
JOINT INSTITUTE FOR NUCLEAR RESEARCH

Veksler and Baldin Laboratory of High Energy Physics

REPORT ON THE SUMMER STUDENT PROGRAM

Development of Machine Learning Approach to

Secondary Vertices Reconstruction at the BM@N

Experiment

Supervisors:

Oleg Rogachevskiy

Pavel Batyuk

Student:

Alexander Rogozin

Moscow Institute of Physics and Technology

Participation period:

July 2 – August 16

Dubna, 2017



1

Contents

1 Introduction 5

2 About BM@N 5

3 Machine Learning Basics 6

3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . 7

3.2 Quality Metrics . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . 13

4 Problem Statement 14

4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Quality Metrics . . . . . . . . . . . . . . . . . . . . . . . 16

5 K Neighbours Classifier 17

5.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . 17



2

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Gradient Boosted Trees 20

6.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . 20

6.1.1 Decision Trees . . . . . . . . . . . . . . . . . . . 20

6.1.2 Gradient boosting . . . . . . . . . . . . . . . . . . 21

6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . 22

6.2.2 Parameter tuning . . . . . . . . . . . . . . . . . . 23

7 Neural Network 26

7.1 Method overview . . . . . . . . . . . . . . . . . . . . . . 26

7.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.2.1 Simulated data . . . . . . . . . . . . . . . . . . . 28

7.2.2 Reconstructed data . . . . . . . . . . . . . . . . . 29

8 Conclusion 34

8.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.2 Possible continuation . . . . . . . . . . . . . . . . . . . . 35



3

9 Acknowledgements 35



4

Abstract

BM@N is a high energy physics experiment with a fixed tar-

get. Existing secondary vertex reconstruction process can be di-

vided into three parts: hit reconstruction, tracking and finding

secondary vertices from known tracks. The last step is performed

by exhaustive search through pairs of tracks. Each pair is propa-

gated in order to find a secondary vertex or to establish that the

pair is "uninteresting", which means it was not born by a particle

decay. In this work, machine learning was implemented to weed

out "uninteresing" pairs of tracks. Several datasets, algorithms

and feature sets have been explored.
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1 Introduction

When heavy ion hits the target, several new particles are produced. Start-

ing points of their tracks are called primary vertices. During the flight

through the detector, some particles may decay, and a point where decay

took place is called a secondary vertex. In order to find these vertices,

every pair of tracks in event is considered and tracks are propagated with

the usage of Kalman Filter.

Dropping out pairs of tracks which do not start at a secondary vertex

will decrease the amount of work for Kalman Filter. Moreover, some

events consist of dozens or even hundreds of tracks, and that is why this

preliminary analysis is beneficial.

Another implementation of machine learning is filtering noise on the in-

variant mass histogram. If this histogram included only track pairs which

refer to Λ0 decay, there would be a high narrow peak. However, some

uninteresting pairs are included in the histogram and the peak may not be

seen because of noise. That is why using machine learning algorithms to

filter the noise can increase signal to background ratio.

2 About BM@N

BM@N is an experiment with a fixed target which aims at studying ion

collisions at energies up to 4 GeV. The set-up includes 6 GEM-detectors,

however it is still under construction and in future will have 12 stations,
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which are orthogonal to 𝑍 axis (Fig.2). In order to establish particle’s

charge to mass ratio, curvature of its trajectory is needed. That is why

particles knocked out of target by ion collision fly into a magnetic field.

Note: magnetic field is not homogeneous. For this reason, tracks cannot

be approximated simply by circles. A field map is used and tracks are

propagated by Kalman filter.

Figure 1: BM@N structure

3 Machine Learning Basics

The most common problems in machine learning are classification, regres-

sion and clustering. Classification is refering an object to a particular class
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from a finite set, regression is reconstruction of a continuous mapping and

clustering is finding classes of similar objects.

We will stick to classification.

3.1 Problem statement

Suppose we have a set {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, where 𝑥 ∈ R𝑛, 𝑦 ∈ {𝐶1, ..., 𝐶𝑛}
(𝑦 ∈ R for regression problem). 𝑥 components are called features and 𝑦 is

called target. The aim is to reconstruct the mapping 𝑦 = 𝑓(𝑥) in the best

way (in a certain sense).

