

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Frank laboratory of Neutron Physics

Sector of Neutron Activation Analysis and Applied Research

FINAL REPORT ON THE

SUMMER STUDENT PROGRAM

Air Pollution studies by the Moss biomonitoring, Neutron Activation Analysis and Related Analytical Techniques

Supervisors:

Prof. Marina V. Frontasyeva

Dr. Wael Badawy

Student:

Yasmin Sarhan, Egypt

Faculty of Science

Menoufia University **Participation period:**

September 19 – November 9 Dubna, 2017

Contents:

AbstractОши	бка! Закладка не определена.
1-IntroductionОши	бка! Закладка не определена.
2-Theoretical conceptsОши	бка! Закладка не определена.
a. Physical concepts of Neutron Activation A определена.	Analysis Ошибка! Закладка не
b. Biomonitoring Оши	бка! Закладка не определена.
3-Experimental work	
a. Experimental setup Ошиб	ка! Закладка не определена.9
b.Moss Sampling and sample preparation	9
4-Irradiation using IBR-2 FLNP, JINRОшибк	а! Закладка не определена.21
a. Sample preparation for irradiation	
b. Irradiation using IBR-2 FLNP, JINR	
c. Analysis using Genie2К Ошибка	а! Закладка не определена.20-
d. Statistical Analysis	
Conclusion and Future Plans	
Acknowledgment	
References	

Air Pollution studies by the Moss biomonitoring, Neutron Activation Analysis and Related Analytical Techniques

Abstract:

Concerning of levels of public health, monitoring of atmospheric deposition has become necessary. Biomonitoring provides information about the pollutants and their concentrations in the atmosphere when biological samples are analyzed using a specific technique.

Neutron Activation Analysis is a powerful nuclear technique for determination of elements and elemental composition of the material. In this overview, it can be used for analyzing organisms and biological samples like moss to obtain information about the concentrations of some elements in the sample, which in turn will give an indication of pollution level and ecological situation assessment of the environment.

This present report gives an overview on biomonitoring of atmospheric deposition using mosses and a discussion of the main steps in the process.

1. Introduction:

Neutron Activation Analysis was first developed by G. Hevesy and H. Levi in 1936. They used Ra-226 and Be as a neutron source and an ionization chamber. They promptly noticed that the element Dy (dysprosium) in the sample became highly radioactive after exposure to the neutron source. So, They suggested using this nuclear reaction to determine the elemental composition of unknown samples by measuring the induced radioactivity.

Although many analytical techniques are developed, NAA is maintained as a powerful technique because it's fast, simple, selective, sensitive, and accurate. It's a useful technique for performing both qualitative and quantitative multi-elemental analysis. NAA can be used as a reference for other analytical techniques. It's now possible to measure a vast amount of elemental constituents in any environmental sample by Instrumental Neutron Activation Analysis (INAA) which isa nondestructive multi-element analysis technique.

Neutron Activation Analysis depends on activating the nucleus and converting it from a stable nucleus into a radioactive one by bombarding it with a neutron and then detecting and identifying the radiation emitted by the radioactive nucleus. This allows precise identification of elements as the radioactive decay paths are well known for each element. NAA can detect up to 74 elements. The report is an attempt to, go deeper and discuss NAA and biomonitoring in details.

2. Theoretical concepts

2.1. Physical concepts of Neutron Activation Analysis :

Neutrons were first discovered by J. Chadwick in 1932 and the Neutron Activation was discovered by G. Hevsey and H. Levi in 1936 as mentioned in the introduction.. It's based on measuring the characteristic gamma energies from the formed radionuclides as a result of bombarding stable ones with neutrons.

To perform analysis of a sample, the sample is bombarded (irradiated) by neutrons from neutron source, in the present report it is a IBR-2 reactor, FLNP –JINR -Dubna. The neutron is captured in a nucleus, which has a good cross section to neutrons, a compound nucleus is formed. This compound nucleus de-excites emitting one or more prompt gamma rays that can be used in PGNAA technique and the nucleus becomes radioactive. This radioactive nucleus decays emitting a negative beta and delayed gamma emission (one or more gamma rays). This delayed gamma ray is the radiation of interest in our study DGNAA. This happens through the nuclear reaction (n, γ). Prompt gamma (γ) PGNAA

Fig.(2.1.) scheme of neutron activation analysis principle

The energy of gamma is specific for the nucleus and it can be measured by high resolution semiconductor detector.

$$\stackrel{1}{_{0}}n + \stackrel{A}{_{Z}}X \longrightarrow (\stackrel{A+1}{_{Z}}X)^{*}$$

$$(\stackrel{A+1}{_{Z}}X)^{*} \longrightarrow \stackrel{0}{_{0}}\gamma + \stackrel{A+1}{_{Z}}X$$

If the productive nucleus is radioactive, the nuclear transformation follows first order kinetic reaction:

$$A_t = A_0 e^{-\lambda t}$$

where

At =Activity after time t

A₀ = initial activity

 λ = Decay constant and it's equal to ln(2) / T , where T is the half life time.

2.1.1. Prompt and delayed Gamma neutron Activation Analysis (PGNAA and DGNAA)

Prompt gamma neutron activation analysis(PGNAA) employs the prompt gamma emitted after irradiation. The PGNAA technique is most applicable to elements with extremely high neutron capture cross-sections (B, Cd, Sm, and Gd); elements which decay too rapidly to be measured by DGNAA.

Delayed gamma neutron activation analysis (DGNAA) employs with the majority of elements that produce radioactive nuclides. The technique is flexible with respect to time such that the sensitivity for a long-lived radionuclide that interferes with a shorter-lived radionuclide can be improved by waiting for the short-lived radionuclide to decay. This selectivity is a key advantage of DGNAA over other analytical methods. DGNAA is our interest in this study.

2.1.2. Instrumental Neutron Activation Analysis:

. With the use of automated sample changer, HPGe detectors, and computerized data processing, it is generally possible to simultaneously measure more than thirty elements in most sample types without chemical processing. The application of purely instrumental procedures is commonly called instrumental neutron activation analysis (INAA). INAA using Ge-detector is a useful tool in determining large number of elements in water, soil, and vegetation. INAA is a non-destructive method although under certain conditions some material damage may occur. The technique used here in REGATA is INAA using epithermal neutrons. Using epithermal neutrons in the technique improve detection limits by INAA, e.g., for As, Br, Rb, Sr, Cd, Sb, I, Tb, Hf, Ta, Th, and U, reduce high matrix activity, and reduce fission product interference from ²³⁵U fission

2.2. Biomonitoring:

2.2.1. What's Biomonitoring?

Biomonitoring is a simple method to estimate the atmospheric pollution at a certain area using living organisms. It's based on the capability of some living organisms to detect toxic substances in the atmosphere. The main purpose of using biomonitoring is to detect elements that can be detected by more expensive techniques. We can use plants to monitor atmosphere. When plants are exposed to air pollution, they will exhibit different symptoms. Damage symptoms give indication to types, concentrations, and contacting time of pollutants. an Compared with traditional monitoring method, monitoring using plants is an economic, simple and reliable method.

