
 
 
 
 

JOINT INSTITUTE FOR NUCLEAR RESEARCH 
Bogoliubov Laboratory of Theoretical Physics  

 
 
 
 

FINAL REPORT ON THE 

SUMMER STUDENT PROGRAM 
 
 
 

Computer simulation of tunneling 
characteristics of superconducting 

nanostructure 

 
 

Supervisor:  
Dr. Prof. Yury M. Shukrinov 
Student:  
Majed Abdel Salam Nashaat 
Cairo University 
 
Participation period: 
July 15 – September 10 
 
 
 
 
 
 

Dubna, 2017 

1



Contents

1 Introduction 4
1.1 Theory of Josephson Tunneling . . . . . . . . . . . . . . . . . . . 5
1.2 Gauge Invariance for the Josephson Effect . . . . . . . . . . . . . 7
1.3 Resistively and Capacitively Shunted Junction (RCSJ) . . . . . 9
1.4 Landau-Lifshitz-Gilbert Equation . . . . . . . . . . . . . . . . . . 12

2 Model 14

3 Results and Discussion 17
3.1 Testing time discretization and numerical method stability . . . . 17
3.2 Features of the IV-characteristic near and far from FMR . . . . 21
3.3 SFS Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 External Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Conclusions 36

5 Acknowledgment 37

2



Abstract

In this study, superconductor ferromagnetic junction under circularly polarized
RF-magnetic field in xy-plane is considered. The order parameter in ferromag-
netic is the magnetization and the collective modes are spin waves, which can
be excited using the RF-magnetic field. Since the energy levels in ferromagnet
are Zemman splitting, the absorption of energy from the oscillating magnetic
field at frequency (Ω) corresponding to transitions between the splinting energy
states with frequency (Ωo) leads to ferromagnetic resonance (FMR). On other
hand, in superconductor the order parameter is the condensate, which has a
phase. Voltage will be generated from the dynamics of this phase. Due to mag-
netic field, the phase should be a gauge invariant. As a result, a modified RCSJ
equation is found. In this new frame the interaction of spin wave magnons and
singlet cooper pairs of the superconductors are considered. The dynamics of
the magnetization components and the trajectory of the total magnetization in
space (Bloch sphere) are described by Landau-Lifshitz-Gilbert (LLG) equation.
We solve numerically a system of equations which couples the RCSJ with the
LLG equations. The IV-characteristics shows new features at FMR. Additional
fractional voltage steps appears between the voltage steps due to FMR, when
the coupling between the LLG and RCSJ equation is taken into account which
is represented by Josephson energy. The dynamics for the magnetizations are
studied at different regions in the IV-characteristics with the phase dynamics of
the Josephson junction (JJ).
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1 Introduction

A fascinating quantum tunneling effect was postulated by BrainJosephson in
1962 in which a supercurrent tunnels through an extremely thin layer (∼ 10Å)
of an insulator between two superconductor electrodes. This current is decried
by I = Ic sin θ, Ic is the critical current and θ is the phase difference between
the macroscopic wave functions describing the superconducting electrodes [1,2].
Additionally, it found that a supercurrent between two superconductors can
tunnel through a normal metal [3] or a ferromagnetic metal [4] by coherent elec-
tron hole pairs. In the latter case, the quantum phases of the electrons and the
holes are modified by the intrinsic magnetic field of the ferromagnetic layer. The
current-phase relation of superconductor/ferromagnetic metal/superconductor
(SFS) Josephson junction is shifted by π and reads as I = Ic sin(θ + π) [5].
These junctions are called π-junctions and define a new building element for
spintronics [6].

The central theme of spintronics is the active manipulation of spin degrees
of freedom in solid-state systems [7]. One goal of spintronic is to understand
the interaction between the particle spin and its solid-state environments, and
make useful devices using this acquired knowledge [7]. Fundamental studies of
spintronics include investigations of spin transport in electronic materials, spin
dynamics and spin relaxation. The possibility of achieving electric control over
the magnetic properties of the magnet by the Josephson current and its coun-
terpart, i.e. achieving magnetic control over Josephson current, has recently
attracted a lot of attention [5, 8–10]. Spin-orbit coupling plays a major role
in achieving such control [11]. For example, in SFS junction, its presence in
a ferromagnet without inversion symmetry provides a mechanism for a direct
coupling between the magnetic moment and the superconducting current [11].
In such junctions, the time reversal symmetry is broken, and the current-phase
relation is given by I = Ic sin(θ−φo), where φo is proportional to the magnetic
moment perpendicular to the gradient of the asymmetric spin-orbit potential
and also to the applied current [11]. Many questions arise concerning this type
of junctions, e.g., if one can generate magnetization reversal and how long the
system able to remember its spin orientation?. A recent study shows a full mag-
netization reversal in SFS with spin-orbit coupling by adding electric current
pulse to the system [10]. While others show the interaction of nanomagnet with
weak superconducting link and a reversal of single domain magnetic particle by
ac field [12,13].

Another mechanism is considered to describe the coupling between the Joseph-
son current and the magnetization dynamics in different structures (SFS, SIFS
or SFIFS,..) [9,14–17]. In the SIS junction [9,18,19], the Josephson plasma waves
can propagate in the junctions and their dispersion relation is ω2 = Ω2

J + k2v2
J ,

where ΩJ is the Josephson plasma frequency and vJ is the velocity of Swihart
waves. While in the F-layer, the dispersion relation is ω2 = Ω2

o(1+k2l2m), where
Ωo is the magnetic resonance frequency and lm is a magnetic length [20]. Usu-
ally lm < lj , (lj = vj/ΩJ) and if ΩJ < Ωo, both dispersion relations can cross
each other [9]. The interaction between magnetization and Josephson currents
leads to a coupling between Josephson plasma and spin waves. Since the energy
levels in ferromagnet are Zemman splitting, the absorption of energy from the
oscillating magnetic field at frequency (Ω) corresponding to transitions between
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the splitting energy states with frequency (Ωo) leads to ferromagnetic resonance
(FMR). In this case the uniform magnetization of a ferromagnetic sample is ex-
cited by a uniform external microwave field with frequencies in the GHz regime.
In [16], the authors consider SFS junction with zero McCumber parameter at
FMR. The IV-characteristic demonstrates voltage step at even power of the
frequency of the RF-magnetic field. The reason for these steps are due to the
interaction between cooper pairs and magnons [16].

