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1. Introduction
The near-barrier fusion of nuclei remains still to be one of the most interesting

phenomena in nuclear reactions studies. The dynamics of low-energy fusion is governed
by quantum tunneling  through a  Coulomb barrier  occurring  under  conditions  where
relative  motion  is  strongly  coupled  to  internal  degrees  of  freedom  primarily,  to
vibrations of nuclear surfaces, rotation of deformed nuclei, and nucleon transfer [1].

One of the important characteristics of the near-barrier fusion is so-called barrier
distribution function (see it definition below). It can be obtained from the experimental
data on  quasi-elastic scattering as well as on the fusion cross section. The second way
has been used in this work. The main difficulty is to calculate a value, which is called
the transmission probability.  It  can be  obtained from three models,  they are  Single-
Barrier  Penetration  Model,  Empirical  [2]  and  Quantum  Channel  Coupling  (QCC)
Model.

The barrier distribution function was already extensively studies in literature [1,3].
However,  this  quantity  (in  particular,  nature  of  its  structure),  is  far  from  complete
understanding. The standard approach for study near-barrier fusion reactions is the QCC
one  [4,6,9].  This  model  has  one  weakly  defined  parameter,  namely  the  number  of
accounted phonons of the collective modes included into the computational scheme.
Thus, the aim of this work is to:

• Study the influence of  different  collective excitation modes on the sub-barrier
fusion.

• Study of the phonons number effect on the barrier distribution function behavior.
• Study of the barrier distribution function asymptotic behavior when the number of

phonons tends to infinity.
The calculations were performed with the use of the web knowledge base NRV

[4], which is described in Sec. 2. The used models are discussed in Sec. 3. Section 4
contains the results of our calculations, including a comparison with experimental data.
In Sec. 5 we summarize our results and present our conclusion.

2. NRV - Low Energy Nuclear Knowledge Base
All the calculation shown in this paper are done within the web knowledge base 

on low-energy nuclear physics (NRV)[4]. NRV is an open and permanently extended 
global system of management and graphical representation of nuclear data and video-
graphic computer simulation of low-energy nuclear dynamics. It consists of a complete 
and renewed nuclear database and well-known theoretical models of low-energy nuclear 
reactions altogether forming the "low-energy nuclear knowledge base". The NRV solves 
two main problems.



1. Fast  and  visualized  obtaining  and  processing  experimental  data  on  nuclear
structure and nuclear reactions.

2. Possibility for any inexperienced user to analyze experimental data within reliable
and commonly used models of nuclear dynamics.

The system is based on the realization of the following principal things:
• The net and code compatibility with the main existing nuclear databases.
• Maximal  simplicity  in  handling:  extended  menu,  friendly  graphical  interface,

hypertext description of the models, and so on.
• Maximal  visualization  of  input  data,  dynamics  of  studied  processes  and  final

results by means of real 3-dimensional images, plots, tables and formulas, and a
3-dimensional animation.

3. Models

Single-Barrier Penetration Model

The potential of interaction of two nuclei is shown in fig. 3.1. The maximum,
which correspond to point  Rb  called  Coulomb barrier.  Position  of  this  maximum
usually larger by 1 or 2 fm than the sum of nuclear radii  R1 + R2 .  At low near-
barrier energies the light and/or medium colliding nuclei having overcome the Coulomb
barrier  and coming in contact  are  captured in the potential  pocket  and fuse (form a
compound mono-nucleus). 

Fig. 3.1 Interaction of two spherical nuclei Ca48
+ Pb208 . The proximity potential is used here for the

nuclear interaction. Dashed curve shows the parabolic approximation of
the Coulomb barrier. For the partial wave l=Lcr  

The fusion cross section can be decomposed over partial waves.

σ fus(E)=
π ℏ2

2μ E ∑
l=0

∞

(2 l+1)T l (E) , (1)



where  μ is  the reduced mass of the system,  E is  the center-of-mass energy,  and
T l (E) is the partial barrier transmission probabilities. The transmission probabilities

can be calculated by solving one-dimensional  Schrodinger equation with appropriate
(non-reflective) boundary condition. The Hill-Wheeler formula [5] for the transmission
probabilities can be used approximating the barrier radial dependence by a parabola .