Living organisms that are used in biomonitoring air pollution can be bioindicator, bioaccumulator, or both. First, bioaccumulator can accumulate substances from the atmosphere with a possibly linear correlation between concentrations of contaminants in environment and the living organism. Second , Bioindicator is sensitive to contamination that can produce an estimate of air quality in the area concerned. The good bioindicator should have long life cycle, known sensitivity to specific pollutants, and broad distribution in area concerned. Thetwo strategies may be regarded as complementary, can generate data on pollution and ensure effective integrated biomonitoring. Bryophytes, which include mosses, are among the organisms most frequently used as bioaccumulators.

2.2.2. Biomonitoring using Moss:

The biomonitoring using moss allows simultaneous monitoring of large number of contaminants within the same sample. Biomonitoring using moss is simple, reliable, cost effective, doesn't need electricity, inexpensive, and can promote a good performing. Moss is a type of bryophyte, which is a group of non-vascular. That's why They grow low and flat along the ground. Unlike other plants, mosses can grow in rocks and areas with poor quality soil. moss has very shallow roots, just enough to hold on to the bare rock it lives on. Mosses grow in moist shady places.

The reason why mosses are used in biomonitoring is that it has high capacity to intercept and accumulate most of the airborne elements compared to other living organisms. They obtain nutrients from both wet and dry depositions. Mosses have a large surface to weight ratio that impresses absorption. Moss has no real roots and it receives the nutrient from the atmosphere. Contaminants are therefore absorbed through the surface of their leaves. Therefore, there is a close correlation between the concentration of these substances in the plant and atmospheric deposition.

There're 2 types of Moss biomonitoring: active moss biomonitoring and passive moss biomonitoring.

1- Passive Moss Biomonitoring:

It's where the native species of moss are used in the area under study. The process of study involves 2 major steps: collecting moss and analysis. Moss samples are collected from the site of interest. In the laboratory, the samples should be carefully cleaned from all dead material and attached litter, then only green and green-brown moss upper parts from the two-three last years were analyzed by Instrumental Neutron Activation Analysis (INAA) to obtain results about the level of pollution in the sampling site.

2- Active Moss Biomonitoring:

In the areas where there's no moss like urban areas. The active moss biomonitoring is also called "moss bag technique". The process involves many steps: collection of moss species from unpolluted area then cleaned and packed in nylon net bags then transplanted in the area of study to be exposed to atmosphere. Then after time of exposure the moss bags should be analyzed using INAA to know the accumulation of atmospheric pollutants in the moss. The moss bag technique can be performed by dry or wet moss bags. The detailed sample preparation steps will be discussed later in the experimental work section.

There're several moss species. in this research , we're interested in *Sphagnum* girensohnii moss.

3. Experimental work

3.1. Experimental Setup:

Neutron Activation Analysis is not a "Push – button" device, therefore, , there are some essentials should be compiled neutron source which is the IBR-2 reactor and gamma detection system. The full description of the used station of REGATA is given elsewhere[1]

3.1.1. Neutron Source (IBR-2 reactor)

The used neutron source is the IBR-2 reactor because of its high fluxes of neutrons from fission gives the highest available sensitivities for most elements. The pulsed fast reactor IBR-2 provides thermal, epithermal, and fast neutrons for activation. As shown in Figure (3.1.), the IBR-2 provides wide neutron spectrum for activation.

Fig. (3.1.) neutron spectrum of the nuclear reactor

The neutron spectrum contains Thermal, epithermal, and fast neutrons. Thermal neutrons (90-95% of the total flux) are low energy neutrons (below 0.5 eV). The energy spectrum of thermal neutrons at room temperature is described well by Maxwell Boltzman with a mean energy 0.025 eV.

Epithermal neutrons (2% of the total flux)have energies from 0.5 eV to 0.5 MeV. A cadmium foil of 1mm thick can absorb thermal neutrons and allow only epithermal and fast neutrons above 0.5 eVto pass (energies above the cut-off of Cd can pass). Both thermal and epithermal neutrons undergo (n,γ) reactions with target nuclei. NAA technique employs only epithermal neutrons to

induce (n,γ) reactions by irradiating the samples being analyzed inside either cadmium shield is called epithermal neutron activation analysis (ENAA). ENAA is the used here in REGATA setup (FLNP, JINR).Fast Neutrons (5% of the total flux) are neurons of energy above 0.5 MeV. Fast neutrons contribute very little in (n,γ) reactions. But instead they undergo other reactions like (n,n) and (n,p). NAA technique that employ fast neutrons releasing nuclear particles is called Fast Neutron Activation Analysis (FNAA).

3.1.2. The Experimental setup for INAA (REGATA):

The Experimental setup Consists of four irradiation channels, the pneumatic transport system (PTS) which transports containers by compressed air (at 3-6 atm. pressure), and four gamma detectors. Ch1 and Ch2 are connected to the pneumatic system and cooled by air. Ch3 and ch4 are cooled by water so, their temperature is less than ch1 and ch2. Ch1 is coated by Cadmium to prevent thermal neutrons and allow only epithermal and fast neutrons

Fig.(3.2.) The REGATA setup : Ch1-Ch4 -irradiation channels, S- intermediate storage, DCVdirectional control valves, L-loading unit, U- unloading unit, SU- separate unit, SM- storage magazine, R- repacking unit, D- HPGe detector, AA- amplitude analyzer, CB- control board PTS has loading (L) and unloading (U) units to load and to extract containers from the system. To provide safety, the unloading unit is placed into a glove box. All devices of the pneumatic system are equipped with photosensors and end-switches to indicate the container position in the system and to correct operation of all mechanisms.

3.2. Moss Sampling and Sample Preparation:

3.2.1. Passive biomonitoring:

Samples are collected from the site of study then cleaned from soil and only green parts are taken then washed and dried in the laboratory. The moss samples are prepared to be sent to the reactor for irradiation. From each sampling site, 2 samples were made into bills and put in polyethylene bag for short lived measurements and in Aluminum cups for long lived isotopes and then labeled with a number. Now, the samples are ready for irradiation.

3.2.2. Active biomonitoring:

Moss samples should be collected from non-polluted place and should be at least 300 meters away from the nearest high way or industrial settlement and at least 100 meters away from any road or single house. At each sampling site 5 to 10 samples should be taken. Theses collected samples are taken to the laboratory and the green parts of the plant are separated and carefully cleaned. These parts are washed with distilled water and left to be airdried.

Some grams of moss should be packed in nylon mesh bags (fig.3.3)of fixed dimensions to be exposed to the atmosphere. Some bags are kept in the laboratory to be irradiated and analyzed to determine initial concentrations of elements in our sample and be used to determine the relative accumulation factor.