Magnetization dynamics are characterized by nonlinear behavior. However,
one need to drive a system above some threshold power to see these nonlinear
dynamics. In this case, there is sufficient energy going in as to counteract the
natural losses or damping from the magnetic system. If driven far enough into
the nonlinear regime, magnetic systems may display chaotic behavior. That is,
very small changes in the initial magnetization conditions lead to vastly different
dynamics [21]. Spin torque nano-oscillators and other novel spintronic devices
their operation can be affected by nonlinear effects. Nonlinear damping of the
magnetization vector motion becomes more important to consider in order to
understand the resulting dynamics and to optimize a device performance. In
some cases, the nonlinear effects are in fact desirable and allow for the design
of signal processing devices such as frequency modulators or filters that operate
in the microwave regime [21].

In the current study, we consider the effect of magnons on Josephson phase,
and its counterpart in the frame of the RCSJ model with over-damped case
(βc = 0). Due to this coupling, new features appear in the IV-characteristic for
SFS junction. An additional fractional voltage steps between the ferromagnetic
resonance voltage steps appear. The position of these steps follow continued
fraction formula similar to that demonstrated in [22] for SIS structure. Thus
the coupling between Josephson phase and magnons opens the gate for the
synchronization between the applied magnetic field frequency and the Josephson
frequency. Fast Fourier transform shows that large angle of precession for the
magnetization component occur. Each time the magnetization passes through a
region, its trajectory is changing, opening up new loops on the Bloch sphere. The
motion does not trace out the same loop each period. Such chaotic motion can
be induced by the Josephson current which affect the magnetization precession
which is determined by LLG equation.

1.1 Theory of Josephson Tunneling

The Josephson effect is a quantum tunneling effect which was first predicted
from theory and later it was observed in experiments [23]. According to quantum
mechanics, if two metals are brought very close, but still with a small gap in
between, there is a chance that an electron of the one metal is found in the
other metal ”electron tunnelling”. By applying a potential difference, a current
can flow from the one metal to the other, even though there is an insulator
in between. Similarly the Josephson effect occurs, if two superconductors are
brought close to each other.

In ideal superconductors, all electrons condense to the superconducting state,
i.e., they form Cooper pairs and they are in the same state. When two super-
conductors are brought together with a weak link in between, a finite overlap of
the macroscopic wave-function of the two weakly coupled superconductors can
occur which means that a Cooper pair tunneling takes place (see fig 1).
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Figure 1: Two superconductors separated by a thin insulating barrier

Derivation of the 1st and the 2nd Josephson equations:

In order to understand the electrical performance of Josephson junctions,
it is beneficial to comprehend the Josephson equations. By applying a voltage
V across the junction, the potential of the left side is raised with respect to the
right side. The energy for the electrons is lower at the left, since the electron has
a negative charge. For simplicity, the zero of energy can be taken midway be-
tween the two energies, so that EL = −ER = −eV . The Schrödinger equations
for this system are then given by:

i~
∂ΨL
∂t

= −eV ΨL −KΨR (1a)

i~
∂ΨR
∂t

= eV ΨR −KΨL, (1b)

where Ψi (i=R or L) represents the single wave function for the cooper pairs,
and K represents the coupling interaction coefficient between the two super-
conductors and depends on the structure of the junction. We can express the
complex wave function for each superconductor in terms of a magnitude and a
phase (θ):

ΨL =
√
nLe

iθL and ΨR =
√
nRe

iθR , (2)

where ni (i=R or L) is the density of the pairs. Substituting Eq.(2) into Eq.(1),
and introduce θ = θL − θR after separating the real and the imaginary parts,
the time evolution equations are:

∂nL
∂t

=
2

~
K
√
nLnR sin θ (3a)

∂nR
∂t

= −2

~
K
√
nLnR sin θ (3b)

∂θL
∂t

=
K

~

√
nR
nL

cos θ +
eV

~
(4a)

∂θR
∂t

=
K

~

√
nL
nR

cos θ − eV

~
(4b)
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From Eq.(3), we notice that the magnitude of the rate of decreasing the pair
density in one superconductor is the same as the rate of increasing the pair
density in the other superconductor. The time derivative of the density of
Cooper pairs describes a charge transport; this means that J = ṅ, where ṅ
is the time derivative of the density. The energy levels will shift according to
EL − ER = 2eV , where 2e is the charge of a cooper pair. At this stage we can
deduce two Josephson effects:

• The DC Josephson effect
Eq.(3) can be written as:

Is(ϕ) = Ic sin(θ), (5)

where Is is the supercurrent density, and Ic = 2K/~√nLnR is the critical
current density. The maximum Josephson current density that can flow
through the barrier determined by the Cooper pair density. This equation
takes a value between −Ic and +Ic. It correlates the phase difference at
the Josephson contact with the current of the Cooper pairs across this
contact. The maximum energy exchange will take place for a phase shift
of ±π/2. A dc current applied to Josephson junction by external source,
results in a constant phase difference for −Ic ≤ I ≤ Ic:

θ = θn = arcsin

(
I

Ic

)
+ 2πn, θ = θ̃n = π − arcsin

(
I

Ic

)
+ 2πn (6)

The constant phase means that dθ/dt = 0. Each of the solutions corre-
sponds to zero junction voltage and describes the superconducting state.
This case is called the zero voltage state [18].

• The AC Josephson effect
Subtracting Eq.(4.a) from Eq.(4.b), we get

dθ

dt
=

2e

~
V (7)

Consequently, the phase difference changes linearly with time in case of
a potential difference between both superconductors [18]. Accordingly,
the L.H.S has the unit of frequency, and 2e/h = 483.6MHz/µV , this
frequency lies in most cases in the microwave regime for experimentally
achievable voltages. According to this, the Ac Josephson effect can be
illustrated as follows; due to the presence of the voltage, the tunneling
Cooper pairs are accelerated and gain energy 2eV , as they are not allowed
to alter their energy while tunneling a photon of the energy hf = 2eV is
emitted .