Note: not necessarily 𝑓(𝑥) ∈ {𝐶1, ..., 𝐶𝑛}.

Note: if we are given corresponding values for each sample, it is called

supervised learning. If not, unsupervised learning. Classification and re-

gression refer to supervised learning and clustering is an unsupervised

learning problem.

More strictly, a loss function 𝐿(𝑦, 𝑦) is introduced and a class of functions

𝑊 is fixed. The solution for the classification problem is

𝑓 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑓∈𝑊

𝑛∑︀
𝑖=1

𝐿(𝑦𝑖, 𝑓(𝑥𝑖))

However, this is a problem of functional minimization, and it is opaque

how to solve it numerically. That is when class 𝑊 begins to matter. For

example, if 𝑊 is a class of linear functions, it brings us to the following

problem:
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𝑚𝑖𝑛
𝑤1,...,𝑤𝑛∈R

𝑛∑︀
𝑖=1

𝐿(𝑦𝑖,
𝑛∑︀

𝑖=1

𝑤𝑗𝑥𝑗𝑖 )

Here 𝑤1, ..., 𝑤𝑛 are also called weights. This is minimization problem not

for a functional, but for a function of 𝑛 arguments 𝑤1, ..., 𝑤𝑛. It is possible

to solve it numerically.

3.2 Quality Metrics

Figure 2: Precision and Recall

Model performance can be esti-

mated with the usage of quality

metrics. We will consider qual-

ity metrics for a binary classifica-

tion problem, which means 𝑦 ∈
{−1, 1}. Elements of class −1 are

also called condition negative, el-

ements of class 1 - condition pos-

itive, elements of class −1 which

were classified by model correctly

- true negatives, elements of class

1 classified as class −1 - false neg-

atives, etc.

There are some common metrics:

𝑅𝑒𝑐𝑎𝑙𝑙 =

∑︀
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒∑︀

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑︀
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒∑︀

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∑︀
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑆𝑒𝑡

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =

∑︀
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒∑︀

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Quality metrics can describe model performance from different sides. For

example, if we have a set where 40% samples are of class −1 and 60%

are of class 1, then accuracy of 0.95 is a pretty good result. On the other

hand, let class 1 consist only of 1% of total set. Then accuracy of 0.99 can

be reached by simply classifying every sample as −1. In this case, high

accuracy score does not mean classification quality is good.

3.3 Loss Functions

As stated above, we are looking for mapping 𝑓 such as

𝑓 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑓∈𝑊

𝑛∑︀
𝑖=1

𝐿(𝑦𝑖, 𝑓(𝑥𝑖))

Figure 3: Loss Functions

The process of finding an optimal

𝑓 is called model training or learn-

ing. It is performed by some opti-

mization process.
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We introduce a function 𝐿(𝑓(𝑥), 𝑦) = 𝜑(𝑦𝑓(𝑥)). A natural choice for 𝜑

is a 0 − 1 indicator function: 𝜑(𝑦𝑓(𝑥)) = 1 iff 𝑦 and 𝑓(𝑥) are of one

sign. However, this function is not smooth and gradient-based optimiza-

tion methods cannot be implemented.

In order to make the problem solvable for gradient-based optimization

methods, smooth approximations of indicator function are implemented.

Typical loss functions are:

Hinge loss: 𝜑(𝑡) = 𝑚𝑎𝑥{0, 1 − 𝑡}, 𝐿(𝑓(𝑥), 𝑦) = 𝑚𝑎𝑥{0, 1 − 𝑦𝑓(𝑥)}

Logistic loss: 𝜑(𝑡) =
1

ln 2
ln(1 + 𝑒−𝑡), 𝐿(𝑓(𝑥), 𝑦) =

1

ln 2
ln(1 + 𝑒−𝑦𝑓(𝑥))

Note: loss function and quality metric are different. Quality metric is used

to evaluate model’s performance, but cannot be used for learning since it

is not smooth (if we consider most common metrics).