Fig. (3.3.) Dry Moss bag

4. Irradiation and sample analysis

4.1. Sample preparation for irradiation:

First, we have some unexposed moss samples that are used as references to determine only the

elements coming from atmospheric deposition. It will enable us to determine the Relative Accumulation Factor (RAF). After being exposed to the atmosphere, moss bags are collected and taken to the chemistry laboratory to be mainly homogenized and dried in oven at 40°Cand then about 3 grams of treated moss are made into a bill, weighted with and without the cover and the weight is recorded on the computer. The bill is wrapped by polyethylene bag in case of short-lived measurements and in Aluminum cup in case of long lived measurements.

Fig.(4.1)samples ready for irradiation

4.2. Irradiation atIBR-2 FLNP, JINR:

The wrapped bills are put in capsules (Transport containers) that will be sent by the pneumatic transport system to the reactor core for irradiation. Pneumatic transport system (PTS) which tubes are about 50–60 m long take 3-20 s to deliver the capsules to the reactor core. Transport containers of polyethylene and aluminum are used to deliver samples to the irradiation position and back. Polyethylene transport capsules are used in case of short lived measurements, while aluminum capsules are used for long lived measurements. A total of3 or 4 samples are put together in the same capsule to be irradiated simultaneously. Loading and unloading of capsules are done automatically.

For long-lived measurements, Channel Ch1 is used for determination of long-lived isotopes. Samples are irradiated for 3–5 days, repacked, and measured two times after delay for 4 and 15-20 1.5 10 days. The measurement time varies from to h. for short-lived isotopes (Mg, Al, Cl, Ca, V, Mn, I), Ch2 is used for the determination. Samples are irradiated for 3 min and measured two times for 5–8 min after three to five delays and for 20 min after 20 min delay. To handle highly active samples, the REGATA PTS is equipped with three hot chambers, one of which is connected through the lock with the unit for unloading of irradiated samples. Elements with a short (seconds) half-life are determined by cyclic NAA with the possibility of automatic transportation of the irradiated sample to the detector through a pneumatic transport system.

If the sample after irradiation is too hot, we can remotely control it through lead shielded glass

Fig.(4.2.) The Control room in the irradiation unit

4.3. Analysis using Genie2K:

4.3.1. Spectrum from Genie 2k

Fig. (4.1. A) Screenshot of the Spectrum

Fig. (4.1. B) The spectrum data plot

4.3.2. Calibration:

Energy calibration:

Fig. (4.2. A) Energy calibration

Efficiency calibration curve :

Fig. (4.2. B) Efficiency calibration

4.3.3. Analyzing The Spectrum:

***** G A M M A S P E C T R U M A N A L Y S I S *****

Filename: C:\GENIE2K\CAMFILES\Test\LLI-1\7105278.cnf

Report Generated On	: 05/11/2017 06:02:59 .					
Sample Title Sample Description Sample Identification Sample Type Sample Geometry	: 2710-4 : Vergel_K.N. : s-2710-03-29 : LLI-1 : 5					
Peak Locate Threshold Peak Locate Range (in channels) Peak Area Range (in channels) Identification Energy Tolerance	: 3.00 : 150 - 8000 : 150 - 8000 : 2.000 kev					
Sample Size	: 8.210E-002 gram					
Sample Taken On Acquisition Started	ص 19/05/2017 11:22:00 : 24/05/2017 02:26:47 ,					
Live Time Real Time	: 1800.0 seconds : 2054.4 seconds					
Dead Time	: 12.38 %					
Energy Calibration Used Done On : 16/05/2017 Efficiency Calibration Used Done On : 05/10/2016 Efficiency ID : D7-H5						
<pre>#Interference Corrected Activity</pre>	Report 05/11/2017 06:02:59, Page 2					

A. Peak Locate

In this section we choose the taken part from the whole spectrum by adjusting Start channel and stop channel and it will calculate all peaks between the 2 channels.

🔨 Peak Locate Unidentified 2nd Diff. Setup							
Search Region Start channel: [150	Stop channel: 8000						
Significance threshold: 2.00							
Tolerance: 1.00 keV © Energy C FWHM	Add to existing results						
Cancel Help	Execute						

The output report:

```
*****
                                                *****
           PEAK LOCATE REPORT
********
   Detector Name: D7
   Sample Title: 2710-4
          Peak Locate Performed on: 05/11/2017 10:31:33 a
          Peak Locate From Channel: 150
          Peak Locate To Channel: 8000
Peak Search Sensitivity: 2.00
   Peak Centroid
               Centroid
                        Energy
                                  Peak
        Channel Uncertainty (keV) Significance
   No.
         153.62
                  0.1144
                          61.26
                                  47.08
    1
                0.2838
                         67.77
                                 11.53
         169.93
    2
    3
         174.56
                 0.1294
                          69.62
                                  33.15
                          72.04
    4
         180.61
                 0.1123
                                  48.47
```

B. Peak area

The area under the peak

🔍 Sum / Non-Linear LSQ Fit Setup	
Peak Area Region Start channel: 150 Stop channel: 8000	 95% Critical level test Use fixed FWHM Use fixed tail parameter Fit singlets Director D01a
Continuum: 4 Channels Channels Channels Continuum function: Residual Search Perform Search Threshold: 4.00 Minimum separation (FWHM): 1.00	Province Province Reject zero area peaks Use DOECAP rules
ROI Limits Determination Max. Num. FWHMs between peaks: Max. Num. FWHMs for left limit: Q.00 Max. Num. FWHMs for right limit:	Generate Report

The output report :

***** PEAK ANALYSIS REPORT ***** ***** ************************* Detector Name: D7 Sample Title: 2710-4 Peak Analysis Performed on: 05/11/2017 10:36:43 Peak Analysis From Channel: 150 Peak Analysis To Channel: 8000 Peak ROI ROI Peak Energy FWHM Net Peak Net Area Continuum (keV) Area No. start end centroid (keV) Uncert. Counts 149- 157 1.07 1.08E+005 544.29 8.35E+004 1 153.62 61.26 166- 241 M 2 170.07 67.83 0.98 6.48E+003 260.59 9.11E+004

 m
 3
 166 241
 174.42
 69.57
 0.99
 3.19E+004
 1275.23
 1.05E+005

 m
 4
 166 241
 180.56
 72.02
 0.99
 3.71E+004
 1481.33
 1.10E+005

 m
 5
 166 241
 188.40
 75.15
 1.00
 4.47E+003
 180.98
 1.15E+005

 166- 241

C. Interactive peak fit

This choice allows us to edit our peaks by adding or deleting some row that we suspect

🔨 Filter Setup	
Peak Region Filters ✓ No Filters Energy: 0 Nuclide: Chi-square: 0 FW Ratio: 0 Multiplets	Plot Scaling: Linear Show matching ROIs in MCA View Library: STDLIB
Cancel Help	Execute

- D. Nuclide Identification :
- NID Nuclide Identification

🔼 Tentative NII	D Analysis Setup	x						
Tolerance:	1.00 keV @ Energy C FWHM							
NID Library:	C:\GENIE2K\CAMFILES\dji1.NLB Select	1						
	Use Stored Library							
	Generate Report							
	Cancel Help Execut	æ						

Nuclide identification report:

