and �ve-point stencil for the inner BC):

ρ̂i ĉvi
ûi − ui
τ

=
1

ri

1

~i

[
ri+1/2 λ̂i+1/2

ûi+1 − ûi
hi+1

− ri−1/2 λ̂i−1/2
ûi − ûi−1

hi

]
+ ϕ̂i; (3.4)

−h2 (2h1 + h2)û0 − (h1 + h2)2û1 + h2
1û2

h1 h2 (h1 + h2)
= 0; (3.5)

λ̂mi∗
hi∗−1 (2hi∗ + hi∗−1)ûi∗ − (hi∗ + hi∗−1)2ûi∗−1 + h2

i∗ ûi∗−2

hi∗ hi∗−1 (hi∗ + hi∗−1)
= (3.6)

= −λ̂m+1
i∗

hi∗+2 (2hi∗+1 + hi∗+2)ûi∗ − (hi∗+1 + hi∗+2)2ûi∗+1 + h2
i∗+1ûi∗+2

hi∗+1 hi∗+2 (hi∗+1 + hi∗+2)
;

ûi∗−0 = ûi∗+0; (3.7)

hN−2 (2hN−1 + hN−2)ûN−1 − (hN−1 + hN−2)2ûN−2 + h2
N−1ûN−3

hN−1 hN−2 (hN−1 + hN−2)
= 0, (3.8)

where

λ̂i±1/2 = λ

(
ûi + ûi±1

2

)
, ~i =

hi+1 + hi
2

, ri±1/2 =
ri + ri±1

2
.

The matrix form of the considered system is: A~̂u = ~ϕ(û), where A is a PD sparse

matrix which does not have any special properties, e.g. diagonally dominance or positive

de�niteness.
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In order to preserve the band structure of the matrix, we cannot use the Gaussian

elimination with pivoting. Within this, we could obtain division by zero at some point

of the procedure, which is going to make our algorithm unstable. For that reason, we

alter the initial PD matrix by adding the minimum values to the diagonal elements so

as to transform the matrix into a weakly diagonally dominant one:

ADD ~̂u = ~ϕ(û) + P ~̂u, where ADD = A+ P ;

P = diag
(

2h2
1, δi∗,j pi∗,j , 2h

2
N−1

)
,

where

pi∗,i∗ =
2λmi∗ hi∗

hi∗−1 (hi∗ + hi∗−1)
+

2λm+1
i∗ hi∗+1

hi∗+2 (hi∗+1 + hi∗+2)
.

The Gaussian elimination with pivoting (the procedure we use to transform the PD

matrix into a TD one) does not preserve the diagonal dominance of the matrix. The

use of the Gaussian elimination to the initial matrix A (not ADD) yields a transformed

matrix Ã. Then, the diagonal dominantization method is used in order to transform the

obtained TD matrix Ã into a diagonally dominant one. To that purpose, the nondiagonal

elements are added to the diagonal ones:

ÃDD ~̂u = ~ϕ(û) + P̃ ~̂u, where ÃDD = Ã+ P̃ ;

P̃ = diag
(
|Ã0,1|, δi∗,j p̃i∗,j , |ÃN−2,N−1|

)
, where p̃i∗,i∗ =

∑
β∈{−1,1}

|Ãi∗,i∗+β|.

3.3 Numerical and Symbolic Algorithms

Two di�erent approaches for solving the SLE are considered � numerical and symbolic.

The complexity of all the suggested numerical algorithms is O(N). Since it is unknown

what stands behind the symbolic library, evaluating the complexity of the symbolic

algorithms is a very complicated task.

Numerical Algorithms. Two di�erent numerical algorithms are applied to the

system with a PD matrix. Both of them are based on LU decomposition. The �rst

one ([15]) is intended for a dense PD matrix. In the case of the considered problem, the

matrix is sparse. For that reason, a modi�ed algorithm is built. The main idea is that

after the mesh was de�ned, the indexes of the discontinuity points are known. Since these

indexes coincide with those of the matrix rows which are not sparse, we can reference

them to the algorithm and conduct the full calculation only for them. For the rest of the

rows, the algorithm is reduced to a problem similar to solving a system with TD matrix.

This way, the complexity of the algorithm is decreased but at the cost of additional N+2
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check-ups for the non-sparse rows. In the case of the TD matrix, the system is solved

using the Thomas method.