1.2 Gauge Invariance for the Josephson Effect

The phase difference should be redefined so that the current density is gauge
invariant under the choice of the mathematical formulation for any magnetic
field which may be existed. For two points (a1, a2) shown in Fig.2, the gauge
change for a vector potential A is:

A′ = A +∇χ, (8)
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where χ is an arbitrary scaler function. The phase at the two points:

θ
′

1,2 = θ1,2 −
2e

~
χ1,2 (9)

While the phase difference defined as:

θ = θ1 − θ2 +
2e

~

∫ 2

1

A(x, t) · dl (10)

Figure 2: The integration contour for the vector potential A

According to this, θ is independent of the choice of χ i.e., the choice of the
gauge under the substitution of Eqs.(8, 9). The relation between the phase
difference and the magnetic field passing through a junction in the plane of the
barrier can be found as follows: Consider four points along the junction (see
Fig.2). The gauge is the London gauge, where the phase gradient is zero inside
each of the two superconductors (electrodes.). Then θ1 is the same at a1 and
b1, and θ2 is the same at a2 and b2. Using Eq.(10):

θb − θa =
2e

~

(∫ b2

b1

A′(b, t) · dl −
∫ a2

a1

A′(a, t) · dl

)
(11)

The magnetic flux (outward-direction) through the rectangular contour is:

Φy =

∫
s

B·ds =

∮
A′·dl =

∫ a2

a1

A′·dl+
∫ b2

a2

A′·dl+
∫ b1

b2

A′·dl+
∫ a1

b1

A′·dl, (12)

where B is the magnetic field. As the canonical momentum in the transformed
gauge is p′ = e∗ΛJs + e∗A′, p′ = ~∇θ′, and Λ is the London coefficient. As
∇θ′ = 0 in the superconductors, then ΛJs = −A′ [24]. This means that; the
integrals in Eq.(12) are equivalent to integrals of the current density. Since the
current is parallel to the junction surface, those portions of the contour that are
perpendicular to the surface make no significant contribution to the integrals.
In addition to this, if the superconductors thickness is much larger than the
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penetration depth, the second and the last integral can be neglected. The final
expression is:

θb − θa =
2e

~
Φy (13)

This means that; the difference of the phase differences between these two points
along a junction is proportional to the magnetic flux passing through the junc-
tion between the points. If we suppose that the points a and b are separated
by a differential distance dz, the flux will be function of; the flux in the barrier
(insulator) Bby, the penetration depth of the two superconductors λ1, λ2, and
the barrier thickness d.

Φy = Bby(λ1 + λ2 + d)dz (14a)

∂θ

∂z
=

2e

~
Bby(λ1 + λ2 + d) (14b)

∂θ

∂y
= −2e

~
Bbz(λ1 + λ2 + d) If they are separated in the y-direction. (14c)

Generally:

∇θ =
2ed′

~

[
Bb(r, t)× n)

]
, (15)

where n is the unit vector directed from one superconductor toward the other.

1.3 Resistively and Capacitively Shunted Junction (RCSJ)

The basic idea in the RCSJ model is to describe the Josephson junction with
an equivalent circuit for Josephson junction. The circuit contains a capacitor, a
resistor, and the Josephson supercurrent in a parallel configuration (see Fig3a).
The model was introduced by W.C.Stewart and D.E.McCumber to describe
the current voltage characteristics for Josephson junction [25,26].

According to this model we have:

• Is: accounts for the supercurrent with current density Js.

Is = Ic sin θ (16)

According to V = LdI/dt, and L is the inductance, we can get the induc-
tance for Josephson junction as follows:

V = Ls
dIs
dt

(17)

Using Is = Ic sin θ(t), then

Ls =
Lc

cos θ(t)
, (18)

where

Lc =
~

2eIc
(19)
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IS Iqp
Idis

R Inoise

(a)

(b)

Figure 3: a)Equivalent circuit for Josephson junction, b) Current voltage char-
acteristic for Josephson junction.

• Conductance: represents the quasi-particle current. At finite tempera-
tures (T > 0) there is a finite density of normal electrons due to thermal
break-up of Cooper pairs. The presence of the condensate of paired elec-
trons makes the properties of these normal excitations somewhat different
from those in the normal state they are usually called quasi-particles. In
the superconducting state, where the voltage across the Josephson junc-
tion equals zero, the quasi-particles do not contribute to its current. If,
however, the Josephson phase ϕ changes in time and the voltage is non-
vanishing, then a quasi-particle current appears. If T is close to the critical
temperature Tc of a superconductor, the binding energy 2∆,( ∆ is the gap
energy of the superconductor) of the Cooper pair becomes much smaller
than the thermal energy KBT , where kB is the Boltzmann constant. As
a result, the concentration of Cooper pairs is small, and the concentration
of normal electrons is close to its value in the normal state (at T > Tc).
In this case, the Iqp-V dependence is close to the usual Ohm’s law:
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Iqp = GNV, (20)

where GN = R−1 is the normal conductance of the Josephson junction.

While if the voltage across the junction is above the gap value, a Cooper
pair in one of the electrodes breaks and one of the two newly formed quasi-
particles passes to another electrode. The Iqp-V dependence is close to the
Ohmic dependence at all temperatures [18].

• Capacitor: carries the displacement current, which flows between the
adjacent superconducting electrodes.

– The capacitance depends on the junction type and its size. For a
planar tunnel junction it is given by εεoA/d, where A is the junction
area, d is the insulating thickness, and ε is the dielectric constant of
the barrier (insulator) material.

For most practical junctions the displacement current can be represented
in the usual form:

Idis = C
dV

dt
, (21)

where C is the junction capacitance, which is the same in the normal
and the superconducting state. In practice the relative magnitude of the
displacement current Idis is of importance rather than the absolute value
of C.

An estimation for the above currents with respect to the voltage show that
Is - V/ωLc, Iqp - V GN , and Idis ≈ ωCV [18].

• Noise current source: represents the fluctuation in the current.

Due to the conservation of charge, an input current must be in balance with
the current through the junction. The total current is the sum of the Josephson-
current Is, the quasi-particle current Iqp and the displacement current Idis.