<pre>***** NUCLLIDE IDENTIFICATION REPORT ***** Sample Title: 2710-4 Nuclide Library Used: C:\CENTE2K\CAMFILES\djil.NLB </pre>	* * * * * * * * * * * * * * * * * * * *								
Sample Title: 2710-4 Nuclide Library Used: C:\GENIE2K\CAMFILE5\djil.NLB [**** N U	JCLID	E IDEN	TIFI	CATION	REPORT *****			
Sample Trife: 2710-4 Nuclide Library Used: C:\GENHE2K\CAMFILES\djil.NLB Nume Confidence (keV) (%) Activity Activity NA-24 0.705 1368.55* 100.00 3.41127E+002 6.87465E+000 2754.05* 99.94 2.97689E+002 1.45824E+001 K-42 0.593 312.35* 0.35 1.11527E+005 8.02971E+003 MN-54 0.996 834.83* 99.98 1.52104E+001 3.76071E+001 MN-54 0.996 834.83* 99.98 1.52104E+001 3.76071E+001 MN-54 0.996 834.83* 99.98 1.52104E+001 1.63381E+001 1099.25* 6.50 4.63519E+000 1.63381E+001 1.63381E+001 1291.60* 4.320 4.74975E+001 1.7194E+001 ZN-65 1.000 115.55* 5.07 2.49012E+002 3.974E+003 GA-72 0.315 336.63* 94.77 1.78659E+001 1.21235E+000 GA-72 0.315 356.63*									
Nuclide Id Energy Yield Activity Activity Name Confidence (keV) (%) (uci/gram) Uncertainty NA-24 0.705 1368.55* 100.00 3.41127E+002 6.87465E+000 K-42 0.593 312.35* 0.35 1.11527E+002 6.87465E+001 MN-54 0.996 834.83* 99.98 1.52104E+001 3.76071E+001 MN-54 0.996 834.83* 0.27 1.51341E+003 6.58406E+001 199.25* 56.50 4.63519E+000 1.63381E-001 1.03917E+001 1099.25* 56.50 4.63519E+000 1.63381E-001 1291.60* @ 43.20 4.74975E+000 1.77194E-001 ZN-65 1.000 115.55* 50.70 2.49012E+002 3.94141E+000 ZN-65m 0.670 438.63* 94.77 1.78659E+001 1.21235E+000 GA-72 0.315 336.63* 9.0 1.15430E+004 7.17158E+002 899.42 2* 6.079 <td< td=""><td>Sample</td><td>e litle: do Library</td><td>2/10- Usod: C:\C</td><td></td><td>METLES diil NU</td><td>e 1</td></td<>	Sample	e litle: do Library	2/10- Usod: C:\C		METLES diil NU	e 1			
Nuclide Id Energy Yield Activity Activity Name Confidence (keV) (%) Activity Activity NA-24 0.705 1368.55* 100.00 3.41127E+002 6.87465E+000 K-42 0.593 312.35* @ 0.35 1.11527E+005 8.02971E+003 MN-54 0.996 834.83* 99.98 1.52104E+001 3.76071E-001 MN-54 0.996 834.83* 99.98 1.52104E+001 3.76071E-001 MN-54 0.996 834.83* 99.98 1.51341E+003 6.58406E+001 1099.25* 56.50 4.63519E+000 1.63381E-001 1291.60* 1291.60* @ 43.20 4.74975E+000 1.63381E-001 ZN-65 1.000 1115.55* 50.70 2.49012E+002 3.94141E+000 ZN-65 1.000 1115.55* 50.70 2.49012E+002 3.97650E+001 GA-72 0.315 336.63* 9.4.77 1.78559E+001 1.41862E+000 84.25 @ 9.63 5.65075E+001 1.41862E+000	NUCTIO	ue Libiaiy		TETED NI	ICI TOES	В			
Nuclide Name Id confidence Energy (kev) Yield (%) Activity (uCi/gram) Activity Uncertainty NA-24 0.705 1368.55* 100.00 3.41127E+002 6.87465E+000 K-42 0.593 312.35* 0.35 1.11527E+005 8.02971E+003 MN-54 0.996 834.83* 99.98 1.31142E+002 1.03917E+001 MN-54 0.996 834.83* 99.98 1.52104E+001 3.76071E-001 FE-59 0.881 142.65 0.102 192.35 6.308 334.80* 0.027 1.51341E+003 6.58406E+001 1.63381E-001 1099.25* 56.50 4.63519E+000 1.63381E-001 2.49012E+002 3.94141E+003 CN-65 1.000 1115.55* 50.70 2.49012E+002 3.94141E+003 660.95 6.564 GA-72 0.315 336.63* 0.11 3.10955E+001 1.41862E+000 844.03* 99.86 0.80 1.51430E+004 7.17158E+002 2.06121E+002 3.07650E+001 1.41862E+000 1.5594E+002	IDENTIFIED NOCLIDES								
Name Confidence (keV) (%) (uci/gram) Uncertainty NA-24 0.705 1368.55* 100.00 3.41127E+002 6.87465E+000 Z754.05* 99.94 2.97689E+002 1.45824E+001 K-42 0.593 3122.35* 0.35 1.11527E+005 8.02971E+003 MN-54 0.996 834.83* 99.98 1.52104E+001 3.76071E-001 FE-59 0.881 142.65 0.027 1.51341E+003 6.58406E+001 1099.25* 56.50 4.63519E+000 1.63381E-001 1291.60* 4.420 4.74975E+000 1.71194E-001 ZN-65 1.000 1115.55* 50.70 2.49012E+002 3.9414E+000 1.3144E+003 6.58406E+001 ZN-65 0.001 115.55* 50.70 2.49012E+002 3.9414E+000 3.41235E+000 ZN-65 0.001 115.55* 50.70 2.49012E+002 3.07650E+001 1.41862E+000 ZN-69m 0.670 438.63* 94.77 1.78659E+004 1.41862E+000 <t< td=""><td>Nuclide</td><td>Id</td><td>Energy</td><td>Yield</td><td>Activity</td><td>Activity</td></t<>	Nuclide	Id	Energy	Yield	Activity	Activity			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Name	Confidenc	e (kev)	(%)	(uCi/gram)	Uncertainty			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NA-24	0.705	1368.55*	100.00	3.41127E+002	6.87465E+000			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2754.05*	99.94	2.97689E+002	1.45824E+001			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K-42	0.593	312.35* @	0.35	1.11527E+005	8.02971E+003			
