
JOINT INSTITUTE FOR NUCLEAR RESEARCH
DZHELEPOV LABORATORY OF NUCLEAR PROBLEMS

FINAL REPORT ON THE

SUMMER STUDENT PROGRAM

GNA framework: Implementation of

GPU-based transformations

Supervisor:
Anna Fatkina

Student:
Maksim Abramovich

Participation period:
August 5 — September 29

Dubna, 2018

Contents

1 Introduction 2
1.1 GNA . 2

1.2 CUDA . 5

2 GPU-based transformations 8
2.1 FillLike transformation . 8

2.2 Derivative transformation . 9

2.3 Rebin transformation . 12

2.4 EnergyResolution transformation . 15

Conclusion 17

Acknowledgements 18

References 19

1

1 Introduction

Scientific and physical experiments are often based on acquisition of huge amount of data.

Data processing and analysis performing in computers of high computational power. However,

processing of such amount of data and mathematical modeling based on this data is still time

and memory consuming. For example, Monte Carlo based methods typically take weeks or

months on modern CPUs. There are special tools that optimize computations of such tasks.

One of such tools is CUDA. It allows to use the power of GPUs on general-purpose tasks.

During SSP I joined to the development team of GNA framework. I was working on porting

some CPU-oriented transformations to GPU.

1.1 GNA

GNA (Glabal Neutrino Analysis) – flexible, extensible framework for the data analysis of

neutrino experiments. There are the following goals of GNA [1]:

• Developing a framework that enables a user to build comprehensive physical models and

perform statistical analysis of this models with large number of parameters. Efficient, but

flexible.

• Implementing the analyses for the Daya Bay [2] and JUNO [3] experiments.

• Implementing the global analysis of the neutrino data (experiments: Daya Bay, JUNO,

NOvA, T2K, etc.).

The framework is an attempt to implement the following general principles [4]:

• The whole structure should be flexible enough to uniformly integrate arbitrary number of

any kind of experiments into the one common flow;

• There should be granularity between analysis configuration step which is done once, and

computations repeated multiple times during fits after the configuration;

• It should be possible to modify an existing computation chain to transform or completely

replace any of its parts (formulas, tables, etc) in one place without changes over the whole

code base.

2

The way to bring these principles into action is to introduce a number of simple independent

computational blocks representing all the inputs or mathematical operations required to build a

theoretical model of any experiment. The task of the user (analyzer) is to use those blocks as

ingredients to construct a computational graph (fig. 1) producing the theoretical predictions and

finally the desirable statistic.

Figure 1: Schematic example of GNA graph

Since the blocks are small, simple and independent, they may be easily implemented in a

relatively low-level language (namely C++) making all the repeating computations fast, while

all the relations between them may be expressed by means of a slower but dynamic language

(namely Python), leading to great flexibility. Since the whole computation flow may be traced

before the computations start, it is possible to group the same computations with different inputs

into one vectorized procedure. The block structure also makes possible to track with high gran-

ularity the changes of computations depending on variable inputs, potentially avoiding useless

recomputations during the fit.

The computational core of GNA is transformation. Transformation is an encapsulated func-

tion, basic component of computations. It has the following specification (fig. 2):

• May have zero or more inputs and has at least one output (arrays).

3

• May depend on parameters (variables).

• Data container is associated with each transformation output.

• Transformation is computed once and the result may be reused.

• Transformation has taint flag. It is recomputed in case of it was tainted only. Taint flag is

true when data is not up-to-date.

• Computations are executed only in case the output value of corresponding transformation

is used.

Figure 2: Example of transformation kinds

My work was directly related to transformations implementation. The main task during

JINR SSP was implementation of GPU-based transformations. Porting computation from CPU

to GPU should significantly accelerate framework performance. GPU support in GNA was

announced this year [5].

4

1.2 CUDA

CUDA [6] is a parallel computing platform and application programming interface (API)

model created by NVIDIA. It allows software developers and software engineers to use a

CUDA-enabled graphics processing unit (GPU) for general purpose processing an approach

termed GPGPU (General-Purpose computing on Graphics Processing Units). The CUDA plat-

form is a software layer that gives direct access to the GPU’s virtual instruction set and parallel

computational elements, for the execution of compute kernels.