T l
HW (B; E)=[1+exp ( 2π

ℏωB(l) [ B+
ℏ

2

2μ RB
2 (l)

l(l+1)−E ])]
−1

. (2)

Here  ℏ ωB=√ℏ2/μ|∂2 V /∂r2|  is defined by the width of the potential barrier,  B is
the height of the barrier and RB (l) is the position of the effective barrier including a
centrifugal term.

Interaction of Deformed and Deformable Nuclei [6]

The shape of axially deformed nucleus is defined as follows

R(β̄ , θ)=
~R⋅(1+∑

λ≥2

βλ √ 2λ+1
4 π

Pλ(cos (θ))) , (3)

where  β̄≡{βλ} are  dimensionless  deformation  parameters  of  multi-polarity
λ=2,3,. .. , Pλ are  the  Legendre  polynomials.  Potential  energy  of  two  deformable

nuclei is the sum of the Coulomb, nuclear, and deformation energies
V 12(r ;β̇1 , θ1 ,β̇2, θ2)=V C (r ; β̇1 ,θ1 ,β̇2 ,θ2)+V N(r ;β̇1 , θ1 ,β̇2, θ2)+

+
1
2∑

i=1

2

∑
λ

C iλ⋅(βi λ−βi λ
g . s.)2

 (5)

Here  i=1,2 numerates  the  nuclei,  Ci λ are  the  surface  stiffness  parameters,  and
θ1,2 are the orientations of symmetry axes, see Fig. 3.2.

Fig. 3.2  Schematic picture of two deformed nuclei rotating in the reaction plane.



The Coulomb interaction of two deformed nuclei is given by

V C=Z 1 Z2 e2 [ F(0)(r)+∑
i=1

2

∑
λ≥2

Fi λ
(1)(r)βi λ Y λ 0(θi)]+

+Z 1 Z2 e2∑
i=2

2

∑
λ '

∑
λ ' '

∑
λ=|λ '−λ ' '|

λ=λ ' +λ ' '

F iλ
(2)(R) м∑

μ
∫ ˚Y λ ' μ

˚Y λ ' '−μY λ0 d Ωβi λ 'βiλ ' ' Y λ 0(θi)+...

 (5)

Ar  r>R1+R2 ,  F(0)=
1
r

,  Fi λ
1 =

3
2 λ+1

Ri
λ

rλ i ,  Fi λ=2
2

=
6
5

Ri
2

r3
,  Fi λ=4

(2)
=

Ri
4

r 5
.  At

shorter  values  of  r ,  when  nuclear  surfaces  overlap,  there  are  more  complicated
expressions  for  the  form-factors  Fλ

(n)(r) .  It  is  not  important  here  because
RC

B >R1+R2 .  Usually nuclei  have quadrupole and hexadecapole static deformations
(λ=2,4 ) .

The  short-range  nuclear  interaction  depends  on  a  distance  between  nuclear
surfaces ξ=r−R1(β⃗1 ,θ1)−R2(β⃗2,θ2) , see Fig. 2. Woods-Saxon potential is often used
to describe this interaction:

V ws(ξ)=
V 0

1+exp (ζ /a)
where  ζ=r−RV −Δ R1−Δ R2 ,  Δ R1=R1(β̇1 ,θ1)−R1 ,  and  Δ R2=R2(β̇2 ,θ2)−R2 .
“Proximity” potential is an another choice for parameterization of the nucleus-nucleus
interaction [7]

V prox (ξ)=4 π γ b Psph
−1⋅Φ(ξ/β)  (6)

here Φ(ξ/β) is universal dimensionless form-factor, b is the thickness parameter of
nuclear  surface,  γ  is  the  surface  stiffness,  ξ=r−R1(β⃗1 ,θ1)−R2(β⃗2 ,θ2) ,  and

Psph=1 / R̄ 1+1 / R̄2 , where R̄i=Ri[1−(b /Ri)
2] .