MN-54 0.996 834.83* 99.98 1.52104E+001 3.76071E-001 FE-59 0.881 142.65 @ 1.02 192.35 @ 3.08 334.80* @ 0.27 1.51341E+003 6.58406E+001 1099.25* 56.50 4.63519E+000 1.63381E-001 1291.60* @ 43.20 4.74975E+000 1.77194E-001 2N-65 1.000 1115.55* 50.70 2.49012E+002 3.94141E+000 GA-72 0.315 336.63* @ 0.11 3.10955E+004 1.34864E+003 600.95 @ 5.54 629.96 24.80 786.44 @ 3.20 810.20* @ 2.01 2.06121E+002 3.07650E+001 834.03* @ 95.63 5.65075E+001 1.41862E+000 894.25 @ 9.88 924.22* @ 0.14 1.15430E+004 7.17158E+002 999.86 @ 0.80 1050.69 @ 6.91 1215.15 @ 0.79 1230.86 @ 1.45 1260.10 @ 1.13 1276.76 @ 1.57 1464.00 @ 3.55 1596.68* @ 4.24 5.10971E+003 1.65994E+002 1861.09* @ 5.25 2.62409E+001 8.04150E+000 2007.70* 25.80 1.63953E+001 2.00884E+000 2007.70* 25.80 1.63953E+001 2.00884E+000 2007.70* 25.80 1.63953E+001 4.43675E+000 2507.79* @ 12.78 1.66574E+001 4.43675E+000 565.23* @ 1.20 1.09421E+004 8.54300E+002 571.50* @ 0.14 1.62524E+003 1.4532E+002 657.05* @ 0.14 1.62524E+003 1.5430E+002 571.50* @ 0.14 1.62524E+003 1.54375E+001 565.23* @ 1.20 1.09421E+004 8.54300E+002 571.50* @ 0.14 1.62524E+003 1.505386E+001 1216.08* @ 3.42 1.3575E+003 1.52447E+002 6657.05* @ 0.14 1.2236E+003 1.52447E+002 6657.05* @ 0.14 1.2236E+003 1.52447E+002 571.50* @ 0.14 1.62524E+003 1.50538E+001 1228.52* @ 1.22 1.35284E+003 9.83620E+001 1212.92* @ 1.44 1.22369E+003 1.52447E+002 571.50* @ 0.12 1.5375E+003 1.52447E+002 571.50* @ 0.14 1.62524E+003 1.08022E+002 6657.05* @ 6.20 1.29428E+003 1.08022E+002 6657.05* @ 0.14 1.62524E+003 1.52447E+002 571.50* @ 0.14 1.62524E+003 1.52447E+002 571.50* @ 0.14 1.22652E+003 1.52447E+002 571.50* @ 0.14 1.22652E+00			1524.58*	18.80	1.31142E+002	1.03917E+001			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MN-54	0.996	834.83*	99.98	1.52104E+001	3./60/1E-001			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FE-59	0.881	142.65 @	1.02					
$ \begin{array}{c} 334,800^{\circ} (e = 0.27 + 1.3134\pm003 + 0.36406\pm001 \\ 1099.25^{\circ} = 56.50 + 4.63519\pm000 + 1.63381\pm-001 \\ 1291.60^{\circ} (e = 43.20 + 4.74975\pm000 + 1.77194\pm-001 \\ 1291.60^{\circ} (e = 43.20 + 2.49012\pm002 + 3.94141\pm000 \\ 2N-69m + 0.670 + 438.63^{\circ} - 94.77 + 1.78659\pm001 + 1.21235\pm000 \\ 6A-72 + 0.315 + 36.63^{\circ} (e = 0.11 + 3.10955\pm004 + 1.34864\pm003 \\ 600.95 + 0.24 + 80 \\ 786.44 + 0.320 \\ 810.20^{\circ} (e = 2.01 + 2.06121\pm002 + 3.07650\pm001 \\ 834.03^{\circ} (e = 95.63 + 5.65075\pm001 + 1.41862\pm000 \\ 894.25 + 0.988 \\ 924.22^{\circ} (e = 0.14 + 1.15430\pm004 + 7.17158\pm002 \\ 1050.69 + 0.69 \\ 1215.15 + 0.79 \\ 1230.86 + 0.42 \\ 1225.15 + 0.79 \\ 1230.86 + 0.45 \\ 1260.10 + 0.13 \\ 1276.76 + 0.13 \\ 1276.76 + 0.13 \\ 1276.77 + 0.894 \\ 559.10^{\circ} + 45.00 \\ 2507.79^{\circ} (e + 1.27 + 1.66574\pm001 + 2.00884\pm000 \\ 2507.79^{\circ} (e + 1.27 + 1.66574\pm001 + 2.00884\pm000 \\ 2507.79^{\circ} (e + 1.27 + 1.66574\pm001 + 4.3675\pm000 \\ 563.23^{\circ} (e + 1.20 + 1.09421\pm004 + 8.54300\pm002 \\ 571.50^{\circ} (e + 0.21 + 1.66574\pm003 + 1.40532\pm002 \\ 665.34^{\circ} (e + 0.24 + 1.22369\pm003 + 1.63978\pm002 \\ 1215.92^{\circ} (e + 0.24 + 1.22369\pm003 + 1.63978\pm002 \\ 1212.92^{\circ} (e + 0.44 + 1.22369\pm003 + 1.63978\pm002 \\ 1216.08^{\circ} (e + 3.42 + 1.35284\pm03 + 9.83620\pm001 \\ 1228.52^{\circ} (e + 1.22 + 1.18229\pm003 + 1.09279\pm002 \\ 1228.52^{\circ} (e + 1.22 + 1.18229\pm003 + 1.09279\pm002 \\ 1228.52^{\circ} (e + 1.22 + 1.18229\pm003 + 1.09279\pm002 \\ 1228.52^{\circ} (e + 1.22 + 1.18229\pm003 + 1.09279\pm002 \\ 1228.52^{\circ} (e + 1.22 + 1.18229\pm003 + 1.09279\pm002 \\ 1228.52^{\circ} (e + 1.22 + 1.18229\pm003 + 1.09279\pm002 \\ 1228.52^{\circ} (e + 1.22 + 1.18229\pm003 + 1.09279\pm002 \\ 1228.52^{\circ} (e + 1.22 + 1.18229\pm003 + 1.09279\pm002 \\ 1228.52^{\circ} (e + 1.22 + 1.18229\pm003 + 1.09279\pm002 \\ 1228.52^{\circ} (e + 1.22 + 1.18229\pm003 + 1.09279\pm002 \\ 1228.52^{\circ} (e + 1.22 + 1.18229\pm003 + 1.09279\pm002 \\ 1228.52^{\circ} (e + 1.22 + 1.18229\pm003 + 1.09279\pm002 \\ 1228.52^{\circ} (e + 1.22 + 1.18229\pm003 + 1.09279\pm002 \\ 1228.52^{\circ} (e + 1.22 + 1.5284\pm03 + 1.09279\pm002 \\ 1228.52^{\circ} (e + 1.22 + 1.5284\pm03 + 1.09279\pm002 \\ 1228.52^{\circ} (e + 1.22 + 1.5284\pm03 + 1.09279\pm02 \\ 1228.52^{\circ} (e + 1.22 + 1$			192.33 @	3.08	1 512/15:002	6 584065-001			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1000 25*	56 50	4 63510E±000	1 63381E_001			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1291 60* @	43 20	4 74975E+000	1 771946-001			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ZN-65	1,000	1115.55*	50.70	2.49012E+002	3,94141F+000			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ZN-69m	0.670	438.63*	94.77	1.78659E+001	1.21235E+000			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GA-72	0.315	336.63* @	0.11	3.10955E+004	1.34864E+003			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			600.95 @	5.54					