RCSJ current:

I = Ic sin θ +
V

R
+ C

dV

dt
+ Inoise (22)

Using equ.7:

I = Ic sin θ +
~

2eR
θ̇(t) +

~C
2e
θ̈(t) + Inoise (23)

The following characteristic frequencies (times) and parameters are defined
in order to study the dynamics of the phase and the voltage for Josephson
junction:

• Plasma frequency: The charge is oscillating back and forth as in a
plasma mode. The Josephson plasma oscillation is analogous to the bulk
plasma oscillation in the same way. From the wave equation for a Joseph-
son tunnel junction it was found that [27]:

ωp = τ−1
p =

√
2eIc
~C

(24)
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• Time constant of the equivalent circuit: Is the inverse relaxation
time in a system consisting of a normal current and a supercurrent.

ωc = τ−1
c =

R

Lc
=

2eIcR

~
, (25)

where IcR is known as the characteristic voltage of Josephson junction.
At V < Vc the normal current is smaller than the critical junction current.

• RC time constant of the equivalent circuit:

ωRC = τ−1
RC =

ω2
p

ωc
=

1

RC
(26)

• Stewart-McCumber parameter βc: corresponds to the square of the
quality factor Q of a parallel LRC circuit. It compares the decay time
constant of the amplitude of an oscillating physical system to its oscillation
period.

βC =
ω2
p

ω2
c

=
2eJcCR

2

~
=
τRC
τJ

, Q =
RC√
LC

=
ωc
ωp

=
ωp
ωRC

, (27)

where τRC is the capacitor time constant, and τJ = ~/2eJcR is the character-
istic time associated with the phase evolution across the JJ. Starting from zero
applied current and then increasing the current, the JJs stay in the zero voltage
state in both cases until the critical current is reached. After that, the JJs go to
the resistive state. Now when the current start to decrease, we can differentiate
between the two cases; in the over-damped case; βc << 1, the time required for
the charge on the capacitor to relax is much shorter than τJ , this means that;
we can neglect the effect of the capacitor and the current voltage characteristics
(CVC) has no hysteresis. While in the under-damped case; βc >> 1, τJ is much
shorter than τRC , and when the biasing current start to decrease, a voltage can
still be maintained since it takes a long time for the voltage across the capacitor
to relax, the Josephson oscillations occur and the CVC has a hysteresis, where
its size is affected by the values of βc in the under-damped case, as shown in
Fig3b.

1.4 Landau-Lifshitz-Gilbert Equation

In an atom the electron has two angular momenta: the orbital (L) and spin
(S) angular momentum. The corresponding magnetic moments are µl and µs
respectively:

µL = −γLL

µS = −γSS

(28)

where γL and γS represent the orbital and the spin gyromagnetic factors. Which
can be expressed in terms of Planck’s constant (~), Bohr magnetron (µB =
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|e|~/2me where e and me is the charge and the mass of the electron) and the
gyromagnetic splitting factor, gL or gS :

γL,S = gL,S
µB
~

(29)

If one consider an arbitrary external magnetic field (H), the rate of change
of the electron magnetic moment µ to the torque exerted on the particle by the
magnetic field is given by:

dµ

dt
= −γµ×H (30)

The frequency of precession is the Larmor frequency f = γH/2π.
Spins in ferromagnetic materials are strongly coupled by the exchange inter-

action [28]. So, there is no strong variation of the orientation of the magnetic
moments from one lattice site to the next. Then one can introduce the average
of magnetic moment, called magnetization,M, by taking the volume average of
both sides of the equation.30, one has:

dM

dt
= −γM×H (31)

Figure 4: Magnetization precession for (a) undamped motion and (b) motion
with damping.

The first dynamical model for the precessional motion of the magnetization
was proposed by Landau and Lifshitz in 1935:

dM

dt
= −γM×Heff (32)

In the frame of the micromagnetism theory, spontaneous magnetization is
excised and its vector has a constant amplitude |M| = const. The effective
magnetic field in equation .32 is given by the derivative of the total energy of
the ferromagnetic system:

Heff = −∇ME (33)

where E is the total energy of a magnetic system and it has different contri-
butions coming from exchange energy, magneto-crystalline anisotropy energy,
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dipolar energy, Zeeman energy and other quantum effects [29]. The approach
followed by Landau and Lifshitz consists of introducing dissipation in a phe-
nomenological way. They introduce an additional torque term that pushes
magnetization in the direction of the effective field (see Fig.??). Then, the
Landau-Lifshitz equation becomes:

dM

dt
= −γM×Heff −

λ

Ms
M×M×Heff (34)

where λ > 0 is a phenomenological constant characteristic of the material and
Ms is the saturation magnetization.

In 1955 Gilbert proposed different approach for phenomenological dissipation
by introducing a kind of ‘viscous’ force, whose components are proportional to
the time derivatives of the generalized coordinates of the magnetization. [30].
He introduces the following torque term:

α

Ms
M× dM

dt
(35)

where α > 0 is the Gilbert damping constant, depending on the material. There-
fore, the precessional equation, modified according to Gilbert’s work, is generally
referred to as Landau-Lifshitz-Gilbert equation:

dM

dt
= −γM×Heff +

α

Ms
M× dM

dt
(36)

Using the vector identity a × (b × c) = b(a · c) − c(a · b) and M · ∂M∂t = 0
(|M | = const) one ends with:

dM

dt
= − γ

1 + α2
M×Heff −

γα

(1 + α2)Ms
M× (M×Heff ) (37)

equation.34 and 37 are mathematically equivalent if one assumes:

γ 7−→ γ

1 + α2
, λ 7−→ γα

1 + α2
(38)

2 Model

Consider two superconductors separated by ferromagnetic layer with thickness
d. The area of the junction is lylz see Fig.5. A bias current is applied in
x-direction, and microwave radiation is applied to the junction. The magnetic
field is assumed to be circularly polarized in the xy-plane with amplitude hac and
frequency Ω. The components of the magnetic field are (hac cos Ωt, hac sin Ωt, 0).
While the electric field (A sin Ωt) with amplitude A and frequency Ω is assumed
to be in the x-direction. If the superconductors are thicker than the London’s
penetration depth, the magnetic field generated by Josephson current can be
neglected.

