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Abstract

Mermin Erergy Loss Function (Mermin ELF) is one of the most popular models for
description of electron kinetics of various polymers and biomoleculés. present
exactform of the MermirELF and comparé with standard models from Monte Carlo
code TREKIS which isthe powerful instrument for modelling initial excitation and
relaxation of electronic subsystem in the vicinity of the Swift Heavy lon (SHI)
trajectory for various materialsVe also calculate initial kinetics for polyethylene
(C:Hg)n and use it like inial condition in coarsgrained molecular dynamics
simulation of the SHI track formation.
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1 Introduction

Irradiation withswift heavy ions (SHIM 2 20m ,E >MeV/ nuc) decelerated in

the electronic stopping reginte@s been actively interested as a possible tool for ion
cancer therapy and genome edit[agy The high amount of energy deposited into a
polymer or biomoleculean break the bonds between monomers, which will lead to a
change in the molecular structure of the target.

The main channel of target excitation is the excitation of the electron subsystem,
resulting in generation of fast electrons. Evdijtevent Monte Cdo (MC) code
TREKIS[2] describes spreading of electr@msl holes and their interaction with matter
in the nanometric vicinity of the SHI trajectdj.

For adequate description of initial electron kinetics within SHI track is necessary
to know appropriaterosssections of an ion and electrons scattering on the system of
strongly correlated electrons. Here we use the Complex Dielectric Function (CDF)
formalismto construct realistic crosections. We examine several CDF models that
are most often used fde<ription of the interaction of a chargedrpale with matter.

We calculate radial distributions of electrons and holes and their energy density
generated in SHI tracks in polyethylene at different times up to 100 fs after passage of
Pb 850 MeV ions. Thesdata are used to molecular dynamic modelling relaxation of
the ionic subsystem and further structural transformations in track.



2 Model

2.1 Complex dielectric function formalism

The cross section of a charged particle on the system of strongly correlated
patticles can be represented withift Born approximation as the product of cross
section of scattering on an individual particle and the dynamic structure factor (DSF)
of the electrons. According to fluctuatiainssipation theorem, DSF can be expressed
in terms of the imaginary part of the inverse CBF; [5], [6]:
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here s is the cross section of aatering particleg is the electron chargeywis the
transferred energy; is the velocity of incident particlez, is the effective charge of
the partite penetrating through the (for an incident electrgr1, for an ion we use
the Barkas formuld7]), T is the temperature of the target, is the density of
scattering centers( ug) is the complex dielectric function and his inverse imaginary

part is called the energy loss function (ELF).
The main measured experimentally parameters of a projectile are the inelastic
mean free pathi =(n §°* and tre energy loss dE/ dx[8].
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The lower integration limitg, =E,, is threshold energy of shell (band gap for
valence band and ionization potential for deep shells). The upper limiegfation is

—(ﬁnm? Mo for i ion, whereg,, andM,, are energy and mass of ion. For the incident

electron Emax:@ , accounting for the identity of electronBhe limits of the

integration over the momentum aqe:1/2ma/h2 (a/En °JE, kW) for the electrons,
q =E,/hv,q, 3/2mE,_ /#* for the ions.
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2.2 Ritchie algorithm for CDF fitting

The inverse imaginary part of the CDF may be reconstructed from the measured
optical coeffcients for valence band andray attenuation lengths for deep shells as
follows:
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the low energy optical catants for most common neaitals are available hei8]
while attenuation lengths can be found10].
According to Ritchie and Howie, experimental ELF can be expressed in terms of
sum of DrudelLorentz oscillator functionfb]:
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here E, means the characteristic energy of the oscillatornjs the fraction of

electrons with energ¥,., andg istheener gy damping coefyci

Is running through the all oscillators.
The quality of the fit is determined by checking whether the energy loss function
satisfies the sum rules.
The first isf-sum rule says that the value
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must be equal to the total number of electrons per molecule of a targetyhen.
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Here w, = 4p:19”“ Is plasmon frequency, is the density of molecules.

The second ipssum rule:
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must be equal to unity whem,_ - ©.

2.3 Choice of dispersion relation

The CDF fitted from the optical data does not contain the dependence on the
transferred momentum, because in the optical limit the momentum transferred to the
system is equal to zero within dipole approximation. There are several methods to
introduce momenturdependence into the CDF. One of this methods is based on
dispersion relations for the energy 8fascillator E, =E,(q) .