What is the difference between a CPU and a GPU? A modern CPU has less than one hundred

processing cores clocked from 1 to 4 GHz. A CPU is powerful because it can do everything. If

a computer is capable of accomplishing a task, that is because the CPU can do it. Programmers

achieve this through broad instruction sets and long feature lists shared by all CPUs.

A GPU (graphics processing unit) is a specialized type of microprocessor. Its optimized to

display graphics and do very specific computational tasks. It runs at a lower clock speed than

a CPU but has many times the number of processing cores. Video rendering is all about doing

simple mathematical operations over and over again, and thats what a GPU is best at. GPUs

have thousands of processing cores running simultaneously. Each core though slower than a

CPU core, is tuned to be especially efficient at the basic mathematical operations. This massive

parallelism is what makes GPUs so powerful (fig. 3).

If a CPU is a Leatherman, a GPU is a very sharp knife. You cant tighten a hex bolt with

a knife, but you can definitely cut some stuff. A GPU can only do a fraction of the many

operations a CPU does, but it does so with incredible speed. A GPU uses hundreds of cores

to make time-sensitive calculations for huge amount of data. However, as fast as a GPU can

go, it can only really perform dumb operations. For example, a modern GPU like the Nvidia

GTX 1080 has 2560 shader cores. Thanks to those cores, it can execute 2560 instructions, or

operations, during one clock cycle. By comparison, a four-core Intel i5 CPU can only execute

four simultaneous instructions per clock cycle. However, CPUs are more flexible than GPUs.

CPUs have a larger instruction set, so they can perform a wider range of tasks. CPUs also run

at higher maximum clock speeds and are capable of managing the input and output of all of a

computers components. For example, CPUs can organize and integrate with virtual memory,

which is essential for running a modern operating system. Thats not something a GPU can

accomplish.

5

Figure 3: The difference between a CPU and a GPU architecture

CPUs and GPUs have similar purposes but are optimized for different computing tasks.

Even though GPUs are best at video rendering, they are technically capable of doing more.

Graphics processing is only one kind of repetitive and highly-parallel computing task. Tasks

like experiments results processing and statistical analysis rely on the same kinds of massive

data sets and simple mathematical operations. Operating with matrices and vectors and a lot of

linear algebra operations that’s why GNA is suitable to GPU porting.

But there are additional requirements to transformation GPU porting. Not all transforma-

tions are suitable because of their complexity and the presence of dependencies between data

parts that’s calls for time-consuming data synchronization. The other problem is data transfer.

Initially allocated on a Host (CPU and RAM) data must be transferred to Device (GPU) for

processing on it. After computations data must be transferred to Host for their usage. Data

transfers on each transformation are very expensive and this will not lead to performance en-

hancement. Therefore it is necessary to minimize data transfers in computation chain and build

as long GPU-based chains as it possible (fig. 4). Final task is building full GPU-based compu-

tation graphs with input data transfer to Device at the start and output data transfer to Host at

the end of computation. This will lead to better performance enhancement.

6

Figure 4: Example of data transfer from Host to Device (H2D) and from Device to Host (D2H)

in GNA computation graph

7

2 GPU-based transformations

2.1 FillLike transformation

That was the first ported transformation. FillLike fills all the input array elements with

given value. It has single output — array, filled with value. This value transformation get

as an argument. Transformation realization is not so complicated. Porting was implemented

using wrapper for the GPU array where defined several frequently used mathematical and basic

operations, including fill array with value. Main task there was to embed GpuArray function

in existing GPU integration scheme in this way to get acquainted with framework and general

transformation realization principle. This transformation is perfect match to be calculated in

parallel because it doesn’t need any data synchronization.

Figure 5: FillLike transformation performance comparison

As we can see in fig. 5 GPU-based transformation gives us speed up with about 1000 element

array size. It can be seen that CPU computation time is growing with data size while GPU

8

computation time is remains constant which is typical for a GPU computations because of

distribution of data between processes. We can see the same picture in fig. 6 with larger volume

of data.