Attraction of two nuclear surfaces depends also on their curvatures. For deformed
nuclei Psph in (6) should be replaced by

P(β⃗1 ,θ1 ,β⃗2 ,θ2)=[(k 1
∥+k 2

∥)(k1
⊥+k 1

⊥)]1 /2  (7)

where k i
∥,⊥  are the principal local curvatures of the projectile and target.

The expression (7) may nominally reduce to zero at some negative deformations
(touch of two planes). This non-physical effect originates due to neglecting the finite
areas of the touching surfaces. Interactions of nearly located nucleons give the main
contribution  to  the  nucleus-nucleus  potential  energy.  The  number  of  such  nucleons
depends on the surface  curvatures  but  it  is  always finite.  Thus,  instead of  a  simple
replacement of Psph  by P  in (6) , the expression

 V N=G(β⃗1 ,θ1 , β⃗2 ,θ2)⋅V N
0 (r ;β⃗1 , θ1 ,β⃗2, θ2)  

is more appropriate, where V N
0  is the nucleus-nucleus interaction calculated ignoring

a change in surface curvatures and  G(β⃗1 ,θ1 ,β⃗2 ,θ2)  is the geometrical factor, which



takes into account a change in the number of interacted nucleons (located in the nearest
layers of two nuclei) comparing with spherical surfaces. The geometrical factor plays
important role at large deformations [6].

The stiffness parameters Cλ  could be calculated as follows [6]
Cλ=(2 λ+1)

ελ

2⟨βλ
0
⟩

2  (8)

here  ελ=ℏ ωλ  is  the  vibration  energy,  ⟨βλ
0
⟩=

4 π

3 ZR0
λ [ B(E λ)

e2 ]
1 /2

 is  the  RMS

deformation of zero vibrations.
It  is  clear  from (4) that  the nucleus-nucleus interaction is a multi-dimensional

potential  energy  surface.  If  several  degrees  of  freedom are  taken  into  account  with
subsequent consideration of the evolution of the nuclear system in multi-dimensional
space, then the corresponding potential energy surface, which regulates this evolution, is
usually called “driving potential”.

In  Fig.  3.3  the  potential  energy  of  two  initially  spherical  nuclei  Ca40  and
Zr90  is shown depending on their dynamic quadrupole deformation (for simplicity it

is assumed here that the deformation energies of the two nuclei are proportional to their
masses  and,  instead  of  two  deformation  parameters  β1  and  β2 ,  only  one

β=β1+β2  is used).

Fig. 3.3 Potential energy surface of the Ca40
+ Zr90 interaction depending on quadrupole dynamic 

deformations of two nuclei. The minimal value of the fusion barrier (saddle point) is marked by the 
open circle.

The  plots  demonstrate  the  multi-dimensional  character  of  the  nucleus-nucleus
interaction and of potential barrier. As can be seen, it is impossible to characterize the
potential barrier by a specific value B  of its height. Instead there is some continuous
barrier distribution F(B) .



Barrier distribution function

The resent very precise experiments on near-barrier fusion reactions give a possibility to
determine  rather  accurately the second derivative  of  E σ fus(E) ,  which in  classical
limit may be identified with the so called “barrier distribution function” [8]

D(B)=
1

π RB
2 d2(E σfus) /dE2∣E=B  (9)

The structure of the function D(B)  (different for different pairs of nuclei) was found
testifying to complicated dynamics of penetration of the potential barrier taking place in
strong channel coupling condition.

Penetrability  of  one-dimensional  barrier  is  defined  by  the  well-known  Hill-
Wheeler formula (2). In that case the penetration probability  T l (B ,E)  depends not
arbitrary on B  and l , but it is a function of the argument

 x=B+
ℏ2

2μ RB
2 l(l+1)−E , 

i.e., T l (B; E)=f (x) . Using expression (1) for the fusion cross section, one may write
dE(σfus)

dE
=

π ℏ2

2μ E ∑
l=0

∞

(2 l+1)
dT l (B; E)

dE
 (10)

Because

dT
dE

=−
dT
dx

=−
dT
dl ( dx

dl )
−1

=−
dT
dl

2μ RB
2

ℏ2

1
2 l+1

,

then
d( E σfus)

dE
=−π RB

2 ∑
l=0

∞ dT l (B ; E)

dl

In collision of heavy nuclei many partial waves contribute to the fusion cross section,
T l (B; E)  is a smooth function of l , and summation in (10) may be replaced by the

integration over l . This integral can be easily calculated giving ,
 d (E σfus)/dE≈π RB