1) The simplest ggroximation is fregparticle approximatiofb]

h2q2
= + 1 8
E(Q)=E, + (8)
where m is the mass of a scattering t®n m=m for scattering on the electron

subsystem.
2) The plasmon pole approximation is often used for elec{ddt]s
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wherev, is the Fermi velocity of electrons in therget.

Ritchie approximatiof5]:
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For the most materials we use f@ectron approximation, because it works well
at least at the limit of high energies and at the limit of zero transferred energy. For the
intermediate energies (~1 @V100 eV)the inelast mean free paths may be differ
from the experimental data, however, for most materials studied, the calculations are
in good agreement with experiment.

2.4 Mermin-type ELF

Another way to extend to arbitrary momentum is using of Mermin model for CDF
[12]. Merminmodel is the correction of the randgrhase approximation CDF for the
finite lifetime of particles. The Mermin function is expressed through a combination of
t the Lindhard (RPA) dielectric functions as follows:
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It is easy to calculate, that in the limit of zero momentum Mermin ELF reduces to
the DrudelLorentz ELF:
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This allows to use sum of Mermin energy loss functions like approximation for
experimental energy loss function
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Note that the fitting procedure does not change in the case of the Mermin model
whil e we dondt need t o c h,cextasontd drwtrary v p e
momentum occurs automaticallyitting coefficients for the ELF of the valence band
and of the inner shells for polyethyleneaterand DNAare presented in Tables2,
and 3
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The coefficients of the energy loss function ofyebhylene(CzHa) in the form of oscillator

Table 1

functions, Eq(5)

Type of shell E, A, oA
Valence band 23 340 15
K-shell C 305 145 180
Phonon peak 0.09 2e-5 0.005
o a 0.182 27e6 0.005
0.36 4e4 0.011

The coefficients of the energy loss function of water in tmefof oscillator functions, Eq.

Table 2

()

Type of shell E, A, g,

22 170.3 14

i} _;/alence banc 32 96.75 19

"= 47 110.45 32
K-shell O 500 150 400

The coefficients of the energy loss function of DNAGE7N7O13P2) in the form of oscillator

Table 3

functions, Eq(5)

Type of shell E, A, 9,
4.8 0.07 0.5
6.8 0.15 1.2
13.9 5.18 5.5
. ;/alence bang 185 208 63
22.2 133 11
26.2 62 8.8
34.7 181 21
L-shell P 112 110 140
K-shell C 220 180 200
K-shell N 300 170 270
K-shell O 510 145 365
K-shell P 1850 25 1350




In this work we obtained exact expressions for each Metype oscillator and
found the analytical form for Mermitype ELF. Give them her@ve use here atomic
units).

The Lindhad dielectric functior{13] given as
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here integration over the magnitudetbe momentunis from zero to Fermi level
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1
k. =(30°n,)? , n, is the electron density which can be found from external parameter

g2 = 4PN , f, is the Fermi distribution funicn.
m

For the case of complex frequencies Lindhard function can be represented as:
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All integrals above easily taken in elementary functions. Take into account that
zerofrequency Lindhard function degenerates to Tof@sni screening function

2 o 13
e (q,0)=1 %, O :4283% 2 and give the exact pression fothe Mermin ELF
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So Mermintype oscillator term is obtained by replacieg E,, g- ¢
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2.5 Comparisons between approaches

Using thecoefficientsfrom Tables 13, the inelastic mean free paths and energy
lossesfor scattering electronare calculated using the equatiq@3 and (3). Fig. 1
presents the comparison of calculated inelastic mean freefpatiktypes of models
for waterwith thosefrom thework of Abril et al. [14]. A very good agreement of
presented calculations (especially fedectron approximation with plasmon
integration limit) confirms the validity of estimated cross section of the electron
scattering.