In the RCSJ model [25,26], the phase difference θ(t) between the supercon-
ductors is described by:

I = Ic sin θ(t) +
Φo

2πR

dθ(t)

dt
+ C

Φo
2π

d2θ(t)

dt2
(39)
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hac

Figure 5: SFS Josephson junction. The bias current is in x-direction. Circularly
polarized microwave with amplitude hac and frequency Ω is applied in x-y plane.
The enlarged part show the results of the interaction between cooper pairs from
superconductor and magnons (spin wave) inside ferromagnetic layer.

where Ic is the critical current, Φo is the flux quantum (h/2e), R and C
are the resistance, and the capacitance in the Josephson junction respectively.
The applied microwave causes precessional motion of the magnetization in the
ferromagnetic (FM) layer. As a result, an excitation of the uniform mode of a
spin wave is occurred. The dynamics of magnetization due to the microwave
radiation is described by the Landau-Lifshitz-Gilbert (LLG) equation [31]:

(1 + α2)
dM

dt
= −(γ M×Heff +

γ α

|M|
[M× (M×Heff )]) (40)

where Heff is the effective field which contains; 1) the external magnetic
field, 2) the magnetic field due to the magnetization (demagnetization field);
notice that the anisotropic precession of the magnetization due to the this field
will be neglected, and 3) other fields due to quantum effects. Due to magnetic
field, the phase in the superconductor should be a gauge invariant. As a result,
the RCSJ equation should be modified. The magnetic flux in z and y direction
are Φz(t) = 4πdlyMz(t), Φy(t) = 4πdlzMy(t) (we put µ = 1 permeability). The
gauge-invariant phase difference is given by:

θ(y, z, t) = θ(t)− 8π2dMz(t)

Φo
y +

8π2dMy(t)

Φo
z (41)

By integrating over junction area, the modified RCSJ equation [32] reads as:
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I/Ic +A sin Ωt = sin θ
sin
(
πΦz(t)

Φo

)
sin
(
πΦy(t)

Φo

)
(πΦz(t)/Φo)(πΦy(t)/Φo)

+
dθ(τ)

dτ
+ βc

d2θ(τ)

dτ2
(42)

where τ = tτJ , τJ = Φo/2πRIc, and βc = RC/τJ is the McCumber pa-
rameter. Here we consider over-damped case with βc = 0. We will assume the
amplitude of the electric field A = 0.

In [16] the authors consider the effective field in such junction to be in the
form of Heff = Hac + Ho where Ho is an uniaxial magnetic anisotropic field
which is assumed to be in z direction, and Hac = (hac cos Ωt, hac sin Ωt, 0) is
the microwave driving field. In this study, we take into account the Josephson
energy part in the total effective field. The total field can be found by follow
the same procedure as in Ref’s. [10–13]. The effective field will be Heff= Ho+
Hac − 1

V
∂
∂M εJ where V is the volume, εJ = EJ(1 − cos θ) and EJ = ΦoIc/2π.

By defining the following dimensionless parameters:

m =
M

|M |
, τ = t

τj
, τj = Φo

2πIcR
, hTeff

=
HTeff

Ho
, εJ = EJ

V |M |Ho
, hac 7−→

hac

Ho
, Ω 7−→ Ωτj , Ωo 7−→ Ωoτj , φsy=

4π2lyd|M |
Φo

, φsz=
4π2lzd|M |

Φo
.

where Ho= Ωo/γ, Ωo is the ferromagnetic resonance frequency. The LLG in the
dimensionless form reads as:

dm

dτ
= − Ωo

(1 + α2)

(
m× heff + α [m× (m× heff )]

)
(43)

The anisotropic precession of the magnetization due to the demagnetization field
[33] will be neglected for simplicity. Using Eq.(41) and taking the integration
over the junction area, the total effective field in this case hTeff

is given by:

hTeff
= hac cos Ωτ êx

+

(
hac sinΩτ +

εJ(cos θ) sin (πφsymz)

my(πφsymz)

[
cos(πφszmy)− sin(πφszmy)

(πφszmy)

])
êy

+

(
1 +

εJ(cos θ) sin (πφszmy)

mz(πφszmy)

[
cos(πφsymz)−

sin(πφsymz)

(πφsymz)

])
êz

(44)

Using Eq.(43) and Eq.(44) in the dimensionless form, the equation of motions
for the magnetization dynamics in x-, y- and z- direction can be determined.

Here, we demonstrate estimations of the numerical parameters that charac-
terize our model. The flux quantum Φo=2.067833 * 10 −15 Wb, the permeabil-
ity µo= 4*π*10−7 Wb/Amp.m. In case of junction with d=10 nm, ly=lz=20
nm, critical current density Ic = 6.4 ∗ 108 Amp/m2, saturation magnetization
M=6*105 Amp/m, Ωo=100 GHz and gyromagnetic ration γ = 6π MHz/T .
Then φsz=φsy=2.8, εJ = 0.16. If for example Ωo=400 GHz then εJ = 0.04.
While for junction with d=7 nm, ly=lz=30 nm, critical current density Ic=4
MAmp/m2, saturation magnetization M=5.6*105 Amp/m, Ωo=350 GHz and
gyromagnetic ratio γ = 8π MHz/T . Then φsz=φsy=2.8, εJ = 1.87.
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3 Results and Discussion

In this section, we demonstrate our results for the self-consistent current-phase
relation in SFS junction taking into account the coupling between Josephson
phase and magnons in F-layer. We solve Eq.(42) combined with Eq.(43) using
the 4th order Runge-Kutta method. As a result, we find the temporal depen-
dence of the voltage V (t), phase θ(t), andmi(t) (i=x,y,z) in the SFS junction at a
fixed value of the bias current I. Then the current value is increased or decreased
by a small amount of δI (the bias current step) to calculate the voltage at the
next point of the IV-characteristics. The final phase, voltage and magnetization
components achieved at the previous point of the IV-characteristic are used as
the initial conditions for the next current point. The voltage average V is given
by V = 1

Tf−Ti

∫
V (t)dt where Ti and Tf determine the interval for the tempo-

ral averaging. The one-loop IV characteristic is obtained by sweeping the bias
current from I= 0 to I= 3 and back down to I= 0. The initial condition for the
magnetization components are mx = 0, my = 0.01 and mz =

√
(1−m2

x −m2
y),

while Vin=θin=0. The numerical parameter (if not mentioned) are α = 0.1,
hac = 1, φsy = φsz = 4 and Ω = Ωo = 0.5.