Symbolic Algorithms. The symbolic algorithm in the case of a PD matrix is also

based on LU decomposition ([15]). For the TD matrix, a symbolic version of Thomas

method is created. As it is known, Thomas method is not suitable for non diagonally

dominant matrices ([2]). In order to cope with this problem, in the case of a zero quotient

of two subsequent leading principal minors, a symbolic zero is assigned instead and the

calculations are continued. At the end of the algorithm, this symbolic zero is substituted

with zero. For a SLE of the form tridiag (a, c,b)x = f, the algorithm in pseudocode is

as follows:

d[0] = c[0];

if d[0] == 0

d[0] = t; \\ 't' is a symb.\,variable

endif

for i=1:N

d[i] = c[i]-b[i-1]*a[i-1]/d[i-1];

if d[i] == 0

d[i] = t;

endif

endfor

y[0]=f[0];

for i=1:N

y[i] = f[i]-y[i-1]*a[i-1]/d[i-1];

endfor

x[N] = y[N]/d[N];

for k=N-1:0

x[k] = (y[k]-b[k]*x[k+1])/d[k];

endfor

Substitute t in x=(x[0],...,x[N]) with 0.

3.4 Implementation and Results

All the numerical algorithms are implemented using C++. The matrix needs to be non-

singular and diagonally dominant so as the methods to be stable. Two symbolic al-

gorithms are implemented, using the GiNaC library (version 1.7.2) ([16]) of C++. Our

research showed that usage of the SymbolicC++ library (version 3-3.35) ([17]) of C++

is not possible, since in the implementation of this library the following statement was

used: t−n = 0, if t = 0, n ∈ N. Also, this library does not maintain Rational class

for symbolic variables. The symbolic algorithms require the matrix to be nonsingular
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only. In Table 3.1 one can �nd the wall-clock time results from the conducted experi-

ments. Since the largest supported precision in the GiNaC library is double, during all

the experiments double data type is used. The notation is as follows: NPDM stands

for numerical PD method, MNPDM � modi�ed numerical PD method, SPDM � sym-

bolic PD method, NTDM � numerical TD method, STDM � symbolic TD method.

The achieved accuracy is summarized, using in�nity norm. On the penultimate row of

the table, one can �nd the complexity of all the considered methods. On the last row, the

characteristics of the computer which is used are described. The number of considered

discontinuity points is K = 11.

Wall-clock time [s]

N NPDM MNPDM SPDM NTDM STDM

103 0.000036 0.000034 0.088669 0.000021 0.043690

104 0.000403 0.000373 8.467241 0.000245 2.971745

105 0.004709 0.003916 3547.020851 0.002416 799.533587

108 3.159357 2.682258 � 1.652945 �

max
N
‖y − ȳ‖∞ 2.22× 10−16 2.22× 10−16 0 2.22× 10−16 0

Complexity: 19N − 29 13N + 7K − 14 � 9N + 2 �

OS: Fedora 25; Processor: Intel Core i7-6700 (3.40 GHz); Compiler: GCC 6.3.1 (-O0).

Table 3.1: Results from solving SLE

Remark 1: So as the nonsingularity of the matrices to be checked, a fast symbolic

algorithm for calculating the determinant is implemented, using the method suggested

in [18]. The complexity of the algorithm is O(N).

Remark 2: The number of needed operations for the Gaussian elimination used in this

Chapter 3 is 18 + 16K.

Remark 3: Both the achieved computational times and accuracy for the NPDM and

SPDM methods are much better than the ones in [15].

3.5 Additional Results

The numerical algorithms suggested in this Chapter 3 are also computed, using the het-

erogeneous cluster �HybriLIT� ([19]). The achieved computational times are summarized

in Table 3.2. The results are coherent with the ones evaluated, using a PC. The compilers

and the optimizations which are used are described on the last row of the table. The

number of considered discontinuity points is again K = 11.
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Wall-clock time [s]

N NPDM MNPDM SPDM NTDM STDM

103 0.000044 0.000043 0.118732 0.000030 0.054840

104 0.000410 0.000400 17.220277 0.000270 6.686015

105 0.004022 0.003899 5632.271746 0.002720 1937.355622

108 2.855820 2.697446 � 2.035205 �

max
N
‖y − ȳ‖∞ 2.22× 10−16 2.22× 10−16 0 2.22× 10−16 0

Complexity: 19N − 29 13N + 7K − 14 � 9N + 2 �

Compiler: num: Intel 2017.2.050 ICPC (-O2) and symb: GCC 4.9.3 (-O0).