$A5-76 0.894 0.95 \\ A5-76 0.894 \\ A5-76$			629.96	24.80					
$AS-76 0.894 Be = 82 \qquad 0.935 0.14 \qquad 2.06121E+002 3.07650E+001 \\ 834.03* @ 95.63 \\ 995.63 \\ 5.65075E+001 1.41862E+000 \\ 5.65075E+001 1.41862E+002 \\ 999.86 & 0.80 \\ 1050.69 & 6.91 \\ 1215.15 & 0.79 \\ 1230.86 & 1.45 \\ 1260.10 & 1.13 \\ 1276.76 & 1.57 \\ 1464.00 & 3.55 \\ 1596.68* & 4.24 \\ 5.10971E+003 1.65994E+002 \\ 1201.70* 25.80 1.63953E+001 \\ 2.00884E+000 \\ 2507.79* & 12.78 1.66574E+001 \\ 4.43675E+000 \\ 2507.79* & 12.78 1.66574E+001 \\ 4.43675E+000 \\ 559.10* 45.00 1.02271E+003 \\ 5.05386E+001 \\ 563.23* & 0.14 1.62524E+003 1.40532E+002 \\ 657.05* & 0.14 1.62524E+003 1.08022E+002 \\ 655.34* & 0.36 1.33755E+003 1.52447E+002 \\ 665.34* & 0.36 1.33755E+003 1.52447E+002 \\ 740.10* & 0.12 1.63757E+003 1.63978E+002 \\ 1212.92* & 1.44 1.22369E+003 9.65709E+001 \\ 1216.08* & 3.42 1.35284E+003 9.83620E+001 \\ 1228.52* & 0.126 1.22 \\ 1.18229E+003 1.09279E+002 \\ 1228.52* & 0.126 1.22 \\ 1.18229E+003 1.09279E+002 \\ 1228.52* & 0.126 1.22 \\ 1.18229E+003 1.09279E+002 \\ 1.09279E+002 1.09279E+002 \\ 1228.52* & 0.126 1.22 \\ 1.18229E+003 1.09279E+002 \\ 1228.52* & 0.126 1.22 \\ 1.18229E+003 1.09279E+002 \\ 1.09279E+002 1.09279E+002 \\ 1.09279E+002 $			786.44 @	3.20					
$AS-76 0.894 Signature{Signatur{Signature{Signature{Signature{Signatur$			810.20* @	2.01	2.06121E+002	3.07650E+001			
AS-76 0.894 55 0 0.4 1.15430E+004 7.17158E+002 999.86 0 0.80 1050.69 0 6.91 1215.15 0 0.79 1230.86 0 1.45 1260.10 0 1.13 1276.76 0 1.57 1464.00 0 3.55 1596.68* 0 4.24 5.10971E+003 1.65994E+002 1861.09* 0 5.25 2.62409E+001 8.04150E+000 2201.70* 25.80 1.63953E+001 2.00884E+000 2507.79* 0 12.78 1.66574E+001 4.43675E+000 2507.79* 0 12.78 1.66574E+001 4.43675E+000 2507.79* 0 1.2271E+003 5.05386E+001 563.23* 0 1.02271E+003 5.05386E+001 563.23* 0 0.14 1.62524E+003 1.40532E+002 571.50* 0 0.14 1.62524E+003 1.40532E+002 657.05* 0 6.20 1.29428E+003 1.52447E+002 655.34* 0 0.36 1.33755E+003 1.52447E+002 1212.92* 0 1.44 1.22369E+003 9.65709E+001 1228.52* 0 1.22 1.18229E+003 9.83620E+001 1228.52* 0 1.20 1.62			834.03* @	95.63	5.65075E+001	1.41862E+000			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			894.25 @	9.88	4 454305 004	7 47450- 000			
AS-76 0.894 599.80 @ 0.80 1050.69 @ 6.91 1215.15 @ 0.79 1230.86 @ 1.45 1260.10 @ 1.13 1276.76 @ 1.57 1464.00 @ 3.55 1596.68* @ 4.24 5.10971E+003 1.65994E+002 1861.09* @ 5.25 2.62409E+001 8.04150E+000 2201.70* 25.80 1.63953E+001 2.00884E+000 2507.79* @ 12.78 1.66574E+001 4.43675E+000 2507.79* @ 12.78 1.66574E+001 4.43675E+000 563.23* @ 1.20 1.09271E+003 5.05386E+001 563.23* @ 1.20 1.09421E+004 8.54300E+002 571.50* @ 0.14 1.62524E+003 1.40532E+002 657.05* @ 6.20 1.29428E+003 1.08022E+002 665.34* @ 0.36 1.33755E+003 1.52447E+002 740.10* @ 0.12 1.63757E+003 1.63978E+002 1212.92* @ 1.44 1.22369E+003 9.65709E+001 1216.08* @ 3.42 1.35284E+003 9.83620E+001 1228.52* @ 1.22 1.18229E+003 1.09279E+002			924.22× @	0.14	1.15430E+004	7.1/158E+002			
AS-76 0.894 599.10 AS-76			999.86 @	0.80					
A5-76 0.894 A5-76 0.894 A5-78 0.1278 A5-78 0.1084 A5-78 0.120 A5-78 0.120			1015 15 @	0.91					
AS-76 0.894 AS-76 0.894 AS			1220.86 @	1 45					
AS-76 0.894 AS-76 0.14 1.62524E+003 1.08022E+002 AS-76 0.12 1.6375E+003 1.52447E+002 AS-76 0.12 1.6375E+003 1.63978E+002 AS-709E+001 1.228.52* @ 1.44 1.22369E+003 9.83620E+001 1.228.52* @ 1.42 1.35284E+003 9.83620E+001 1.228.52* @ 1.42 1.35284E+003 9.83620E+001 1.228.52* @ 1.44 1.2239E+003 1.09279E+002 1.228.52* @ 1.44 1.2239E+003 1.09279E+002 1.228.52* @ 1.22 1.18229E+003 1.09279E+002 1.228.52* @ 1.22 1.22 1.228.52* @ 1.22 1.228.52* @ 1.22 1.228.52* @ 1.22 1.228.52* @ 1.22 1.228.52* @ 1.22 1.			1260.10 @	1 13					