Fig. 2 and 3 premt the same comparison for Mermin model am@&lectron
approximaion with work of Abril et al.[14] and also experimental calculations of the
inelastic mean free paths from the work of Tanuma diL.&].and of the energy loss

from the work{16].
Based on tb presented results, the most suitable model was selected the free

electron approximation. It is in good agreemaith experimental data and other
calculations, and also requires the least computational cost, which is of great
importance when modellingrige complex systems.
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3 Monte Carlo modelling of SHI track in polyethylene

3.1 MC codeTREKIS description

CDF formalism allows to take into account, on the one hand, pair scatterings of a
charged projectile on particles of the scattering ensemble, and on the other hand, the
collective response of the scattering system and correlations Ipepagecles in the
system. Developed by Ruslan Rymzhanov and Nikita Medvedev Monte Carlo code
TREKIS [2] uses these advantages of CDF formalism. TREKIS based onlewent
event simulations and now includes such processes: propagationSeéflaand the
comresponding ionization of target atoms, scattering of primary electrons produced by
a SHU, kinetics of all generations of electrons and holes arisen during electron
subsystem relaxatioluger decays of deep shell holes.

Frist TREKIS simulates the initiabnizations of target atoms by an ion creating
the F' generation of electrons in the cylindrical layer with the periodic boundary
conditions along the direction of the ion penetration. Atomic electrons are assumed to
be independent particles and interactiath SHI is instantaneous. The energy transfer
to electrons is calculated using cross sedtlpnand the direction of propagation of an
electron is chosemm accordance with energy and momentum conservation.

The probability of scattering of created free electrons is simulated using the
Poisson distribution of the free paths with mean free path calculat&?).dynergy
transfer and scattering angle are calculated from cross section. The new electron
generation produced in the collision receives energy difference between energy transfer
and threshold energy for given shell. Propagations of the next generations are
modeled in the same manner as of tfigdneration.

Inelastic scattering produces also holes in different atomic shells. The holes in
inner shells are relaxing via Auger decays and all are poppimngo the valence band
The inner shells participating in the Auger decays are chose randomly.

The MC procedure is iterated about 1000 times to obtain realistic statistics. Radial
distributions of electrons, phonons and holes and their energy demsai&H| track
are written to the files. Next these distributions are used for initial conditions in further
molecular dynamics modelling of lattice transformations and phase transitions.

3.2 Results for polyethylene

For modelling we used an Pb ion witheegy of 850 MeV giving the energy loss
1375.61 eV/A. Calculated energy loss is presented in Fig. 4 and compared with results
of the SRIM code. Good enough agreement confirms an applicability of chosen model
and fitting coefficients. The positions of thea§g peck are close to each other but not
the same. It is expected in relation with various models.
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Fig. 4. The calculated energy losses of Pb ion in polyethylene ans function of the ion energy
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Fig. 5. The calculated electrdia) and hole (b) radial density distributions around the
trajectory of Pb ion with energy 850 MeV at different times
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Fig. 6. The calculated electron (a) and hole (b) spectral distributions around the trajectory of
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Fig. 5 presents the temporal dependencies of the radial density distributions of
electrons (a) and holes (a) in polyethylertdectron and hole energy spectra
demonstratedh Fig. 6 t may be noted that electrons and holes are fast spreading from
the track core, buirst of all electrons bring aonsiderable part of deposited energy



4 Molecular Dynamics modelling of track formation

4.1 Modelling parameters

As a system for molecular dynamics modelling was chosen amorphous
polyethylene cubic box with 1000 polyethylenearts (see Fig. 7) with 1000
monomers per chain. First the box was minimasitg LAMMPS codewith such MD
parameters: periodic boundary conditions, DREIDING coegraaed force field17],
which includes valence and WaalerVaals interactions, argix equilibration steps: 1)
Langevin dynamics at the temperature B0®) NoseHoover dynamics with NPT
thermostat at the temperature QNPT 3) cooling from 500 K to 100 K, 4) relaxation
at 100 K, 5) heating from 100 K to 300 K, and finally, 6) relaxation at 300 K.

After minimizaion energy transferred to the lattice warsittedto the box as
initial condition for further MD modellingDue to periodic boundary conditions we
assumed that the cell is in contact with another cells and we Xxaad Y boundaries
at thetemperature 300 K and tracked the evolution of the system for 100 ps.

To assess the formation of the track, we used two criteria: displacement magnitude
of particles in the center of cell and radial density distributResults are shown in
Fig.8and 9

Fig. 7. Amorphous polyethylene cell with 1000 chains with 1000 monomers per cell. Each
monomer is coarse grained patrticle, fromed from two hydrogen atoms and one carbon atom. Cell
was preparewvith random walking algorithm



10.0 nm lglsplgment Mag&tud_;ao 10.0 nm Iglsplacement Magnltudgo

Fig. 8. Displacment of particleriew from aboveat different times after SHI passage


