3.4 Overfitting

Consider our problem once again:

𝑚𝑖𝑛
𝑓∈𝑊

𝑛∑︀
𝑖=1

𝐿(𝑦𝑖, 𝑓(𝑥𝑖))

The wider class 𝑊 , the lower loss we can obtain. Wider class 𝑊 means

the model is more complex. However, complicated models may not gen-

eralize well. It can be shown by a following regression example.

Say we have a set of noised observations of scalar function values: {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1.

We will seek the optimal reconstruction mapping in the class of polynoms:
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𝑊𝑛 = {𝑓(𝑥) = 𝑎0 + 𝑎1𝑥... + 𝑎𝑛𝑥
𝑛} with a quadratic loss

𝐿(𝑦, 𝑦) =
1

𝑛

𝑛∑︀
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2. It is a least square method.

a) degree = 2, simple model b) degree = 8, complex model

Figure 4: Model complexity

Class 𝑊𝑛 becomes wider and model more complicated with the growth of

𝑛. More complex model does not catch the tendency and does not gener-

alize well, although it has lower mean squared error on the training set.

This effect is called overfitting. Informally, it means that model becomes

too sensitive to local patterns in data without catching the global trend.

More formally, training set can be thought of as a realization of a ran-

dom value and model is a function which takes this set as an argument.

Overfitting takes place because complicated models have high dispersion.

There are several ways to reduce overfitting. To decrease model’s disper-

sion, a training can be performed on a bigger set. Moreover, a special

technique called regularization can be implemented. We will consider the

last one in detail.

In the least square method we build a linear model over a set of features
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a) 𝛼 = 0 b) 𝛼 = 0.01

c) 𝛼 = 0.1 d) 𝛼 = 1.0

Figure 5: Regularization effect
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{1, 𝑥, 𝑥2, ..., 𝑥𝑛} with a square loss function 𝐿(𝑦, 𝑦) =
1

𝑛

𝑛∑︀
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2,

where 𝑦𝑖 =
𝑛∑︀

𝑗=0

𝑤𝑗𝑥𝑗𝑖 . The loss function can be rewritten as

𝐿(𝑦, 𝑤) =
1

𝑛

𝑛∑︀
𝑖=1

(𝑦𝑖 −
𝑛∑︀

𝑗=0

𝑤𝑗𝑥𝑗𝑖 )
2.

Taking a look at Fig.4b, one can notice that model has a high weight at

𝑥8. The idea of regularization is to forbid the model to have big weights.

This is achieved by modification of the loss function. A penalty is added

for each weight. Common modifications are:

L1 regularization, Lasso: 𝐿(𝑦, 𝑤) + 𝛼
𝑛∑︀

𝑖=1

|𝑤𝑗|

L2 regularization, Ridge: 𝐿̂(𝑦, 𝑤) = 𝐿(𝑦, 𝑤) + 𝛼
𝑛∑︀

𝑖=1

(𝑤𝑗)2

Hyperparameter 𝛼 is found empirically in most cases.

Regularization impact on model behavior is shown in Fig.5. Note that too

strong regularization leads to underfitting.

3.5 Model Evaluation

If model performance is evaluated on the training set, the quality may be

overestimated. That is why evaluation is performed on a different, test set.

However, if model parameters are tuned to gain a bigger score on test set,

it makes the model overfit to a particular dataset again. There are several

approaches to adequate model evaluation.
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1) Validation set. Data is divided into a train, validation and test sets.

Learning is performed on the train set, model parameters are tuned to gain

better performance on the validation set and final estimation is done on

the test set.

2) Cross validation. Data is divided into 𝑛 equal parts (splits, folds). Model

is trained on splits 1, 2, ..., 𝑛−1 and quality is estimated on the split 𝑛. Af-

ter that, model is trained on splits 1, 2, ..., 𝑛−2, 𝑛 and quality is estimated

on split 𝑛 − 1, etc. Finally, obtained 𝑛 scores are averaged. Moreover,

deviation of model score can be found, which allows to estimate model’s

dispersion.

4 Problem Statement

A binary classification problem is considered. A pair of tracks is assigned

to class 1 if it was born by a decay (Λ0 → 𝜋− +𝑝 in our case) and to class

-1 otherwise. The aim of the algorithm is to learn to recognize whether

the pair of tracks belongs to class -1 or to class 1.