Table 3.2: Results from solving SLE on the cluster �HybriLIT�.

3.6 Iterative Approach

Finally, an iterative procedure for solving the pentadiagonal matrix is considered, namely

the strongly implicit procedure (SIP) ([20]), also known as the Stone method. It is

an algorithm for solving sparse SLEs. The method uses the incomplete LU (ILU(0))

decomposition ([21]) which is an approximation of the exact LU decomposition in the

case when a sparse matrix is considered. The idea of ILU is that the zero elements of L

and U are chosen to be the same as of the initial matrix A. The Stone method needs

the inverse matrices of L and U . We use a numerical procedure to compute these inverse

matrices, namely the Hotelling-Bodewig iterative algorithm ([22]). Its form is as follows:

A−1
n+1 = A−1

n (2 I −AA−1
n ), n = 0, 1, . . . , (3.9)

where I is the identity matrix, A is the matrix whose inverse we are looking for. A diago-

nal matrix is used as an initial guess for the inverse matrix, as it is suggested in [23]. The

obtained computational times for the ILU(0) method and the Hotelling-Bodewig itera-

tive algorithm, uding the heterogeneous cluster �HybriLIT�, are summarized in Tables 3.3

and 3.6.

The Stone method has the following form:

k = 0;

~x(k) = ~0;
−−−−−−→
newRHS(k) = A~x(k);
−−−−−→
residual(k) =

−−−→
RHS −

−−−−−−→
newRHS(k);

K = LU −A;

while(‖
−−−−−→
residual(k)‖∞ ≥ errorMargin){

−−−−−−→
newRHS(k) = K ~x(k) +~b;

~y(k) = L−1−−−−−−→newRHS(k);

~x(k+1) = U−1 ~y(k);
−−−−−→
residual(k+1) = ~b−A~x(k+1); k + +; }

Every iteration step of the Stone method consists of four matrix-vector multiplications
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(two multiplications with the pentadiagonal matrix and two with the inverse triangular

matrices of the ILU(0), which are also triangular) and two vector additions, i.e. the com-

plexity of the algorithm on every iteration is 30N − 36 = O(N), where N is the number

of rows of the initial matrix. Computer experiments are conducted, using �HybriLIT�.

The results can be seen in Tables 3.4 and 3.7.

In Tables 3.5 and 3.8 one can see the number of needed iterations for the Stone and the

Hotelling-Bodewig methods.

3.6.1 Matrix Implementation

Wall-clock time [s]

N ILU(0) L−1 U−1

102 0.000439 0.009864 0.009712

103 0.281497 105.130351 55.428357

2× 103 2.203920 428.588584 299.559702

5× 103 33.403451 6983.327956 6771.895344

7× 103 91.059694 28264.604603 17814.543375

Compiler: Intel 2017.2.050 ICPC; Optimization: -O2.

Table 3.3: Results from the ILU(0) method and the numerical method for inverting
matrices (matrix implementation), using the cluster �HybriLIT�.

Wall-clock time [s]

N SIP

102 0.000031

103 0.003066

2× 103 0.013564

5× 103 0.087308

7× 103 0.189665

max
N
‖y − ȳ‖∞ 4.44× 10−16

Complexity: 30N − 36

Compiler: Intel 2017.2.050 ICPC; Optimization: -O2.

Table 3.4: Results from solving SLE, using SIP (matrix implementation),
on the cluster �HybriLIT�.

3.6.2 Array Implementation

Initially, a matrix implementation results of which can be seen in Subsection 3.6.1

was made. Since it was very demanding in regards to memory, it was impossible to
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N SIP Method Hotelling-Bodewig Method L−1 Hotelling-Bodewig Method U−1

102 1 7 7

103 1 7 7

2× 103 1 7 7

5× 103 1 7 7

7× 103 1 7 7

Table 3.5: Number of Iterations Needed for the Stone and the Hotelling-Bodewig
methods (matrix implementation), using the cluster �HybriLIT�.

computational experiments for a matrix with more than 7 × 103 rows to be conducted.

For that reason, the algorithms were redesigned, taking into account the band structure

of our data, and so an array implementation was made.