A5-76 0.894 559.10* 45.00 1.0271E+003 1.65994E+002 563.23* @ 1.20 1.0971E+003 1.65994E+000 201.70* 25.80 1.63953E+001 2.00884E+000 2507.79* @ 12.78 1.66574E+001 4.43675E+000 563.23* @ 1.20 1.09421E+004 8.54300E+002 571.50* @ 0.14 1.62524E+003 1.40532E+002 657.05* @ 6.20 1.29428E+003 1.08022E+002 665.34* @ 0.36 1.33755E+003 1.52447E+002 665.34* @ 0.12 1.63757E+003 1.63978E+002 740.10* @ 0.12 1.63757E+003 1.63978E+002 1212.92* @ 1.44 1.22369E+003 9.65709E+001 1216.08* @ 3.42 1.35284E+003 9.83620E+001 1228.52* @ 1.22 1.18229E+003 1.09279E+002			1276 76 @	1 57					
A5-76 0.894 599.10* 45.00 1.0271E+003 1.65994E+002 2201.70* 25.80 1.63953E+001 2.00884E+000 2507.79* @ 12.78 1.66574E+001 4.43675E+000 2507.79* @ 1.278 1.66574E+001 4.43675E+000 563.23* @ 1.20 1.09421E+004 8.54300E+002 571.50* @ 0.14 1.62524E+003 1.40532E+002 657.05* @ 6.20 1.29428E+003 1.08022E+002 665.34* @ 0.36 1.33755E+003 1.52447E+002 665.34* @ 0.12 1.63757E+003 1.52447E+002 740.10* @ 0.12 1.63757E+003 1.63978E+002 1212.92* @ 1.44 1.22369E+003 9.65709E+001 1216.08* @ 3.42 1.35284E+003 9.83620E+001 1228.52* @ 1.22 1.18229E+003 1.09279E+002			1464.00 @	3.55					
AS-76 0.894 AS-76 0.894 AS-78 0.14 AS-76 0.894 AS-76 0.14 AS-76 0.12 AS-71.50* 0 0.14 AS-71.50* 0 0.14 AS-72428+003 AS-752403			1596.68* @	4.24	5.10971E+003	1.65994E+002			
AS-76 0.894 AS-76 0.14 AS-78 0.14 AS-78 0.14 AS-71.50* 0.14 AS-724E+003 AS-75E+003 AS-75E+003 AS-75E+003 AS-75E+003 AS-75E+003 AS-75E+003 AS-75E+003 AS-75E+003 AS-75E+003 AS-75E+003 AS-75E+003 AS-75E+003 AS-75E+003 AS-75E+003 AS-76E+			1861.09* @	5.25	2.62409E+001	8.04150E+000			
AS-76 0.894 AS-76 0.894 AS-76 0.894 2507.79* @ 12.78 1.66574E+001 4.43675E+000 559.10* 45.00 1.02271E+003 5.05386E+001 563.23* @ 1.20 1.09421E+004 8.54300E+002 571.50* @ 0.14 1.62524E+003 1.40532E+002 657.05* @ 6.20 1.29428E+003 1.08022E+002 665.34* @ 0.36 1.33755E+003 1.52447E+002 740.10* @ 0.12 1.63757E+003 1.63978E+002 1212.92* @ 1.44 1.22369E+003 9.65709E+001 1216.08* @ 3.42 1.35284E+003 9.83620E+001 1228.52* @ 1.22 1.18229E+003 1.09279E+002 137.41 @ 0.16			2201.70*	25.80	1.63953E+001	2.00884E+000			
AS-76 0.894 559.10* 45.00 1.02271E+003 5.05386E+001 563.23* @ 1.20 1.09421E+004 8.54300E+002 571.50* @ 0.14 1.62524E+003 1.40532E+002 657.05* @ 6.20 1.29428E+003 1.08022E+002 665.34* @ 0.36 1.33755E+003 1.52447E+002 740.10* @ 0.12 1.63757E+003 1.63978E+002 1212.92* @ 1.44 1.22369E+003 9.65709E+001 1216.08* @ 3.42 1.35284E+003 9.83620E+001 1228.52* @ 1.22 1.18229E+003 1.09279E+002 BP=82 0.935 137 41 @ 0.16			2507.79* @	12.78	1.66574E+001	4.43675E+000			
563.23* @ 1.20 1.09421E+004 8.54300E+002 571.50* @ 0.14 1.62524E+003 1.40532E+002 657.05* @ 6.20 1.29428E+003 1.08022E+002 665.34* @ 0.36 1.33755E+003 1.52447E+002 740.10* @ 0.12 1.63757E+003 1.63978E+002 1212.92* @ 1.44 1.22369E+003 9.65709E+001 1216.08* @ 3.42 1.35284E+003 9.83620E+001 1228.52* @ 1.22 1.18229E+003 1.09279E+002 137.41 @ 0.16	AS-76	0.894	559.10*	45.00	1.02271E+003	5.05386E+001			
571.50* @ 0.14 1.62524E+003 1.40532E+002 657.05* @ 6.20 1.29428E+003 1.08022E+002 665.34* @ 0.36 1.33755E+003 1.52447E+002 740.10* @ 0.12 1.63757E+003 1.63978E+002 1212.92* @ 1.44 1.22369E+003 9.65709E+001 1216.08* @ 3.42 1.35284E+003 9.83620E+001 1228.52* @ 1.22 1.18229E+003 1.09279E+002			563.23* @	1.20	1.09421E+004	8.54300E+002			
657.05* @ 6.20 1.29428E+003 1.08022E+002 665.34* @ 0.36 1.33755E+003 1.52447E+002 740.10* @ 0.12 1.63757E+003 1.63978E+002 1212.92* @ 1.44 1.22369E+003 9.65709E+001 1216.08* @ 3.42 1.35284E+003 9.83620E+001 1228.52* @ 1.22 1.18229E+003 1.09279E+002 137.41 @ 0.16			571.50* @	0.14	1.62524E+003	1.40532E+002			
665.34* @ 0.36 1.33/55E+003 1.5244/E+002 740.10* @ 0.12 1.63757E+003 1.63978E+002 1212.92* @ 1.44 1.22369E+003 9.65709E+001 1216.08* @ 3.42 1.35284E+003 9.83620E+001 1228.52* @ 1.22 1.18229E+003 1.09279E+002 137.41 @ 0.16			657.05* @	6.20	1.29428E+003	1.08022E+002			
140.10° @ 0.12 1.03/3/E+003 1.039/8E+002 1212.92* @ 1.44 1.22369E+003 9.65709E+001 1216.08* @ 3.42 1.35284E+003 9.83620E+001 1228.52* @ 1.22 1.18229E+003 1.09279E+002 137.41 @ 0.16			005.34× @	0.36	1.33/35E+003	1.5244/E+002			
1212.92* @ 1.44 1.22509E+005 9.65709E+001 1216.08* @ 3.42 1.35284E+003 9.83620E+001 1228.52* @ 1.22 1.18229E+003 1.09279E+002 137.41 @ 0.16			740.10° @	1.44	1,03/3/E+003	1.039/0E+002 0.65700F+001			
1228.52* @ 1.22 1.18229E+003 1.09279E+002			1216 08* @	2 42	1 25284E±003	9.83620E±001			
RP_82 0.035 137.41 @ 0.16			1228 52* @	1 22	1 182296+003	1 09279E+002			
	BR-82	0.935	137.41 @	0.16	1,102236+003	2.0527521002			