4.1 Datasets

In order to obtain train and test datasets, we need to know for sure, which

pair of tracks relates to a decay and which does not. That is why model

training and quality evaluation was performed not on real data, but on

Monte-Carlo simulations. A simulation consists of yielding particles out
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from a target, propagation of their trajectories and modeling the behaviour

of the detector. Several types of particle generators have been explored.

BOX generator was used to generate a fixed set of particles per event. Re-

sults of these simulations were then used to try different machine learning

algorithms. Simulations with QGSM generator, however, are closer to re-

ality and they were used for model evaluation.

4.2 Features

Every sample consists of parameters of the two tracks. Two different ap-

proaches to parameterization have been considered.

1) Coordinate parametrization.

Tracks are given by hits coordinates and momenta projections on each

GEM-detector. The feature space has dimension

2𝑡𝑟𝑎𝑐𝑘𝑠 · 6ℎ𝑖𝑡𝑠 · (3𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 + 3𝑚𝑜𝑚𝑒𝑛𝑡𝑎 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠) = 72.

However, tracks may consist of 4, 5 or 6 hits. That is why some samples

have missing features, which is the biggest problem of this approach to

track parametrization.

This parametrization was used in order to weed out uninteresting pair of

tracks, which reduces amount of work for Kalman filter.

2) Cut parametrization.
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Figure 6: Cut parametrization

In this approach, pair of tracks is

propagated by Kalman filter to the

plane of primary vertex. The set of

features was the following(Fig.6):

1) 𝑍-coordinate 𝑉0 of closest ap-

proach obtained through propaga-

tion in 𝑋𝑍 and 𝑌 𝑍 planes;

2) Distance between tracks at the

point of closest approach;

3) 𝑋-coordinates of tracks in primary vertex plane;

4) Momenta and curvature of each track at the point of closest approach.

In this feature set no missing values can occurе, which is not true for

coordinate parametrization.

Cut parametrization was used to filter noise on invariant mass histogram

and increase signal to background ratio.

4.3 Quality Metrics

Our aim is to weed out as many track pairs of class −1 as possible.

However, Λ0 decay is a rare phenomenon, and we do not want to lose

track pairs which were born by such a decay. Speaking more formally,

our model should have a good true negative rate and a high recall as

well. This brings us to a true negative rate - recall trade-off. This trade-

off will arise for several times below in this report.
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5 K Neighbours Classifier

5.1 Method Overview

K nearest neighbours classifier is a simple classification algorithm. Given

a training set {(𝑥𝑖, 𝑦𝑖)
𝑛
𝑖=1}, natural 𝑘 and a sample 𝑥*, it finds 𝑘 nearest (in

a sense of specified metric) to 𝑥* training samples. If 𝑚 of them belong

to class 1, the algorithm returns that probability of belonging 𝑥* to class

1 is 𝑚
𝑘 . After that it is possible to establish a minimum probability to

classify 𝑥* as 1. For example, if threshold is 0.2 and algorithm returns a

probability of 0.25, then a sample is assigned to class 1.

The reason for using this method is the following. Track parameters are

feature vectors. If feature vectors are close to each other in a sense of

Euclidean metric, it means that tracks are somehow similar. Consequently,

two pairs are likely to refer to the same class −1 or 1 if their feature

vectors do not differ much.

Note: KNN classifier counts distances between feature vectors and its

work depends on the distances. Such algorithms are called metric methods.

Non-metric methods are described further in this report.

5.2 Experiments

This method was implemented on datasets in coordinate parametrization

(see section 4.2) simulated with BOX generator. At every event 6 particles
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a) Raw data

b) Scaled data

Figure 7: KNN classifier results
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were generated: 𝜋−, 𝜋+, 𝑝, 𝑒−, 𝑒+,Λ0 and then 6-hit tracks were selected.

The algorithm has 2 parameters: number of neighbours 𝑘 and probability

threshold. Model evaluation was performed on a 4-fold cross validation.

KNN is a metric method, which means features which have bigger values

will have a higher impact on its decision. In order to eliminate this effect,

feature scaling is used. Every feature in the training set undergoes a linear

transform so that its mean and standard deviation over the training set

become 0 and 1 respectively. After that, all features are "in more equal

conditions".