Wall-clock time [s]

N ILU(0) L−1 U−1

102 0.000454 0.003654 0.003937

103 0.294193 4.781403 5.636033

2× 103 2.252378 39.946383 45.180269

5× 103 33.425096 1656.377837 1681.127071

7× 103 91.030153 4835.771232 4670.087554

104 271.939590 24950.736479 13809.421644

Compiler: Intel 2017.2.050 ICPC; Optimization: -O2.

Table 3.6: Results from the ILU(0) method and the numerical method for inverting
matrices (array implementation), using the cluster �HybriLIT�.

Wall-clock time [s]

N SIP

102 0.000012

103 0.000661

2× 103 0.004064

5× 103 0.017032

7× 103 0.034007

104 0.091237

max
N
‖y − ȳ‖∞ 4.44× 10−16

Complexity: 30N − 36

Compiler: Intel 2017.2.050 ICPC; Optimization: -O2.

Table 3.7: Results from solving SLE, using SIP (array implementation),
on the cluster �HybriLIT�.
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N SIP Method Hotelling-Bodewig Method L−1 Hotelling-Bodewig Method U−1

102 1 7 6

103 1 7 6

2× 103 1 7 6

5× 103 1 7 6

7× 103 1 7 6

104 1 7 6

Table 3.8: Number of Iterations Needed for the Stone and the Hotelling-Bodewig
methods (array implementation), using the cluster �HybriLIT�.

3.6.3 Comparison between the Implementations

Comparing the results, one can see that the array implementation not only decreased the

computational times for the inverting of both the matrices L and U but also it decreases

the number of iterations needed so as the matrix U to be inverted. As one can see,

the time required for the SIP procedure is also improved by the new implementation

approach. Finally, this second approach requires less amount of memory which allows

experiments with bigger matrices to be conducted.



Chapter 4

Discussion, Conclusions, and Future

Work

4.1 Conclusions and Discussions

Part 1. Three di�erent �nite di�erence schemes for solving elliptic PDEs were con-

sidered � �ve-point stencil method, �ve-point stencil method with an increased order

of approximation, and nine-point stencil method. Special attention was drawn to the

latter two since they are methods of a high order of approximation and that feature

of theirs is needed in the practice. It was shown that the theoretical order of approx-

imation of both the methods is fourth, while in practice the nine-point stencil method

achieves more accurate results than the other. On the other hand, the �ve-point stencil

method with an IOA is easier to be understood and implemented. Moreover, there is a

possibility for a technology transfer � since there exist inline functions for the general

�ve-point stencil method, one can use them twice (usually, two is the number of needed

corrections of the RHS) and they will obtain the solution. So as the SLEs which were

obtained after the considered FDM schemes to be solved, SOR method was used. It

is very important the optimum relaxation factor ωoptimum to be evaluated, because it

decreases the number of the needed SOR iterations to a minimum. It was shown that

the estimation of the ωoptimum numerically instead of analytically is easier and faster,

while the di�erence between the two values is negligible. Finally, during the numerical

estimation of ωoptimum the golden section search method for evaluation of an extremum

of a function was used. The choice was prescribed by the lack of requirements for the

function. In compression, methods like the Newton method or the bisection method put

constraints over the derivative of the function which is a very limiting requirement.

35
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Part 2. A nonlinear heat transfer equation in a multilayer domain was considered. The

suggested discretization scheme always has a �rst-order approximation. In the case of

piecewise constant thermal conductivities or when ‖λ̂i+1/2 − λ̂i−1/2‖∞ = O(‖hi‖∞), the

order of approximation is going to be second. Focusing on the radial term, a SLE with

a PD matrix was obtained. Then, applying Gaussian elimination, a TD matrix was

derived. For both these matrices, a diagonal dominantization procedure was suggested.

This approach ensures the stability of the suggested methods. A modi�ed version of the

numerical method for solving a SLE with a PD matrix was built. Since the complexity

of this method is lower than the complexity of the general algorithm (usually K � N),

better computational time was achieved. The fastest numerical algorithm was found to

come from the Thomas method. All the experiments gave an accuracy of an order of

magnitude of 10−16. As a next step symbolic algorithms were used. They do not require

the matrices to be of a special form and are exact. However, they are not comparable

with the numerical algorithms with respect to the required time in the case of a numerical

solving of the heat equation when one needs to solve the SLE many times. On the other

hand, these symbolic methods are not as restrictive as the numerical ones when it comes

to the matrix properties. Another upside of the symbolic algorithms is that in the case

of a piecewise linear equation, they do not add nonlinearity to the RHS of the system

and hence, there is no need of iterations for the time step to be executed. In future,

the approach suggested in this note will be investigated in detail. Finally, an iterative

algorithm was built � the Stone method. For the needs of the method, additionally,

ILU(0) and the Hotelling-Bodewig methods were used. Using a matrix form, the Stone

method is not suitable for large matrices (with number of rows > 7×103). This drawback

was �xed, using an array representation of the data. An upside of the iterative procedure

is that it requires the initial matrix to be nonsingular only. However, the this method is

not suitable for too large matrices (with number of rows 1 × 105), since the evaluation

of the inverse of a matrix is computationally demanding on both time and memory.