2⋅T l=0(B ; E) or 

D(E)≈
dT l=0(B ; E)

dE
 

In  classical  limit  T ( E)=1  at  E>B  and  T ( E)=0  at  E<B ,  i.e.,
D(E)=δ(E−B) . In quantum case the penetration probability is given by (2) and the

function D(E)  has one maximum at E=B  with the width
ℏ ωB ln(17+12 √2)/2 π≈0.56 ℏωB  

(for  parabolic  barrier).  In  real  case  the  nucleus-nucleus  potential  energy is  a  multi-



dimensional surface, and the incoming flux overcomes the Coulomb barrier at different
values of its height B (different values of dynamic deformations and/or orientations). In
[2]  the  semi-empirical  channel  coupling  model  has  been  proposed  for  a  simple
estimation of multi-dimensional barrier penetrability basing on the idea of the “barrier
distribution  function”.  There  are  two  cases:  (I)  fusion  reactions  involving  spherical
nuclei and (II) reactions with statically deformed nuclei.

Empirical Channel Coupling Model

The empirical channel coupling model was proposed by V. I. Zagrebaev [2]. The
model considers two different cases: fusion of spherical and deformed nuclei in their
ground states.

I Coupling to vibrational states (fusion of spherical nuclei)
Near-barrier  fusion  of  spherical  nuclei  strongly  depends  on  coupling  of  their

relative  motion  to  surface  vibrations.  In  this  case  the  Coulomb barrier  depends  on
dynamic deformations. The total penetration probability should be averaged over barrier
height B , and instead of (2) one may write

T l (E)=∫ F (B)T l
HW [B(β); E ]dB  (11)

where the normalized function F(B)  may be approximated by symmetric Gaussian

F(B)=N⋅exp(−[ B−B0

ΔB ]
2

) (12)

located  at  B0=(B1+B2)/2  and  having  the  width  ΔB=(B1−B2)/2 .  The  value  of
quantity B1  corresponds to minimal value of the two-dimensional barrier depended on
dynamic deformation and B2  defined as the Coulomb barrier of spherical nuclei. For
very  heavy  nuclei,  when  the  difference  (B2−B1)  is  rather  large,  an  asymmetric

Gaussian with slightly less “inner” width (ΔB
1 ≤ΔB

2 )  approximates better the function
F(B)  [2].

II Coupling to rotational states (fusion of statically deformed nuclei)
For statically deformed nuclei the penetration probability should be averaged over

the orientations of both nuclei. In this case the total penetration probability is given by

T l (E)=
1
4∫

0

π

∫
0

π

T l
HW [B(β⃗1 ,θ1 ,β⃗2 ,θ2); E ]sinθ1 sinθ2d θ1 d θ2  (13)

where  B(β⃗1, θ1,β⃗2, θ2)  is  the orientation dependent barrier  β1  and  β2  are the
static deformation parameters of interacting nuclei.



Quantum Channel Coupling Model [6,9]

Hamiltonian of two deformable nuclei rotating in reaction plane is written as

H =−
ℏ

2
Δr

2

2μ
+V C(r ; β⃗1 ,θ1 ,β⃗2 , θ2)+V N(r ;β⃗1 ,θ1 , β⃗2 ,θ2)+ ∑

i=1,2

ℏ
2 Î i

2

2 J i

+

+ ∑
i=1,2

∑
λ≥2 (−

1
2 di λ

∂2

∂ si λ

2 +
1
2

ci λ si λ

2 )
 (14)

where  J i are the moments of inertia. Decomposing the total wave function over the
partial waves

Ψ k⃗ (r ,ϑ ,α⃗)=
1
kr ∑

l=0

∞

il ei σl(2 l+1)χ l(r , α⃗) Pl (cosϑ)  (15)

one get the following set of the coupled Schrodinger equations
∂2

∂r2 χ l (r , α⃗)−
l(l+1)

r2 χ l (r , α⃗)+
2μ

ℏ2 [E−V (r ,α⃗)− Ĥ in t(α⃗)]χ l(r , α⃗)=0  (16)