When recall goes down, true negative rate increases. It is an illustration

of true negative rate - recall trade-off mentioned above.

Experiment shows that feature scaling improves model performance sig-

nificantly (Fig.7). However, KNN requires a fixed number of features,

which means it can only work with tracks of fixed length, for example, 6.

It is elusive what to call the best result in this case. For example, if we

establish a threshold of 0.98 for recall then the best result is true negative

rate of 0.92 with the usage of 70 neighbours and if the recall threshold

is reduced to 0.95, the best true negative rate is 0.97 at 90 neighbours.

A possible way to evaluate quality is area under ROC-curve [4]. In this

case, the best score is performed on 50 neighbours: 0.987 roc auc.
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6 Gradient Boosted Trees

6.1 Method Overview

The core idea of gradient boosting is ensembling of weak learners or

base learners. This means many simple models {𝑚1, ...,𝑚𝑘} are built

and output of the ensemble on sample 𝑥* is a weighted output of models:

𝑌 (𝑥) =
𝑘∑︀

𝑖=1

𝑤𝑖𝑚𝑖(𝑥*).

Say we have 100 estimators with 60% accuracy each. It means every

weak learner has a chance of 60% to be right about classifying a sample.

Suppose that estimators make their predictions independently (which is

not true in real cases, however). If we take weights 𝑤1 = ... = 𝑤𝑘 = 1
𝑘 ,

then an average model output on a positive sample will be 0.2 > 0 (−0.2

on negative sample), but the ensemble will have lower dispersion and

consequently higher accuracy.

This method has been chosen because decision trees have an implementa-

tion which is able to work with missing values (see [7]).

6.1.1 Decision Trees

Decision tree has conditions at its internal nodes and decisions (−1 or 1)

at the leaf nodes. Process of building such a tree is the following. On each

step the data is split along some of the 𝑥 axis. In other words, a condition

𝑥𝑖 < 𝑎 is placed into an internal node.
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This split has to be optimal in some sense. More specifically, subsets on

the left and on the right branches should be relatively pure, which means

they should consist of approximately one class. There are several ways to

evaluate subset purity.

1) Gini impurity: 𝐼𝐺 =
𝐽∑︀
𝑖=1

𝑝𝑖(1 − 𝑝𝑖) where 𝐽 is the number of classes, 𝑝𝑖

is the proportion of class 𝑖. 𝐼𝐺 = 0 if the set consists of one class.

2) Information gain: 𝐼𝐸 = −
𝐽∑︀
𝑖=1

𝑝𝑖 log2 𝑝𝑖.

Note: decision tree is a non-metric method.

There are also several stopping criteria for the tree building process: max-

imum depth reached, impurity does not decrease below 𝜀 in the split,

minimum number of samples at the node reached, etc.

6.1.2 Gradient boosting

Suppose we have a model 𝐹𝑚. Gradient boosting step improves it to a

better model 𝐹𝑚+1 = 𝐹𝑚 + 𝛾𝑚+1ℎ𝑚(𝑥). Here the weak learner ℎ𝑚(𝑥) is

fitted to the residual 𝑦 − 𝐹𝑚(𝑥) and 𝛾𝑚+1 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛾

𝑛∑︀
𝑖=1

𝐿(𝑦𝑖, 𝐹𝑚(𝑥𝑖) +

𝛾ℎ𝑚(𝑥𝑖)).

If class 𝐻 of weak learners is a class of differentiable functions, we can

update the model according to the following rules:

𝐹𝑚+1(𝑥) = 𝐹𝑚(𝑥) − 𝛾𝑚+1

𝑛∑︀
𝑖=1

∇𝐹𝑚
𝐿(𝑦𝑖, 𝐹𝑚(𝑥𝑖))
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𝛾𝑚+1 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛾

𝑛∑︀
𝑖=1

𝐿
(︁
𝑦𝑖, 𝐹𝑚(𝑥𝑖) − 𝛾

𝜕𝐿(𝑦𝑖, 𝐹𝑚(𝑥𝑖))

𝜕𝐹𝑚(𝑥𝑖)

)︁
That is why it is called gradient boosting.

6.2 Experiments

All experiments have been carried out with the use of xgboost package

[7]. Model evaluation was performed on a 4-fold cross validation.