3.1 Testing time discretization and numerical method sta-
bility

Before proceeding to investigate the dynamics for our system, it will be necessary
to check the stability for numerical methods which we used. The system of
equations which are mentioned in the last section have been solved using the
4th order Rung-Kutta method. In this section numerical simulations are done
with different time steps and average time domain for the integration. The
following parameters are used: τj =1, Ω = Ωo = 0.5, hac = 1, βc = 0.01,
α = 0.1, φsy = φsz = 4 and step of current 0.005. The initial value for the

magnetization components are mx = 0, my = 0.01 and mz =
√

1−m2
x −m2

y.

We have two systems of equations one with εJ = 0 and a more complex one
with εJ 6= 0. The scope of this part are limited to the time dependence for the
total magnetization, one of the magnetization’s component (e.g., mx) and the
voltage at different current value.

Figure.6 reveals the effect of changing the initial time on the magnetization
and the voltage in case of εJ =0. In this case, the solution of the LLG equation
will be the same along the IV-curve. In Fig.6(a) The total magnetization is
conserved over time such that m = 1 in dependent on Ti. However, the time
dependence for the x-component of the magnetization and the voltage ( as shown
in Fig.6(b) and Fig.6(c) respectively), shows an instability for time less than 50.
In Fig.6(b), the x-component of the magnetization for Ti = 150 (thick-black
line) and Ti = 200 (dash dot- blue line) are coincides and out of phase with
respect to the case of Ti = 50 (thin-red line). While the voltage at I=1.16 is
changing in phase and amplitude according to Ti as shown in Fig.6(c).
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Figure 6: Time dependence of: (a) total magnetization, (b) x-component of
magnetization and (c) voltage at εJ=0, I=1.16 at three values of Ti = 50 (thin-
red line), 150 (thick-black line) and 200(dash dot-blue line).

The next figure is devoted to the change of the discretization of time. Three
values of TP are taken (0.05,0.005,0.0005). Fig.7 shows the case with εJ=0.
It can be seen from Fig.7 (a) and Fig.7 (b) that the results are coincides for
different step of time. In addition to this, the voltage time dependence at
different current is shown in Fig.7 (c) where an instability occurs at t less than
50.

(a) (b) (c)

Figure 7: Time dependence of: (a) total magnetization, (b) x-component of
magnetization and (c) voltage with εJ=0, at three values of Tp = 0.05, 0.005
and 0.0005 (the results are coincides).

The case with εJ 6= 0 (εJ = 2) is shown in Fig.8. The results shown in the
figure are all coincides for TP equal to 0.05,0.005 and 0.0005. In addition to this,
the behavior of the total, x-component of the magnetization and the voltage at
different current, is shown in the figure. In Fig.8 (a) the total magnetization at
I=0.1 (solid-blue line) and at I=0.64 (dotted-red line) equal to 1 along the whole
time domain. However, changes in the 3rd or 4th digit after decimal point in m
occur at I=1.16 (dashed-black line) and I=2.45 (dashed dot-green line) along
the whole time domain of the calculations. Fig.8 (b) shows the x-component
of the magnetization, for I=0.1 (solid-blue line) and I=0.64 (dotted-red line)
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mx=1 and -1 respectively. While at I=1.16 (dashed-black line) and I=2.45
(dashed dot-green line), mx oscillates along the whole time domain. Fig.8 (c)
shows the voltage time dependence, at I=0.1 (solid-blue line) and at I=0.64
(dotted-red line) the voltage average to zero. While at I=1.16 (dashed-black
line) and I=2.45 (dashed dot-green line), the voltage averages to ≈ 1 and ≈ 2.5
respectively. An instability for t less than 200 occur for v at I=1.16.

(a) (b) (c)

Figure 8: Time dependence of: (a) total magnetization, (b) x-component of
magnetization and (c) voltage with εJ=2, Tp = 0.005 and different values of I
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Figure.9 demonstrates the effect of time step in case of external radiation
with frequency ω = 0.5 and amplitude A = 0.3 in case of εJ=0. As shown in
Fig.9(a), the total magnetization is conserved to 1. While for the x-component
and voltage time dependence at I =1.16, oscillation occurs along the whole time
domain of the calculations with instability for t less than 50. For both values
of TP−rad the oscillations are out of phase.

. . .

(a) (b) (c)

Figure 9: Time dependence of: (a) total magnetization, (b) x-component of
magnetization and (c) voltage with εJ=0, Tp−rad = 0.025 and 0.0083. The
frequency of external radiation equal to 0.5 with amplitude 0.3
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Other parameters e.g., average time for integration and step of current, do
not bring changes in m, mx and v.

3.2 Features of the IV-characteristic near and far from
FMR

In this section, we are interested in investigating the effect of FMR on the
IV-characteristic and magnetic moment components in the over-damped case
βc = .01. When Heff = Ho +Hac, the system of equations reduced to:

dmx

dτ
=

Ωo
(1 + α2)

[
(−my − αmxmz) + αhac cos(Ω τ)(my

2 +mz
2)

+ hac sin(Ω τ)(− αmxmy +mz)

]
dmy

dt
=

Ωo
(1 + α2)

[
(mx − αmymz)− hac cos(Ω τ)(αmxmy +mz)

+ αhac sin(Ω τ)(mx
2 +mz

2)

]
dmz

dt
=

Ωo
(1 + α2)

[
α
(
mx

2 +my
2
)

+ hac cos(Ω τ)(my − αmxmz)

− hac sin(Ω τ)(mx + αmymz)

]
(45)

which are solved with RSCJ equation. The following parameters are used:
τj =1, Ω = 1, hac = 1, α = 0.1, φsy = φsz = 4. The initial value for the
magnetization components are mx = 0, my = 0.01 and mz =

√
(1 − m2

x −
m2
y). Four different values for Ωo are taken to be near and far from Ω = 1.