Here α⃗ are the internal degrees of freedom (deformations and/or angles of rotation)),
H i nt (α⃗)  is the corresponding Hamiltonian, and V (r ,α⃗)=V c(r , α⃗)+V N(r , α⃗) . The

functions  χ l(r ,α⃗)  may  be  also  decomposed  over  the  complete  set  of  the
eigenfunctions of the Hamiltonian H i nt (α⃗)

χ l(r ,α⃗)=∑
V

y l , v(r)⋅ϕv (α⃗)  (17)

and the radial wave functions  yl , v (r)  satisfy a set  of differential  equations solved
numerically

yl , v
' ' −

l(l+1)

r2 yl , v+
2μ

ℏ2 [ Ev−V vv(r)] yl , v−∑
μ≠v

2μ

ℏ2 V v μ(r) yl ,μ=0  (18)

Here  Ev=E−εv ,  εv is  the  nucleus  excitation  energy  in  the  channel  v ,  and
V v μ(r)=⟨ϕv|V (r , α⃗)|ϕμ⟩  is the coupling matrix.

At low energies,  not  so heavy colliding nuclei  having overcome the Coulomb
barrier  and  coming  in  contact  fuse  (i.e.,  form  a  compound  mono-nucleus)  with  a
probability close to unity.  The fusion cross section can be measured in that case by
detecting  all  the  fission  fragments  and  evaporation  residues.  Thus,  formulating  the
boundary conditions for the wave function Ψ k⃗ (r ,ϑ ,α⃗)  it is usually assumed that the
flux,  which  overcomes  the  Coulomb  barrier,  is  absorbed  completely  (forming  the
compound  nucleus)  and  is  not  reflected  from  the  inner  region.  It  means  that  at



r<Rfus≈R1+R2  the functions χ l(r ,α⃗)  are incoming waves and have not outgoing
components  reflected  from  the  region  0≤r≤Rfus .  The  details  of  satisfying  this
boundary condition can be found in [6].

At  large  distances  (r→∞)  the  wave  function  has  an  ordinary  behavior  of
scattering  wave:  incoming  and  outgoing  waves  in  the  elastic  channel  v=0 ,  and
outgoing waves in all other channels. For the partial wave functions this corresponds to
the condition

yl , v (r→∞)=
i
2 [hl

(−)(ηv , k v r)⋅δv0−( k 0

k v
)
1 /2

Sv 0
l ⋅hl

(+ )(ηv , k v r)]  (19)

where  k v
2=

2μ

ℏ2 Ev ,  ηv=
k v Z1 Z2e2

2 E v

 is  the  Sommerfeld  parameter,

σl ,v=arg Γ(l+1+i ηv)  is  the  Coulomb  partial  phase  shift,  hl
(±)(ηv , k v r)  are  the

Coulomb  partial  wave  functions  with  the  asymptotic  behavior  exp(±ixl , v) ,

xl , v=k v r−ηv ln 2 k v r+σl ,v−l π/2 ,  S v 0
l  are  the partial  scattering matrix  elements.

Similar  expression  is  obtained  for  the  closed  channels  (Ev <0)  with  imaginary

argument of the function hl
(+)(ηv , k v r) .

The fusion cross section calculated within channel coupling approach is defined
by the same expression (1), where the partial transmission coefficients are defined by the
ratio of the passed (absorbed) and incoming flaxes

T l (E)=∑
v

jl , v

j0

 (20)

Here

jl , v=−i
h

2μ
( yl , v

dyl , v
∗

dr
−y l , v

∗ dy l , v

dr
)∣r≤Rfus

is the partial flux in the channel v , and  j0=ℏ k 0/μ .

4. Results
We chose the well-studied reaction  Ca40 + Zr90  as an object of research [10].

These nuclei are spherical, and consequently, the vibrational degrees of freedom have a
significant effect on the fusion cross section. The vibrational properties of  Ca40 and

Zr90  are presented in  Table 1.