4.2 Future Work

Part 1. As a future work, we are going to explore the reasons for the observed di�erences

in the values of the optimum relaxation factor in the case of the nine-point stencil method.

Part 2. In future, the approach suggested in Section 3.1 is going to be implemented for

a real problem. Also, modi�ed versions of the approach suggested in Section 3.6 could

be designed for the special case of a tridiagonal matrix, using an array implementation.

This is going to make the SIP algorithm faster.
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Appendix A

In this Appendix one can �nd the values of the diagonal matrix P̃ which should be used

in Chapter 3 so as the tridiagonal matrix Ã to be made diagonally dominant. Note

that in Chapter 3 di�erent values were used during the diagonal dominantization of the

matrix. The reason is that the minimum values contain very complicated expressions.

A.1 Diagonal Dominantization for the Tridiagonal Matrix

p0 ≥ 2h2
1 − 2h1 h2 − h2

2 +
2λ1/2 r1/2 h1 h2

λ3/2 r3/2
+
r1 ~1 h

2
1 h2

λ3/2 r3/2

ρ cv
τ
|u1 ;

pi∗ ≥ Λ1

[
hi∗−1 h

2
i∗ ri∗−1 ~i∗−1A− (hi∗−1 + hi∗)

2 λi∗−3/2 ri∗−3/2−

−hi∗−1 (hi∗−1 + 2hi∗)λi∗−3/2 ri∗−3/2 + hi∗−1 hi∗ λi∗−1/2 ri∗−1/2

]
+

+ Λ2

[
h2
i∗+1 hi∗+2 ri∗+1 ~i∗+1B − (hi∗+1 + hi∗+2)2 λi∗+3/2 ri∗+3/2−

−hi∗+2 (2hi∗+1 + hi∗+2)λi∗+3/2 ri∗+3/2 + hi∗+1 hi∗+2 λi∗+1/2 ri∗+1/2

]
+ qi∗ ;

pNr−1 ≥ −h2
N−1 +

hN−1 hN−2

λN−5/2 rN−5/2

[
hN−1 ~N−2 rN−2C − λN−3/2 rN−3/2

]
,

(A.1)

where

A :=
λi∗−1/2 ri∗−1/2 hi∗−1 + λi∗−3/2 ri∗−3/2 hi∗

hi∗−1 hi∗ ~i∗−1 ri∗−1
+
ρ cv
τ
|ui∗−1

B :=
λi∗+1/2 ri∗+1/2 hi∗+2 + λi∗+3/2 ri∗+3/2 hi∗+1

hi∗+1 hi∗+2 ~i∗+1 ri∗+1
+
ρ cv
τ
|ui∗+1

C :=
λN−3/2 rN−3/2 hN−2 + λN−5/2 rN−5/2 hN−1

hN−1 hN−2 ~N−2 rN−2
+
ρ cv
τ
|uN−2 ;

Λ1 :=
λ

(m)
i∗

hi∗−1 hi∗ (hi∗−1 + hi∗)λi∗−3/2 ri∗−3/2
;

Λ2 :=
λ

(m)
i∗+1

hi∗+1 hi∗+2 (hi∗+1 + hi∗+2)λi∗+3/2 ri∗+3/2
;
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qi∗ :=
2λ

(m)
i∗ (λi∗−3/2 ri∗−3/2 hi∗ + λi∗−1/2 ri∗−1/2 hi∗−1)

hi∗−1 (hi∗−1 + hi∗)λi∗−3/2 ri∗−3/2
+

+
2λ

(m+1)
i∗ (λi∗+3/2 ri∗+3/2 hi∗+1 + λi∗+1/2 ri∗+1/2 hi∗+2)

hi∗+2 (hi∗+1 + hi∗+2)λi∗+3/2 ri∗+3/2
.
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