Figure 6: FillLike transformation performance comparison with larger volume of data

2.2 Derivative transformation

This transformation calculates the derivative of the multidimensional function versus pa-

rameter. Uses finite differences method of fourth order. Transformation takes two arguments:

parameter instance and finite difference step h. Input and output have the same representation:

array of size N .

Finite difference method approximate a derivative to an arbitrary order of accuracy with

finite difference. The second order finite difference reads as follows:

D2(h) =
f(x+ h)− f(x− h)

2h
.

9

Due to the need of high accuracy in calculations there are used finite differences of fourth

order that is reads as follows:

dy

dx
= D4 (h) =

1

3

(
4D2

(
h

2

)
−D2 (h)

)
=

=
4

3h

(
f

(
x+

h

2

)
− f

(
x− h

2

))
− 1

6h
(f (x+ h)− f (x− h)) .

Initially this transformation was ported using implemented GpuArray functionality. The fol-

lowing operations were used: multiplication by a constant, addition and subtraction of vectors.

But this approach needed additional buffer GpuArray. Memory allocation on GPU during com-

putation slow down it significantly. Current memory management system can’t eliminate this

drawback. Therefore expected acceleration wasn’t achieved (fig. 7). Additional buffer memory

allocation will be moved to the stage of computation graph construction in the future that is will

give us needed acceleration.

Figure 7: Derivative transformation achieved and needed performance

10

Second realization of GPU part of transformation was implemented on a single direct ker-

nel call that is performs calculations according to the formula. This method need additional

buffer memory allocation as well as the previous one. The difference is the size of allocated

memory: this method require four times more memory because it is perform all calculation at

once whereas first method perform calculation iteratively with preprocessing of temporary data

on each step. This drawback can be resolved by upgrading memory management system in the

future. However, this realization did not bring the expected results.

Both realizations show almost the same efficiency in terms of net computation that can be

seen in fig. 8. Plot become linear with small coefficient that is caused by preprocessing.

Figure 8: Expected performance of different Derivative transformation realizations

Usage of second realization become wholly unwarranted. Even though in smallest amount

of data it seems to be a little more efficient, they are the same in general. In terms of current

11

memory management system actual difference in computation time is significant (fig. 9). As

was indicated earlier more memory is required which is essential.

Figure 9: Actual performance of different Derivative transformation realizations

2.3 Rebin transformation

This transformation performs the histogram rebinning. The rebinning is implemented via

multiplication by a sparse matrix. The transformation takes a histogram as an input, defines

input edges, and produces output as histogram with new binning. Thansformation takes new

bin edges as arguments. That is an original implementation leading to significant flexibility loss.

So bin edges cannot be preprocessed and transferred to Device at the stage of computation graph

construction for this reason. Data transfer at the computation stage is costly and it cannot be

bypassed in current transformation realization. Also matrix fill algorithm is running step by step

12

using in current step data from previous so it cannot be calculated in parallel efficiently because

it’s need costly synchronization in each iteration or overlapping of computation. That’s why

this transformation can’t be ported in full. But these computations are not primary. They will

be run only once for the model evaluation. Multiplication by a sparse matrix is more important

as it occurs at each evaluation.

Matrix multiplication is trivial task for parallel computation but not the easiest one [7].

In this particular case matrix multiplied by vector which is performing in this transformation.

Native algorithm can be calculated in parallel with one thread per each vector element. Threads

will perform multiplication matrix row by given vector operations. Results of such approach

can be seen in fig. 10. So it gives performance efficiency with 2000 bin edges and more. But

such amount of data don’t correspond to actual tasks demand.

Figure 10: Performance of Smear calculation in Rebin transformation

13

If map threads for each matrix elements this will make it necessary to use synchronization in

result recording. This approach is not efficient. The solution would be to use shared memory [8].

The main idea is to use shared memory block per block of threads. The result can be computed

by parts and summarized at the end of computation. However, this not lead to performance

enhance (fig. 11). Computation time became mostly the same. This is due to necessity of

synchronization between threads that share memory. To summarize the result, shared memory

usage accelerate computation but synchronization slowdown it more.

Figure 11: Performance of Smear calculation using shared memory

14

2.4 EnergyResolution transformation

It applies energy resolution to the histogram of events binned in Evis. Transformation sin-

gle input is one-dimensional histogram of number of events Nvis and single output is one-

dimensional smeared histo of number of events Nrec.