Since the LLG equation in this case is not affected by the RCSJ equation,
the magnetization components are the same along the IV-characteristic. Far
from FMR e.g.,Ωo = 0.1, 0.2, the IV-characteristic has no significant differences
from the usual case of RCSJ model in the over-damped case (see thick dashed-
green line in Fig.10). While near and at FMR e.g.,Ωo =0.7 and 1 respectively,
voltage steps appear at 2*Ω and 4*Ω (thick dotted-black line and thick solid-
blue line respectively). The width for these voltage steps in case of Ωo = 0.7
is smaller than that in case of Ωo = 1 (at FMR). The supper-current signals
for different values of Ωo show linear portions (increased when Ωo close to Ω)
at constant voltage steps (see thin- dashed, -dotted and -solid lines in Fig.10 ).
Significant differences can be seen for magnetization component when resonance
occur (see inset (I) and (II)). As shown in inset (I), the magnetization for mx

and my oscillates with small amplitude when Ωo is far from Ω. While mz decays
and reach a value of ≈ 0.994. In inset (II) however, the magnetization of mz

reaches to a saturation value of zero. While the precession now lies in xy-plane.
Another significant difference can be shown in insets (III) and (IV), where the
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voltage time dependence is calculated for three different currents in the IV-
characteristics. The voltage oscillation is not a sin wave when Ωo is close to Ω
but it is still periodic.

.

Figure 10: IV-characteristic for εJ = 0. For clarity, the x-axis at Ωo =0.1,0.2
(far from FMR), represented by thick dashed-green line, is shifted with respect
to Ωo =0.7,1 (near and at FMR), which is represented by thick dotted-black
line and thick solid-blue line respectively. The right y-axis is devoted to the
supper-current signal corresponding to different values of Ωo. Insets (I) and
(II) indicate the time dependence of the magnetization component at Ωo=0.1
and Ωo=1 respectively. While insets (III) and (IV) represent the voltage time
dependence at Ωo=0.1 and Ωo=1 respectively, for three-different current values
at I=0.64 (dotted-red line), I=1.16 (thin solid-blue line) and I=2.45 (thick-black
line) in the IV-characteristic.

The magnetization trajectory in 3D space is shown in Fig.11. As can be
seen in inset (II) and (III), the magnetization follows paths in 3D till the mag-
netization in z-direction reach zero, then the trajectory path follows a constant
circle in xy-plane of radius 1.
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Figure 11: Magnetization trajectory at I= 0.64 and εJ = 0 in 3D space at
Ωo = 0.1 (inset I) and Ωo = 1 (Inset II). Insets III, IV and V represent the 2D
zy-, xy- and zx- plane respectively at Ω = Ωo = 1. The arrows represent the
starting point.

Now we switch to a more complicated case where εJ 6= 0. The dynamics
of the system are determined by the system of equations.(??, ??, ??). Fig.12
represents the IV-characteristic and voltage time dependence in case of εJ = 2,
α =0 .16 and hac = 1.8. Two cases are demonstrated in the figure. When
Ωo = 0.1, 0.2 (Far from FMR), the IV-characteristic is similar to the usual over-
damped case for Josephson junction (see thin dashed-green line). However, if
Ωo = 1 (FMR), the IV-characteristic shows two voltage steps at 2*Ω and 4*Ω.
In addition to this, several steps appear with different widths due the additional
terms in LLG equation (εJ terms). The supper-current signal reflects this. Lin-
ear portions in the supper-current signal corresponding to the constant voltage
steps are seen in the figure (see thick-red line). The upward inset represents the
voltage time dependence at different current values at Ωo = 0.1. When FMR
occurs, these waves are changed dramatically as can be seen in the downward
inset.
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.

Figure 12: IV-characteristic for εJ = 2. For clarity, the x-axis at Ωo =0.1,0.2
(far from FMR), represented by thin dashed-green line, is shifted with respect
to Ωo =1 (near and at FMR); which is represented by thin solid-blue line. The
right y-axis is devoted to the supper-current signal corresponding to different
values of Ωo. Insets (I) and (II) indicate the voltage time dependence at Ωo=0.1
and Ωo=1 respectively, for four-different current values at I=0.45 (dashed-red
line), I=0.64 (dotted-black line), I=1.3 (thin solid-blue line) and I=2.45 (thick-
green line) in the IV-characteristic. The arrows represent the value of current
in which the time dependence of the voltage and magnetization are determined.

Figure.13 demonstrates the time dependence of the magnetization at differ-
ent current values (see arrows in Fig.12). The thick solid-green line represents
the total magnetization to be sure than m=1 along the time domain of the cal-
culations. In case of Ωo far from FMR, no significant difference is observed for
the magnetization components at different current values are seen in the upward
insets. However, at FMR the magnetization components change dramatically
and randomly. An interesting case occurs at I=0.45 and I=0.5, where we almost
have a magnetization reversal in x-direction (see dotted-blue line in Fig.13 (a)
and (b)).
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(a) (b)

(c) (d)

Figure 13: Magnetization time dependence when εJ=2 at Ωo = 0.1 and Ωo = 1
for a) I=0.45, b) I=0.5, (c) I=1.3 and (d) I=2.45.

The total magnetization in the 3D space at different current values shows
several trajectory paths. Figs (14,15,16,17,18,19) represent the trajectory of
m at Ωo = 0.1 and Ωo = 1. At Ωo=0.1 no significant change is occurred as
can be seen in insets (I) in the figures. The total magnetization m lies on a
sphere of radius 1. At I =0.64 (see Fig.16), the trajectory path draws almost
a sphere of radius 1. While at I=2.45 (see Fig.19), not all the points of the
sphere are covered; as can be seen in inset (IV) of the figure (i.e., points at the
top and bottom of the sphere are not look like a preferred ones). At I=0.45
( Fig.14), I=0.5 (Fig.15), I=1.3 (Fig.17) and I=2.1 (Fig.18), it seems that the
magnetization chooses a preferred paths.
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Figure 14: Magnetization trajectory at I= 0.45 and εJ = 2 in 3D space at
Ωo = 0.1 (inset I) and Ωo = 1 (Inset II). Insets III, IV and V represent the 2D
zy-, xy- and zx- planes respectively at Ω = Ωo = 1. The arrows represent the
starting point.
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Figure 15: Magnetization trajectory at I= 0.5 and εJ = 2 in 3D space at
Ωo = 0.1 (inset I) and Ωo = 1 (Inset II). Insets III, IV and V represent the 2D
zy-, xy- and zx- planes respectively at Ω = Ωo = 1. The arrows represent the
starting point.
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Figure 16: Magnetization trajectory at I= 0.64 and εJ = 2 in 3D space at
Ωo = 0.1 (inset I) and Ωo = 1 (Inset II). Insets III, IV and V represent the 2D
zy-, xy- and zx- planes respectively at Ω = Ωo = 1. The arrows represent the
starting point.
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Figure 17: Magnetization trajectory at I= 1.3 and εJ = 2 in 3D space at
Ωo = 0.1 (inset I) and Ωo = 1 (Inset II). Insets III, IV and V represent the 2D
zy-, xy- and zx- planes respectively at Ω = Ωo = 1. The arrows represent the
starting point.
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Figure 18: Magnetization trajectory at I= 2.1 and εJ = 2 in 3D space at
Ωo = 0.1 (inset I) and Ωo = 1 (Inset II). Insets III, IV and V represent the 2D
zy-, xy- and zx- planes respectively at Ω = Ωo = 1. The arrows represent the
starting point.
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Figure 19: Magnetization trajectory at I= 2.45 and εJ = 2 in 3D space at
Ωo = 0.1 (inset I) and Ωo = 1 (Inset II). Insets III, IV and V represent the 2D
zy-, xy- and zx- planes respectively at Ω = Ωo = 1. The arrows represent the
starting point.