6.2.1 Dataset

The method has been implemented on datasets in coordinate parametriza-

tion simulated with QGSM generator. Track curvatures per pair were of

different sign (corresponding to particles of different charge). The dataset

was constructed this way, because we are looking for Λ0 decay products,

which are 𝜋− and 𝑝.

The dataset consisted of 280000 samples. However, only 1326 track pairs

corresponded to Λ0 decays, which is less than 0.5%. It is a problem with

unbalanced classes. In order to deal with it, class 1 (which corresponds to

Λ0 decay) was assigned some weight. It makes the loss function increase

higher when an element of class 1 is misclassified.

Moreover, absolute value of momenta for each track in a pair was added

to the dataset.
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6.2.2 Parameter tuning

Gradient boosted tree algorithm has many parameters, the tuning of which

can increase model performance. Tuning of these parameters can be con-

sidered as another optimization problem. Two approaches have been ex-

plored: finding optimal value for each parameter while others are fixed,

which is analogous to coordinate descent, and an exhaustive search through

a specified parameter grid - so called grid search. The second approach is

computationally harder but may lead to higher score.

The following algorithm parameters were tuned:

1) weight - weight assigned to class 1;

2) max_depth - maximum tree depth;

3) n_estimators - number of boosted trees;

4) gamma - minimum loss reduction required to make a further partition

on a leaf node of the tree. The higher gamma, the stronger the regulariza-

tion;

5) min_child_weight - minimum weight needed in a child node of a tree;

6) colsample_bytree - percentage of features used for building each tree;

7) subsample - percentage of samples used for building each tree;

Other parameters including learning rate remained initialized by default.

As mentioned above, main metrics for evaluation are recall and true nega-
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tive rate. We establish a threshold for recall 0.95 and try to obtain as high

true negative rate as possible with this constraint.

In coordinate descent, features were considered in order mentioned above.

This is an order of decreasing importance.

Note: the above statement is a heuristic.

Final results obtained by coordinate descent:

𝑅𝑒𝑐𝑎𝑙𝑙 : 0.956 𝑔𝑎𝑚𝑚𝑎 : 0

𝑇𝑁𝑅 : 0.776 𝑚𝑖𝑛_𝑐ℎ𝑖𝑙𝑑_𝑤𝑒𝑖𝑔ℎ𝑡 : 1

𝑤𝑒𝑖𝑔ℎ𝑡 : 1000 𝑐𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒_𝑏𝑦𝑡𝑟𝑒𝑒 : 1.0

𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ : 4 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 : 0.8

𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 : 71

Note that tuning of gamma, min_child_weight and colsample_bytree did

not have any impact.

In grid search, the following grid of parameters was explored:

𝑤𝑒𝑖𝑔ℎ𝑡 : [500, 1000, 1500, 2000, 2500]

𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ : [2, 3, 4, 5]

𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 : [20, 40, 60, 80, 100, 120, 140]

𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 : [0.6, 0.75, 0.9, 1.0]

𝑐𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒_𝑏𝑦𝑡𝑟𝑒𝑒 : [0.6, 0.8, 1.0]

Final results obtained with grid search:

𝑅𝑒𝑐𝑎𝑙𝑙 : 0.951 𝑔𝑎𝑚𝑚𝑎 : 0
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a) Tuning weight and max_depth

b) Tuning n_estimators c) Tuning gamma

d) Tuning min_child_weight

Figure 8: XGBoost parameter tuning. Coordinate descent.
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𝑇𝑁𝑅 : 0.799 𝑚𝑖𝑛_𝑐ℎ𝑖𝑙𝑑_𝑤𝑒𝑖𝑔ℎ𝑡 : 1

𝑤𝑒𝑖𝑔ℎ𝑡 : 1000 𝑐𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒_𝑏𝑦𝑡𝑟𝑒𝑒 : 0.6

𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ : 4 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 : 0.9

𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 : 100

One can see that TNR obtained with grid search is slightly better that

TNR obtained with coordinate descent, which means coordinate descent

heuristic worked fairly well.