The smeared histo Nrec and true Nvis are connected through a matrix transformation:

N rec
i =

∑
j

V res
ij N

vis
j ,

where N rec
i is a reconstructed number of events in a i-th bin, N vis

j is a true number of events

in a j-th bin and V res
ij is a probability for events to flow from j-th to i bin.

That probability is given by:

V res
ij =

1√
2πσ(Ej)

exp

(
−(Ej − Ei)

2

2σ2(Ej)

)
,

where σ(Ej) is:

σ(Ej) = Ej

√
a2 +

b2

Ej

+

(
c

Ej

)2

where a, b, c are resolution parameters.

Energy resolution bundle scheme is the following:

Matrix fill might be perfect match for parallel computation because of effective exp function

calculation on GPU and each probability V res
ij is calculated singly that maximize the number of

threads. But specific transformation implementation makes it impossible because computation

is being performed in callback when GPU memory is not allocated yet. It also runs at the initial

15

stage of computation and recalculating with data addition. So it’s not so impact on general

performance.

Smear calculation in this transformation takes the same place as in the previous one. But

there are bigger, wider and less sparse matrices that’s why performance difference more signif-

icant (fig. 12). GPU accelerate computation almost with the smallest amount of data.

Figure 12: Smear calculation for EnergyResolution transformation

16

Conclusion

CUDA support was successfully integrated into GNA framework. GNA development group

is working on its improvement. Even from the early phases it is gave promising results.

GPU codebase includes core library and transformation extensions. I was involved in im-

plementation the second one. I was faced problems during porting of transformations. So

addressing the identified problems in the future can significantly improve system generally.

Ported transformation shows good results. However, there are still ways of further developing.

In this way CUDA support in GNA framework looks like especially perspective and efficient

tool in data analysis and achievement of the assigned aims.

17

Acknowledgements

I am very grateful to my supervisor Anna Fatkina for invitation and given opportunity to

take part in this especially interesting and valuable student program. Thanks for her support,

patience, kindness, considerateness for me and professionalism in research field.

Special thanks to Summer Student Program organizers for providing the opportunity to

being a part of such prestigious scientific institution as JINR. I am especially grateful to JINR

and SSP organizers in particular for the financial support and for assistance provided in solving

all the issues.

Also I would like to thank my university stuff. Thanks to academic adviser N. A. Volorova

for given recommendation. Thanks to academic S. I. Sirotko for suggested idea to participate

in SSP. Thanks to E. V. Kukar for assistance provided in some organization moments.

18

References

[1] GNA repository. https://git.jinr.ru/gna/gna.

[2] Daya Bay Collaboration et al. “A precision measurement of the neutrino mixing angle θ13
using reactor antineutrinos at Daya Bay”. In: arXiv preprint hep-ex/0701029 (2007).

[3] Fengpeng An et al. “Neutrino physics with JUNO”. In: Journal of Physics G: Nuclear and

Particle Physics 43.3 (2016), p. 030401. URL: http://stacks.iop.org/0954-

3899/43/i=3/a=030401.

[4] GNA documentation. http://gna.pages.jinr.ru/gna/.

[5] A. Fatkina et al. CUDA support in GNA data analysis framework. English. Vol. 10963

LNCS. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics). 2018, pp. 12–24. URL: www.scopus.

com.

[6] CUDA Toolkit Documentation. Programming Guide. 2016.

[7] Robert Hochberg. “Matrix Multiplication with CUDA - A basic introduction to the CUDA

programming model”. In: 44 (2012).

[8] Edward Kandrot Jason Sanders. CUDA by Example: An Introduction to General-Purpose

GPU Programming. English. 2010.

19

https://git.jinr.ru/gna/gna
http://stacks.iop.org/0954-3899/43/i=3/a=030401
http://stacks.iop.org/0954-3899/43/i=3/a=030401
http://gna.pages.jinr.ru/gna/
www.scopus.com
www.scopus.com

	Introduction
	GNA
	CUDA

	GPU-based transformations
	FillLike transformation
	Derivative transformation
	Rebin transformation
	EnergyResolution transformation

	Conclusion
	Acknowledgements
	References