NP-239 0.973 106.12* @ 22.90 6.63490E+001 6.65906E+000 117.00* @ 10.50 2.83516E+001 2.12167E+000 209.75* @ 3.27 6.71444E+001 5.38067E+000 228.18* 10.80 6.60469E+001 4.16511E+000 277.60* 14.20 6.30864E+001 1.77386E+000 315.88* @ 1.60 6.34192E+001 4.64530E+000 334.31* @ 2.04 7.11063E+001 6.48348E+000
* = Energy line found in the spectrum. @ = Energy line not used for Weighted Mean Activity Energy Tolerance : 2.000 kev Nuclide confidence index threshold = 0.30 Errors quoted at 1.000 sigma

Interference Corrected report :

***** INTERFERENCE CORRECTED REPORT *****

			Nuclide		Wt mean		Wt mean	
	Nuclide		Id		Activity		Activity	
	Name	CO	onfidence		(uCi/graḿ)		Uncertainty	
							2	
	NA-24		0.705		3.243526E+002		6.235832E+000	
	K-42	@.	0.593		1.311415E+002		1.039175E+001	
	MN-54		0.996		1.079717E+001		6.583750E-001	
	FE-59	@.	0.881		4.635193E+000		1.633793E-001	
	ZN-65		1.000		2.486351E+002		3.888069E+000	
	ZN-69m		0.670		1.786592E+001		1.212345E+000	
	GA-72	@.	0.315		1.639529E+001		2.008845E+000	
	AS-76	@.	0.894		1.022714E+003		2.208251E+001	
	BR-82	@.	0.935		5.860860E+000		1.044882E-001	
	RB-86		0.992		2.771378E+001		3.249591E+000	
	RU-97	@.	0.818		1.834947E-002		2.354568E-002	
	MO-99	@.	0.719		1.250125E+000		1.184604E-001	
x	RU-103		0.909					
	CD-115	@	0.973		1.079814E+000		5.842355E-002	
	SN-117m	@.	0.899		3.933202E-001		1.951052E-002	
	SB-122	@	0.975		3.665697E+001		8.275475E-001	
	SB-124	@.	0.975		3.491282E+001		8.618782E-001	
	BA-131	@.	0.963		2.341468E+000		5.655027E-002	
	LA-140	@	0.953		5.526382E+000		1.343579E-001	
	SM-153	@.	0.914		3.337965E+001		8.435934E+000	
	TB-160	@.	0.636		3.534607E+000		1.681631E-001	
	W-187	@.	0.872		1.745961E+002		2.916051E+000	
х	IR-194		0.579					
х	HG-197m		0.630					
	AU-198		0.982		6.697566E+000		1.203591E-001	
	NP-239	@.	0.973		6.420144E+001		1.215707E+000	
							- ·	
	2 - Muc	lide	a ic nart	of	an undetermin	od	colution	

? = Nuclide is part of an undetermined solution X = Nuclide rejected by the interference analysis @ = Nuclide contains energy lines not used in Weighted Mean Activity

Errors quoted at 1.000 sigma

4.4. Statistical analysis :

As we put many samples in the same site, we have to obtain information about the site.First, all samples from each site are collected, analyzed, then concentrations of elements are determined. Then we calculate the Minimumdetectable concentration for each element, maximum, mean, median, and standard deviation (SD). Then RAF Factor for each element should be calculated.

RAF (Relative Accumulation Factor) : it's used to assess the accumulation level of each element in the sample.[RAF = $[C_{exposed} - C_{initial}] / C_{initial}]$ where $C_{exposed}$ is the concentration of element in the sample exposed to the atmosphere($C_{exposed}$: the concentration of the median of the concentrations of samples). $C_{initial}$ is the concentration of the element in the non polluted sample (sample with no exposure to the polluted atmosphere).

Now we have calculated the accumulation factor

if we want to test the sensitivity, MDC(Minimum Detectable Concentration) should be calculated [MDC = $X^*C_{initial} + 1.96^*$ SD* $C_{initial}$]Where (1.96 Suggesting that the initial values are normally distributed)

Conclusion and Future plans:

NAA is a super powerful nuclear technique that can be used to determine the elemental composition of material. Mosses are good accumulators and biomonitors for airborne elements. Therefore, using NAA to determine the elements accumulated in mosses is a powerful application for determining the level of atmospheric pollution.

Furthermore, NAA is widely used to analyze another biomonitors. it is used to measure the accumulated elements in different tree species as such as leaves that are exposed to air pollutants, accumulate the elements by two ways (roots and air). So, it is used as a biomonitor. When the nutrition coming from the soil is corrected, the atmospheric deposition in the leaves is known.

Acknowledgement:

Special thanks should be given to my research project supervisors Prof. Marina Frontasyeva for her constructive instruction and Dr. Wael Badawy for his professional guidance and support. I'm so grateful to my Supervisor in Egypt Prof. Hussein El Samman for recommending me to such a special program and supporting me always. Without his recommendation, it would be difficult to get such an opportunity.

I'd like to thank The Joint Institute for Nuclear Research(JINR) for giving me such an invaluable chance to participate in The Summer Student Program (SSP). This project would be impossible without the Support of JINR.

I'd like to thank the organizers of the SSP. Especially, Mrs. Elena Karpova for organizing and arranging for my trip and stay in Dubna.

I'd like to express my gratitude to the whole staff members of the laboratory of Neutron Activation Analysis.

References :

- Scientific Reviews: Radioanalytical Investigations at the IBR-2 Reactor in Dubna (<u>http://www.tandfonline.com/doi/abs/10.1080/10448630500454387</u>)
- 2- Moss Bag Preparation: A Low-Cost Technique in Monitoring Airborne Particulate and Toxic Elements (https://www.preprints.org/manuscript/201703.0064/v1)
- 3- GUIDELINES FOR THE USE OF NATIVE MOSSES, TRANSPLANTED MOSSES AND SOILS IN ASSESSINGORGANIC AND INORGANIC CONTAMINANT FALLOUTBook by (Roberto Michele Cenci)
- 4- The first survey of airborne trace elements at airport using moss bag technique (<u>https://link.springer.com/article/10.1007/s11356-017-9140-0</u>)
- 5- Moss bag biomonitoring: A methodological review (<u>http://linkinghub.elsevier.com/retrieve/pii/S0048969712008029</u>)
- 6- Monitoring of trace element atmospheric deposition using dry and wet moss bags: Accumulation capacity versus exposure time (www.sciencedirect.com/science/article/pii/S0304389409008917)
- 7- Urban background of air pollution evaluation through moss bag biomonitoring of trace elements in Botanical garden (www.sciencedirect.com/science/article/pii/S1618866716304435)
- Biomonitoring of Trace Element Air Pollution Using Mosses
 (http://www.aaqr.org/files/article/1360/2_AAQR-06-09-OA-0002_247-258.pdf)
- 9- Monitoring of trace element atmospheric deposition using dry and wet moss bags: Accumulation capacity versus exposure time (www.sciencedirect.com/science/article/pii/S0304389409008917)
- 10- encyclopedia of environmental analysis and remediation (www.wiley.com/WileyCDA/WileyTitle/productCd-0471117080.html)
- 11- Frontasyeva, M.V., *Neutron activation analysis in the life sciences*. Physics of Particles and Nuclei, 2011. 42(2): p. 332-378.