7 Neural Network

In order to build invariant mass plot, pairs of tracks of opposite curvature

are considered. For each pair cuts and invariant mass are calculated (see

section 4.2). After that, some primary filtering is performed, i.e. tracks

which have too high 𝑣𝜋𝑣𝑝 are weeded out. The aim of neural network is

to perform further filtering of noise pairs.

The calculation of cuts can be performed either on simulated or recon-

structed tracks. Both approaches have been explored.

7.1 Method overview

Figure 9: Neuron

Neural network is a biologically in-

spired algorithm architecture. A ba-

sic unit of this structure is a neuron.
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Each neuron takes input data, transforms it in a particular way and passes

the result to the next neurons. More specifically, for a given set of in-

puts 𝑥1, ..., 𝑥𝑚, a neuron generates an output 𝜎(
𝑚∑︀
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏) where 𝑤𝑖 are

weights, 𝑏 is bias and 𝜎 is activation function.

Figure 10: Sequential neural network

A neural network consists of sev-

eral neurons. We will stick to a

multilayer of sequential network,

which means neurons in it are orga-

nized into a number of layers, and

output of each layer is an input for

the following one.

Figure 11: Activation functions

There are several common activa-

tion functions:

𝐿𝑖𝑛𝑒𝑎𝑟 : 𝜎(𝑥) = 𝑥

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 : 𝜎(𝑥) =
1

1 + 𝑒−𝑥

𝑅𝑒𝐿𝑈 : 𝜎(𝑥) =

⎧⎨⎩0, 𝑥 < 0

𝑥, 𝑥 ≥ 0
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7.2 Experiments

7.2.1 Simulated data

Generation a dataset consisted of 3 steps:

1) QGSM simulations;

2) Calculating cuts for track pairs;

3) Weeding out pairs with inappropriate cuts.

The dataset consisted of 9200 noise pairs and 8500 pairs which referred

to Λ0 decay. This data was obtained from 720, 000 events simulated with

QGSM generator. Data was divided into train and test sets consisting of

80% and 20% of the whole data respectively, and validation set constituted

20% of the train one.

Model performed training accuracy of 0.977, validation accuracy of 0.970

and test accuracy of 0.973, which means it did not overfit. However, noise

filtering is not notable on the plot of the whole data, since Λ0 constitute

about 50% of the set, which is fairly much (Fig.12 a, b). In order to

simulate real amount of Λ0 in the set and make the model performance

more visible, number of Λ0 was artificially reduced by 20 times. After

that, the impact of neural network filtering became more evident (Fig.12

c, d).
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7.2.2 Reconstructed data

It is important to make a difference between cuts obtained from simulated

data and cuts obtained from reconstructed data.

Generation a dataset consisted of 4 steps:

1) QGSM simulation;

2) Reconstruction;

3) Calculating cuts for track pairs;

4) Weeding out pairs with inappropriate cuts.

The dataset consisted of 8700 noise samples and only 80 samples cor-

responding to Λ0 decays. This brings us to a problem with unbalanced

classes again.

An attempt to filter this data using a model trained on simulated dataset

did not give good results - recall of 0.125 (Fig.12 e, f). This happened

because the training set consisted of simulated data which is different

from reconstructed. More formally, the neural net learnt a mapping in one

area of feature space and was tested on another one. It led to a necessity

of training a model on reconstructed data.

However, 80 samples of the interesting class is extremely few: a bigger

dataset was required.

One way is to run simulations with QGSM, reconstructions and cut calcu-

lations once again. Taking into account that these 80 Λ0 decays have been

obtained from 720, 000 events and we want about 1000 decays, another

10, 000, 000 QGSM simulations are needed. This is very computationally
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a) b)

c) d)

e) f)

Figure 12: Invariant mass plots. a) Simulated data before filtering; b)

Simulated data after filtering; c) Simulated data with reduced amount of

Λ0 before filtering; d) Simulated data with reduced amount of Λ0 after

filtering; e) Reconstructed data before filtering; f) Reconstructed data after

filtering.
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expensive as well as memory consuming.

Figure 13: Oversampling

Another way is to artificially add

information about Λ0 decays into

the training set basing on some

statistics we already have. This

approach is called oversampling.