3.3 SFS Geometry

The effect of the SFS dimensions on the voltage steps due to FMR is demon-
strated in [32] with βc = 0. In Fig.20 we demonstrate the effect of φsz on
the FMR steps. For the junction with φsy = φsz we can see that the FMR
steps have max width (see solid-blue line). By increasing the dimension of the
junction in z-direction, the 2nd FMR step is larger from the 1st FMR step (see
dotted-orange and dashed dotted-green lines). While for junctions with small
dimension in z-direction, the 2nd FMR width become very small of disappear
(see dashed-black and solid-red lines). The critical current dependence on φsz
is shown in Fig.21. In case of εJ = 0 and = 0.2, the critical current is look like
Bessel functions. While at εJ = 0.5 a slight changes occur as can be seen by
triangle-blue symbol in the figure.
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Figure 20: IV-characteristics for different values of φsz at FMR Ω = Ωo = 0.5.
For clarity the y-axises for different φsz are shifted with respect to each others.

Figure 21: Critical current dependence on φsz at different values of εJ .

Changing φsy at εJ = 0 does not bring significant change in the IV-characteristics.
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At εJ = 0.2 the change in φsy and φsz brings significant changes in the IV-
characteristic as can be seen in Fig.22. The voltage step widths and critical
current are affected by φsy and φsz (see Fig.22.(a) and (b) respectively).

(a)

(b)

Figure 22: IV-characteristics at εJ = 0.2 with a) different φsy and b) φsz
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3.4 External Radiation

In this section, the effect of external radiation with Ω = 0.5 and A=0.4 is
demonstrated in Fig.23. Four different cases are shown in the figure with y-axises
shifted with respect to each other for clarity. The dotted-red line represents the
case of no FMR with Ω, Ωo = 3 and εJ = 0. In this case, Shapiro steps appear at
V = 0.5, 1, 1.5. The dashed-green line represents FMR case with Ω = Ωo = 0.5
and εJ = 0. Here a significant change in the width of the steps occur. The
width of the 2nd step is larger than the 1st step and additional steps appear
at V = 2, 2.5. Same features is demonstrated in [32]. Now with εJ = 0.25
and hac = 1 ( thin-blue line ) we observe additional voltage steps with smaller
widths. At hac = 1.4 ( thick-black line ) the width of these steps are increased.

Figure 23: IV-characteristics with external radiation with Ω = 0.5 and A=0.4.
The y-axis for each case is shifted with respect to each other. The dotted-red line
represents the case of no FMR with Ω, Ωo = 3 and εJ = 0. The dashed-green
line represents FMR case with Ω = Ωo = 0.5 and εJ = 0. The thin-blue line
and thick-black line represent the case with εJ = 0.25 at hac = 1 and hac = 1.4
respectively.

The total magnetization trajectory in case of external radiation for the above
four different cases at I=1.16 are shown in Fig.24. In Fig.(a) the total magne-
tization trajectory ends with a circle in xy-plane at mz ≈ 0.8. While at FMR,
again the trajectory ends with a circle in xy-plane but now with mz ≈ 0 as
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can be seen in Fig.(b). However, with εJ = 0.25 the circle is deformed slightly
(quasi-2D). At hac = 1.4 slight changes occur for the trajectory, however it ends
also with a deformed circle.

Figure 24: Total magnetization trajectory at different values of Ωo, and εJ .

The effect of the amplitude of the external radiation in the voltage steps at
FMR is shown in Fig.25. The solid arrows represent the steps that coincides
with FMR steps. While the hollow arrows represents the usual voltage steps.
As shown in the figure the widths of these steps are changed dramatically with
the amplitude of the external radiation. In [32] the dependence of the 1st and
2nd on the amplitude of the external radiation are studied in details.
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Figure 25: Voltage steps widths at different amplitude of the external radiation
at εJ = 0.

4 Conclusions

To conclude, we develop model which describe spin wave coupling with Joseph-
son phase in SFS junction based on RSCJ model. By solving nonlinear LLG
equation with RSCJ together, we found new features related to coupling between
Josephson phase and spin wave. We show that this coupling results in new in-
teresting features of the I-V characteristics. Additional fractional voltage steps
appears between FMR voltage steps which appear at nΩ, n=2,4,6,...etc. The
reason of the even number voltage steps is interpreted as follow: if the penetrat-
ing spin singlet Cooper pairs are scattered by the odd number of magnons, spin
triplet state is formed, resulting in no Josephson current. While, if they scat-
tered by even number of magnons spin singlet state is result, and the Josephson
current flows. While the fractional voltage steps represent a series of fractional
synchronization between the applied magnetic field frequency and the Joseph-
son frequency. Josephson current manifests itself on the magnetization dynam-
ics and induce large degree of nonlinearity to the magnetization trajectory. We
demonstrate the effect of junction dimension on the voltage steps appears at
FMR. Finally we show the effect of external radiation on the IV-characteristics
when interaction between spin wave and Josephson phase is taken into account.
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