TABLE 1 The characteristics of Ca40 and Zr90

Empirical Channel Coupling Model

V 0
vol=−73 MeV r0

vol=1.18 fm

r0
coul=1.12 fm a0

vol=0.67 fm

Ca40 Zr90

λ 3- 3-

ℏ ω 3.7 2.7

C 2.5 2

Quantum Channel Coupling Model.

Ca40 Zr90

λ 3- 2+ 3-

ℏ ω 3.7 2.1 2.7

β 0.41 0.08 0.21

The experimental fusion cross section and experimental evaluation of the barrier
distribution function are shown in fig. 4.1. It can be seen that the barrier distribution
function has two well-defined peaks. These peaks are due to the coupling of the relative
motion with vibrational degrees of freedom.

Figure 4.1. The experimental fusion cross section and barrier distribution function for Ca40 + Zr90

[10].



For the chosen pair  of  nuclei  the octupole vibrations ( λ=3 )  should have a
largest effect on the sub-barrier fusion. Figure 4.2 shows analysis of the  Ca40 + Zr90

fusion reaction within the ECC and QCC models. The calculation are done with the
Woods-Saxon  nucleus-nucleus  potential  with  the  following  parameters:

V 0=−73 MeV , r0=1.18 fm , a=0.67 fm .

Figure 4.2. The fusion cross section and the barrier distribution function from a different models in
comparison with experiment. 10 vibrational phonons are included into the QQC calculations.

As can be seen from the Fig. 4.2. the single-barrier penetration model does not
agree with experiment. The ECC model is more consistent with the experiment. The
maximum is shifted towards lower energies (comparing to the single-barrier model) and
the barrier distribution is wider, but the structure of the barrier distribution function is
not  reproduced.  The QCC model  reproduces  the  structure  of  the  barrier  distribution
function, as well as the fusion cross section at near-barrier energies.

Figure 4.3.  The influence of vibrational degree of freedom of each nucleus on the barrier distribution
function.



The next step in our analysis is  the study of  influence of  different  vibrational
modes on the sub-barrier fusion. The result shown in Fig.4.3. The calculations are done
for the barrier distribution function with different number of phonons (n) included to
the QCC model.  As can be seen from the figure,  the octupole vibrational  degree of
freedom of Ca40  have a major influence on the barrier distribution function. One may
notice this by comparing the calculated values at lower energies with the experimental
data.

The  influence  of  phonons  number  on  barrier  distribution  function  is  studied
further. The result are shown in fig.4.4.

a) b)

Figure 4.4.  The influence of phonon number a) and additional mode b) on the barrier distribution
function.

As can be seen from the Fig. 4.4 a), the barrier distribution function smooths when the
phonon  number  increases.  The  barrier  distribution  function  changes  slightly  when
phonons number is greater than 5, i.e. it reaches its asymptotic at n≈5 . However, the
structure of barrier distribution function remains when a large number of phonons is
considered in the QCC calculations. Figure 4.4 b) shows that the account for additional
mode a slightly influences the barrier distribution function.

5. Conclusion
This work was focused on the theoretical analysis of the processes of near-barrier

fusion on the example of the Ca40 + Zr90  system. In particular, we have analyzed the
fusion  cross  section  and  the  barrier  distribution  function.  The  calculations  were
performed  with  the  use  of  the  web  knowledge  base  NRV  [4].  Two  models  were
employed,  namely  the  empirical  channel  coupling  model,  and  the  quantum channel
coupling model.  

The barrier distribution function has two well-defined peaks. These peaks are due
to the coupling of the relative motion with vibrational degrees of freedom. The single-
barrier  penetration  model  does  not  agree  with  experiment.  The  empirical  channel



coupling model is more consistent with experiment. The maximum is shifted towards
lower  energies  and the distribution  is  wider,  but  the structure of  barrier  distribution
function  is  not  reproduced.  The  quantum  channel  coupling  model  reproduces  the
structure of  barrier  distribution function,  and one more accurately reproduced fusion
cross  section  in  near-barrier  energies  region.  The  optimum number  of  phonons  that
showed included into the QCC computational scheme is ≈ 5, since of this value both
the fusion reach their asymptotical values.
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