More specifically, we could gen-

erate only Λ0-s with BOX gener-

ator. However, data about Λ0-s has

some specific distribution over the

dataset. It can be thought of as a random vector. If we generate random

Λ0-s with BOX generator, we may get inadequate oversampling (Fig.13).

That is why we have to find a way to add samples which correspond to a

true distribution.

It would be ideal to generate Λ0-s which correspond to a true physical dis-

tribution and which will be finally found in reconstructed data. However,

we have only 80 samples from this distribution, which is too few. Instead,

we can generate Λ0-s which will be found in simulated data, because in

this case we have more statistics - 8500 samples.

This approach is computationally cheaper than running the whole cy-

cle of dataset generation beginning with QGSM simulations. Indeed, we

obtained 8500 Λ0-s from 720, 000 simulated events and 80 Λ0-s from

720, 000 reconstructed events. Say we want 1000 Λ0-s. If we use QGSM

simulations, we will need about 720, 000 · 1000

80
≈ 107 runs. But if we
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yield appropriate Λ0-s with BOX generator, only about 8500 · 1000

80
≈ 105

runs are required.

The problem is stated as following. We have a set of particles and our aim

is to enlarge this set by generating new particles with the same momenta

and angles distribution at the primary vertex. Strictly speaking, we need

to take the primary vertex coordinates distribution into account, as well,

but more than 99% of samples in the set (a set of 8500 Λ0-s found in

reconstructed data is meant) have primary vertex at (0, 0, 0).

We will stick to the following plan:

1) Estimate probability density of the existing set;

2) Generate a new larger set with this probability density;

3) Pass this set to the BOX generator and run simulations;

4) Run reconstruction;

5) Calculate cuts for tracks pairs;

6) Weed out track pairs with inappropriate cuts.

Λ0-s have 3 parameters - momenta 𝑝 and angles 𝜙, 𝜃. From the physical

considerations, 𝜑 has a uniform distribution over [0, 2𝜋] and is mutually

independent from 𝑝 and 𝜃. The aim is to boost a set consisting of 𝑝 and 𝜃

and then add a set of uniformly distributed 𝜙 to it.

Density evaluation was performed by kernel density estimation ([2], [3],

[8]). Obtained density is a function which is not set analytically, but can

be computed at any point.

After that, a new set was computed in the following way.

1) Divide 𝑝− 𝜃 plane into equal rectangles;
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2) Compute density at middle point of each rectangle;

3) Add points to each rectangle. A number of points is proportional to the

density and the coordinates are distributed uniformly over the rectangle.

Density analysis has shown that this heuristic works fairly well (Fig14).

a) Initial dataset, 8500 samples b) Generated dataset, 105 samples

Figure 14: Density estimation

Now we can train a network on reconstructed data with oversampled

amount of Λ0-s. The model performs 0.94 recall and 0.85 accuracy. The

results of filtering are shown on Fig.15.

Filtering performed on simulated data was more successful than one im-

plemented on reconstructed data. This happens due to the fact that recon-

structed data has a strong class imbalance.
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a) Before filtering b) After filtering

Figure 15: Noise filtering on invariant mass plots

8 Conclusion

8.1 Results

Several methods, approaches and tracks parametrizations have been ex-

plored. Obtained results are briefly listed below.

1) KNN, coordinate parametrization, only 6-hit tracks: roc auc 0.987;

2) Gradient boosted trees, coordinate parametrization: recall 0.951, true

negative rate: 0.799;

3) Neural network, cut parametrization, simulated data: accuracy 0.973,

recall 0.980, notable noise filtering (Fig.12 c, d);

4) Neural network, cut parametrization, reconstructed data: accuracy 0.850,

recall 0.940, lower performance than in item 3 (Fig.15).
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8.2 Possible continuation

Specificity of this problem is high class imbalance. In order to build a

model, oversampling of smaller class is required. An attempt to perform

this oversampling by generating Λ0-s with BOX generator has been un-

dertaken. There exist some strategies of oversampling the initial dataset

synthetically [5]. These heuristics can be combined with the method de-

scribed in this work.

The existing cuts filter 85% noise but also weed out about 30% of Λ0-s. A

possible solution is to imply machine learning to data not processed with

cuts. However, this leads to a even higher class imbalance.
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